

Network Control Language Reference Guide
r5

CA SOLVE:Access™ Session

Management

This documentation and any related computer software help programs (hereinafter referred to as the "Documentation") are for
your informational purposes only and are subject to change or withdrawal by CA at any time.

This Documentation may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without
the prior written consent of CA. This Documentation is confidential and proprietary information of CA and may not be used or
disclosed by you except as may be permitted in a separate confidentiality agreement between you and CA.

Notwithstanding the foregoing, if you are a licensed user of the software product(s) addressed in the Documentation, you may
print a reasonable number of copies of the Documentation for internal use by you and your employees in connection with that
software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print copies of the Documentation is limited to the period during which the applicable license for such software
remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify in writing to CA
that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION "AS IS" WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY FOR ANY LOSS OR
DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS,
LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF
THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and is not
modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with "Restricted Rights." Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2010 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA SOLVE:NetMail™

■ CA SYSVIEW® Performance Management (CA SYSVIEW)

Contact CA Technologies

Contact Technical Support

For your convenience, CA Technologies provides one site where you can access
the information you need for your Home Office, Small Business, and Enterprise
CA Technologies products. At http://ca.com/support, you can access the
following:

■ Online and telephone contact information for technical assistance and
customer services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

Provide Feedback

If you have comments or questions about CA Technologies product
documentation, you can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product
documentation, complete our short customer survey, which is available on the
CA Support website at http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://www.ca.com/docs
http://www.ca.com/docs

Contents 5

Contents

Chapter 1: Introduction 27

About NCL .. 27

Format ... 28

Verbs .. 29

Built-in Functions ... 30

System Variable Format ... 31

Related Documentation ... 31

Chapter 2: Verbs and Built-in Functions 33

Summary Table ... 33

&AOMALERT ... 40

&AOMCONT .. 53

&AOMDEL .. 61

&AOMGFLAG ... 64

&AOMGVAR .. 65

&AOMINIT ... 66

&AOMMIGID ... 68

&AOMMINLN ... 69

&AOMMINLT ... 70

&AOMREAD .. 71

&AOMREPL ... 75

&APPC ... 80

&APPC Return Code Information ... 86

&RETCODE and &ZFDBK ... 86

&APPC ALLOCATE_DELAYED ... 89

&APPC ALLOCATE_IMMEDIATE .. 95

&APPC ALLOCATE_NOTIFY .. 100

&APPC ALLOCATE_SESSION ... 106

&APPC ATTACH_DELAYED .. 113

&APPC ATTACH_IMMEDIATE ... 119

&APPC ATTACH_NOTIFY .. 125

&APPC ATTACH_SESSION ... 132

&APPC CONFIRM .. 139

&APPC CONFIRMED .. 141

6 Network Control Language Reference Guide

&APPC CONNECT_DELAYED .. 143

&APPC CONNECT_IMMEDIATE .. 146

&APPC CONNECT_NOTIFY .. 149

&APPC CONNECT_SESSION ... 152

&APPC DEALLOCATE ... 155

&APPC DEREGISTER .. 158

&APPC FLUSH.. 159

&APPC PREPARE_TO_RECEIVE .. 161

&APPC RECEIVE_AND_WAIT .. 163

&APPC RECEIVE_IMMEDIATE ... 167

&APPC RECEIVE_NOTIFY.. 169

&APPC REGISTER... 172

&APPC REQUEST_TO_SEND... 174

&APPC RPC .. 177

&APPC SEND_AND_CONFIRM... 181

&APPC SEND_AND_DEALLOCATE ... 183

&APPC SEND_AND_FLUSH .. 185

&APPC SEND_AND_PREPARE_TO_RECEIVE .. 188

&APPC SEND_DATA .. 190

&APPC SEND_ERROR ... 193

&APPC SET_SERVER_MODE... 195

&APPC START .. 198

&APPC TEST ... 204

&APPC TRANSFER_ACCEPT ... 206

&APPC TRANSFER_CONNECT ... 208

&APPC TRANSFER_REJECT .. 210

&APPC TRANSFER_REQUEST .. 212

&APPSTAT ... 216

&ASISTR ... 217

&ASSIGN .. 218

&ASSIGN Statement for MDO Assignments .. 230

&ASSIGN Syntax for MDO Data Assignments ... 231

&BOOLEXPR ... 236

BOOLEAN Expression Syntax .. 239

&CALL ... 247

&CALL procedure .. 247

&CALL program .. 250

&CMDLINE .. 257

Contents 7

&CNMALERT... 258

&CNMCLEAR .. 261

&CNMCONT ... 262

&CNMDEL ... 263

&CNMPARSE .. 265

&CNMREAD ... 268

&CNMSEND ... 275

&CNMVECTR .. 278

&CONCAT ... 280

&CONTROL .. 281

&DATECONV .. 307

&DEC ... 312

&DECODE ... 313

&DELAY ... 319

&DO .. 320

&DOEND .. 321

&DOM .. 322

&DOUNTIL .. 323

&DOWHILE .. 325

&ELSE ... 327

&ENCODE ... 328

&END ... 333

&ENDAFTER ... 335

&EVENT ... 336

&EXIT ... 339

&FILE ... 341

&FILE ADD ... 345

&FILE CLOSE ... 350

&FILE DEL ... 350

&FILE GET ... 353

&FILE OPEN ... 362

&FILE PUT ... 366

&FILE SET.. 371

&FLUSH ... 374

&FNDSTR .. 375

&GOSUB .. 376

&GOTO.. 379

&HEX ... 383

8 Network Control Language Reference Guide

&HEXEXP .. 384

&HEXPACK .. 385

&IF.. 386

&INTCLEAR .. 390

&INTCMD ... 392

&INTCONT... 395

&INTREAD ... 397

&INTREPL ... 404

&INVSTR .. 407

&LBLSTR .. 408

&LENGTH.. 409

&LOCK .. 410

Altering the Lock Type During Processing .. 417

&LOGCONT .. 418

&LOGDEL .. 419

&LOGON .. 419

&LOGREAD .. 422

&LOGREPL ... 429

&LOOPCTL... 430

&MAICMD... 431

&MAICONT .. 431

&MAICURSA ... 436

&MAIDEL .. 437

&MAIDSFMT... 437

&MAIFIND ... 440

&MAIINKEY .. 443

&MAIPUT ... 445

&MAIREAD .. 447

&MAIREPL ... 449

&MAISADD .. 450

&MAISCMD ... 453

&MAISGET .. 455

&MAISPUT .. 458

&MASKCHK .. 460

&MSGCONT ... 462

&MSGDEL ... 463

&MSGREAD ... 464

&MSGREPL .. 469

Contents 9

&NBLSTR .. 471

Free-form Syntax... 472

&NDBADD ... 476

&NDBCLOSE ... 480

&NDBCTL .. 481

&NDBDEF ... 486

&NDBDEL ... 494

&NDBFMT ... 496

&NDBGET ... 506

&NDBINFO .. 512

&NDBOPEN.. 521

&NDBPHON ... 523

&NDBPHON Exit Call Details .. 523

&NDBQUOTE .. 525

&NDBSCAN .. 527

Comments on Syntax ... 536

Scan Processing .. 540

Logic .. 542

Correlated Subselects .. 543

&NDBSEQ ... 544

Sequential Retrieval .. 549

&NDBUPD ... 550

&NPFxCHK .. 554

&NRDDEL ... 556

&NUMEDIT .. 557

&OVERLAY .. 558

&PANEL ... 561

&PANELEND ... 564

&PARSE ... 565

&PAUSE ... 570

&PPI .. 574

&PPI Verb ... 576

Return Codes, System and User Variables .. 576

Determining PPI or Receiver Status .. 578

Defining the Process as a Registered PPI Receiver .. 578

Sending a Generic Alert ... 579

Sending Data to a Receiver ... 579

Receiving Data ... 579

10 Network Control Language Reference Guide

Deactivating the Receiver ID .. 580

Uses of PPI .. 580

Examples .. 581

&PPI ALERT .. 583

&PPI DEACTIVATE .. 585

&PPI DEFINE ... 586

&PPI RECEIVE .. 588

&PPI SEND... 590

&PPI STATUS .. 592

&PPOALERT ... 593

&PPOCONT .. 597

&PPODEL .. 600

&PPOREAD .. 602

&PPOREPL ... 607

&PROMPT ... 609

&QEXIT.. 613

&REMSTR ... 614

&RETCODE .. 615

&RETSUB .. 617

&RETURN ... 618

&RSCCHECK ... 620

&SECCALL ... 622

&SECCALL ADD .. 625

&SECCALL CHANGE .. 627

&SECCALL CHECK .. 631

&SECCALL DELETE .. 634

&SECCALL EXIT... 634

&SECCALL GET ... 637

&SECCALL QUERY .. 639

&SECCALL UPDATE ... 644

&SELSTR... 646

&SETBLNK ... 647

&SETLENG ... 648

&SETVARS ... 650

&SMFWRITE ... 653

&SNAMS CANCEL .. 656

&SNAMS DEREGISTER .. 657

&SNAMS RECEIVE .. 659

Contents 11

&SNAMS RECEIVE_NOTIFY.. 660

&SNAMS REGISTER... 662

&SNAMS SEND .. 665

&SOCKET ACCEPT .. 668

&SOCKET CLOSE ... 670

&SOCKET CONNECT .. 671

&SOCKET GETHOSTBYADDR .. 672

&SOCKET GETHOSTBYNAME .. 674

&SOCKET OPEN .. 677

&SOCKET PING... 679

&SOCKET RECEIVE ... 682

&SOCKET RECEIVE_FROM .. 685

&SOCKET REGISTER .. 687

&SOCKET SEND .. 688

&SOCKET SEND_TO .. 691

&SOCKET TRACEROUTE .. 693

&SOCKET TRANSFER_ACCEPT ... 695

&SOCKET TRANSFER_REQUEST ... 696

&STR .. 698

&SUBSTR .. 699

&TBLSTR .. 700

&TRANS ... 702

&TYPECHK ... 705

&VARTABLE ... 708

&VARTABLE ADD... 710

&VARTABLE ALLOC ... 717

&VARTABLE DELETE .. 721

&VARTABLE FREE .. 724

&VARTABLE GET ... 726

&VARTABLE PUT or UPDATE .. 735

&VARTABLE QUERY .. 744

&VARTABLE RESET ... 747

&WRITE ... 749

&WTO .. 761

&WTOR ... 765

&ZAMCHECK .. 770

&ZFEATURE ... 771

&ZNCLKWD .. 772

12 Network Control Language Reference Guide

&ZOSCHK.. 773

&ZPSKIP ... 777

&ZQUOTE/&ZQUOTE2 ... 778

&ZSHRINK ... 780

&ZSOCINFO.. 780

&ZSUBST .. 783

&ZSYSPARM ... 784

&ZTCPERDS .. 785

&ZTCPERNM ... 785

&ZTCPINFO .. 786

&ZTCPSUPP.. 787

&ZUNQUOTE .. 788

Chapter 3: System Variables 789

About System Variables .. 789

&ALLPARMS ... 806

&AOMACCT1-4 .. 807

&AOMALARM ... 808

&AOMASID .. 809

&AOMATEXT .. 809

&AOMAUTH ... 811

&AOMAUTO ... 812

&AOMAUTOT .. 813

&AOMBC .. 813

&AOMCHAR1 .. 814

&AOMCOLOR .. 815

&AOMCONNM .. 816

&AOMDESC ... 816

&AOMDHEX ... 817

&AOMDMASK ... 818

&AOMDOM ... 819

&AOMDOMID ... 820

&AOMEVCLS... 822

&AOMHLITE ... 823

&AOMID .. 823

&AOMIJOBN ... 826

&AOMINTEN .. 827

&AOMJOBCL .. 828

Contents 13

&AOMJOBID ... 829

&AOMJOBNM ... 830

&AOMJSTCB ... 831

&AOMLDID .. 832

&AOMLROUT .. 833

&AOMLRSLT ... 834

&AOMLRSL1-8 ... 834

&AOMLTCTL ... 835

&AOMLTDAT .. 836

&AOMLTEND .. 838

&AOMLTLAB... 839

&AOMMAJOR ... 840

&AOMMHEX .. 841

&AOMMINOR ... 842

&AOMMMASK ... 843

&AOMMONIT ... 844

&AOMMPFSP .. 845

&AOMMSGCD ... 846

&AOMMSGID .. 847

&AOMMSGLV ... 848

&AOMMVCON ... 849

&AOMMVSDL ... 850

&AOMNMCON .. 851

&AOMNMDOM .. 852

&AOMNMIN ... 853

&AOMNRD .. 854

&AOMODID ... 855

&AOMRCLAS .. 856

&AOMRCLS1-8 ... 857

&AOMREISS ... 857

&AOMRHEX ... 858

&AOMRKEY.. 858

&AOMRKEY.. 859

&AOMROUTC .. 860

&AOMROUTE .. 861

&AOMRROUT.. 862

&AOMRWTOR ... 863

&AOMSALRT .. 864

14 Network Control Language Reference Guide

&AOMSDATA .. 865

&AOMSINGL ... 866

&AOMSOLIC ... 867

&AOMSOLTP .. 868

&AOMSOS ... 869

&AOMSUBT ... 870

&AOMTEXT .. 871

&AOMTIME ... 872

&AOMTYPE .. 873

&AOMUFLGS .. 874

&AOMUFLG1-8 .. 875

&AOMVMMCL ... 876

&AOMVMSRC ... 877

&AOMVMUID ... 878

&AOMVMUND... 879

&AOMWRID ... 880

&AOMWRLEN ... 881

&AOMWTO.. 881

&AOMWTOR .. 882

&BROLINEn .. 883

&CURSCOL and &CURSROW .. 884

&DATEn ... 885

&DAY ... 888

&FILEID ... 889

&FILEKEY .. 889

&FILERC ... 890

&FILERCNT .. 894

&FSM ... 895

&INKEY .. 896

&LOOPCTL... 898

&LUCOLS .. 899

&LUEXTCO .. 900

&LUEXTHI ... 901

&LUNAME ... 902

&LUROWS ... 903

&MAI#SESS .. 904

&MAIAE ... 904

&MAIAPPL... 904

Contents 15

&MAICCOLS ... 905

&MAICROWS .. 905

&MAIDISC ... 905

&MAIFRLU .. 906

&MAIINKEY .. 906

&MAILOCK .. 908

&MAILU ... 908

&MAIMNFMNT .. 908

&MAINSESS ... 908

&MAIOCMD ... 909

&MAIREQ ... 909

&MAISCANDL .. 909

&MAISID .. 910

&MAISKIPP .. 910

&MAISKPK1 ... 910

&MAISKPK2 ... 910

&MAISMODE .. 911

&MAITITLE .. 911

&MAIUNLCK ... 912

&MAIWNDOW ... 913

&NDBERRI ... 914

&NDBRC .. 915

&NDBRID .. 917

&NEWSAUTH .. 918

&NEWSRSET ... 919

&NMID .. 919

&OCSID and &OCSIDO .. 921

&PANELID ... 922

&PARMCNT ... 923

&RETCODE .. 924

&ROUTECODE ... 925

&SYSID .. 925

&TIME .. 926

&USERAUTH ... 926

&USERID .. 927

&USERPW ... 928

&VSAMFDBK .. 929

&ZACBNAME .. 930

16 Network Control Language Reference Guide

&ZAMTYPE .. 931

&ZAPPCACC ... 932

&ZAPPCCSI .. 932

&ZAPPCELM ... 933

&ZAPPCELP .. 934

&ZAPPCID ... 935

&ZAPPCIDA .. 935

&ZAPPCLNK ... 936

&ZAPPCMOD .. 936

&ZAPPCPCC ... 936

&ZAPPCQLN ... 937

&ZAPPCQRN ... 937

&ZAPPCRM .. 938

&ZAPPCRTS .. 938

&ZAPPCSCM ... 939

&ZAPPCSM .. 939

&ZAPPCSND ... 940

&ZAPPCSTA.. 941

&ZAPPCSYN ... 942

&ZAPPCTRN ... 942

&ZAPPCTYP .. 943

&ZAPPCWR .. 944

&ZAPPCWRI ... 946

&ZAPPCVRB ... 946

&ZAPBLANK1 .. 946

&ZBROID .. 947

&ZBROTYPE ... 948

&ZCOLS ... 949

&ZCONSOLE ... 949

&ZCURSFLD.. 950

&ZDBCS ... 951

&ZDOMID ... 953

&ZDSNQLCL ... 954

&ZDSNQSHR ... 955

&ZFDBK ... 955

&ZGDATEn .. 956

&ZGDAY ... 960

&ZGOPS ... 961

Contents 17

&ZGTIMEn... 962

&ZGTIMEZn ... 963

&ZINTYPE ... 964

&ZIREQCNT .. 965

&ZIRSPCNT .. 966

&ZJOBNAME... 967

&ZJOBNUM.. 968

&ZJRNLACT .. 969

&ZJRNLALT .. 969

&ZLCLIPA .. 969

&ZLCLIPP .. 970

&ZLOGMODE .. 971

&ZLUNETID .. 972

&ZLUTYPE ... 972

&ZLU1CHN .. 974

&ZMAIACT# or &ZMAIACTN .. 976

&ZMALARM ... 976

&ZMALLMSG .. 976

&ZMAOMAU .. 976

&ZMAOMBC ... 977

&ZMAOMDTA ... 978

&ZMAOMID ... 979

&ZMAOMJI .. 980

&ZMAOMJN ... 980

&ZMAOMMID ... 981

&ZMAOMMIN ... 982

&ZMAOMMLC ... 982

&ZMAOMMLD ... 983

&ZMAOMMLE ... 983

&ZMAOMMLL ... 984

&ZMAOMMLT ... 984

&ZMAOMMLV ... 985

&ZMAOMMSG ... 986

&ZMAOMRC ... 987

&ZMAOMRCM ... 988

&ZMAOMRCX ... 988

&ZMAOMSOS ... 989

&ZMAOMSYN ... 990

18 Network Control Language Reference Guide

&ZMAOMTM .. 991

&ZMAOMTYP .. 992

&ZMAOMUFM ... 993

&ZMAOMUF1-8.. 994

&ZMAOMUI ... 995

&ZMAOMUN .. 996

&ZMAPNAME.. 996

&ZMCOLOR or &ZMCOLOUR.. 996

&ZMDOCOMP ... 996

&ZMDOFDBK .. 997

&ZMDOID ... 998

&ZMDOM ... 998

&ZMDOMAP... 998

&ZMDOMID ... 998

&ZMDONAME ... 998

&ZMDORC ... 999

&ZMDOTAG .. 1000

&ZMDOTYPE ... 1000

&ZMEVONID.. 1000

&ZMEVPROF.. 1000

&ZMEVRCDE.. 1000

&ZMEVTIME .. 1001

&ZMEVUSER .. 1001

&ZMHLIGHT or &ZMHLITE ... 1001

&ZMINTENS .. 1001

&ZMLNODE .. 1002

&ZMLOGCMD .. 1002

&ZMLSRCID... 1002

&ZMLSRCTP .. 1002

&ZMLTIME ... 1003

&ZMLUSER ... 1003

$ZMMONMSG .. 1003

&ZMMSG... 1003

&ZMMSGCD .. 1003

&ZMMDIDL ... 1004

&ZMMDIDO .. 1004

&ZMNRD ... 1004

&ZMNRDRET ... 1005

Contents 19

&ZMODFLD ... 1005

&ZMODSRCID .. 1007

&ZMOSRCTP .. 1007

&ZMPPODTA ... 1007

&ZMPPOMSG ... 1007

&ZMPPOSCNT .. 1008

&ZMPPOSEV .. 1008

&ZMPPOTM .. 1008

&ZMPPOVNO ... 1009

&ZMPREFXD .. 1009

&ZMPTEXT ... 1009

&ZMREQID ... 1009

&ZMREQSRC.. 1010

&ZMSLEVEL .. 1010

&ZMSOLIC .. 1010

&ZMSOURCE ... 1011

&ZMTEXT .. 1011

&ZMTYPE .. 1011

&ZNCLENV ... 1012

&ZNCLID ... 1012

&ZNCLNEST .. 1013

&ZNCLTYPE ... 1014

&ZNETID ... 1016

&ZNETNAME ... 1017

&ZNMDID .. 1017

&ZNMSUP .. 1018

&ZOCS ... 1018

&ZOPS ... 1018

&ZOPSVERS .. 1020

&ZOUSERID... 1021

&ZPERRORC .. 1022

&ZPERRORH .. 1022

&ZPINPHIC ... 1022

&ZPINPLOC ... 1022

&ZPINPUTH .. 1022

&ZPINPUTP ... 1023

&ZPLABELC ... 1023

&ZPMTEXT1 .. 1023

20 Network Control Language Reference Guide

&ZPOUTHIC .. 1023

&ZPOUTLOC .. 1024

&ZPPKEYC .. 1024

&ZPPI .. 1024

&ZPPINAME .. 1024

&ZPRINAME .. 1025

&ZPRODNAM ... 1025

&ZPSERVIC ... 1025

&ZPSKIP .. 1026

&ZPSKPSTR ... 1027

&ZPSUBTLC ... 1028

&ZPTITLEC .. 1028

&ZPTITLEP .. 1028

&ZPWSTATE .. 1028

&ZREMIPA.. 1029

&ZREMIPP .. 1029

&ZROWS ... 1030

&ZSCOPE ... 1030

&ZSECEXIT.. 1031

&ZSERVER .. 1031

&ZSNAMID ... 1032

&ZSOCCID .. 1033

&ZSOCERRN .. 1033

&ZSOCFHNM ... 1034

&ZSOCHADR .. 1034

&ZSOCHNM .. 1035

&ZSOCID ... 1035

&ZSOCPRT .. 1035

&ZSOCTYPE ... 1036

&ZSOCVERR .. 1036

&ZSSCPNAM .. 1036

&ZSYSNAME .. 1037

&ZTCP.. 1037

&ZTCPHSTA .. 1037

&ZTCPHSTF ... 1038

&ZTCPHSTN .. 1038

&ZTIMEn ... 1039

&ZTSOUSER .. 1040

Contents 21

&ZUCENAME ... 1041

&ZUDATEn ... 1042

&ZUDAY .. 1045

&ZUNIQUE ... 1046

&ZUSERLC .. 1047

&ZUSERSLC ... 1048

&ZUSRMODE ... 1048

&ZUTIMEn.. 1049

&ZUTIMEZn .. 1050

&ZUTIMEZN .. 1051

&ZVARCNT ... 1051

&ZVTAMLVL .. 1052

&ZVTAMPU... 1052

&ZVTAMSA ... 1053

&ZWINDOW .. 1053

&ZWINDOW# ... 1054

&ZWSTATE ... 1054

&0 ... 1055

&00 .. 1055

&000 ... 1056

Chapter 4: PSM Interface 1057

About the PSM NCL Interface .. 1057

$PSCALL Options .. 1058

$PSCALL OPT=BROWSE .. 1059

$PSCALL OPT=CANCEL ... 1061

$PSCALL OPT=CLOSE .. 1062

$PSCALL OPT=CONFIRM ... 1063

$PSCALL OPT=DELETE ... 1065

$PSCALL OPT=HEADER .. 1066

$PSCALL OPT=HOLD ... 1068

$PSCALL OPT=INFO ... 1070

$PSCALL OPT=MODIFY .. 1075

$PSCALL OPT=OPEN ... 1077

$PSCALL OPT=PUT .. 1083

$PSCALL OPT=QUEUE ... 1085

$PSCALL OPT=RELEASE .. 1088

Banner Exit ... 1089

22 Network Control Language Reference Guide

Printer Exit Interface .. 1090

Chapter 5: CA CCI Interface 1093

$CACCI OPT=INIT ... 1094

$CACCI OPT=INQUIRE ... 1095

$CACCI OPT=RECEIVE ... 1097

$CACCI OPT=SEND .. 1098

$CACCI OPT=TERM | TERMINATE .. 1100

$CACCI OPT=CANCEL .. 1101

Return Codes and Variables.. 1101

Feedback Codes ... 1103

$CACCI Example .. 1103

Chapter 6: Broadcast Services Interface 1109

About Broadcast Services .. 1109

$BSCALL OPT=SEND ... 1109

$BSCALL OPT=MENU .. 1113

$BSCALL OPT=LISTALL ... 1114

$BSCALL OPT=REVIEW... 1114

$BSCALL OPT=DISCARD .. 1116

Notification Exit Interface ... 1117

Chapter 7: Dataset Services Interface 1119

About the Dataset Services Interface ... 1121

Exit Procedures ... 1121

Return Codes ... 1124

Feedback Codes ... 1124

$DSCALL OPT=ALIAS... 1132

$DSCALL OPT=ALLOC .. 1133

$DSCALL OPT=ALLOC STAT=NEW ... 1138

$DSCALL OPT=ALLOC SYSOUT=class .. 1143

$DSCALL OPT=ALLOCINFO ... 1146

$DSCALL OPT=BROWSE ... 1149

$DSCALL OPT=CATLIST .. 1150

$DSCALL OPT=CLOSE .. 1153

$DSCALL OPT=COMPRESS ... 1154

$DSCALL OPT=CONCAT .. 1156

Contents 23

$DSCALL OPT=COPY ... 1157

$DSCALL OPT=COPYPDS ... 1161

$DSCALL OPT=COPYSEQ ... 1164

$DSCALL OPT=CREATE ... 1167

$DSCALL OPT=DECONCAT ... 1171

$DSCALL OPT=DELETE ... 1172

$DSCALL OPT=DELMEM ... 1173

$DSCALL OPT=DEQ .. 1174

$DSCALL OPT=DSNLIST .. 1175

$DSCALL OPT=DSNSPACE .. 1176

$DSCALL OPT=EDIT .. 1177

$DSCALL OPT=ENQ .. 1178

$DSCALL OPT=FCLOSE ... 1179

$DSCALL OPT=FINDMEM .. 1181

$DSCALL OPT=FOPEN ... 1182

$DSCALL OPT=INFO ... 1187

$DSCALL OPT= LISTC .. 1190

$DSCALL OPT=MEMLIST ... 1195

$DSCALL OPT=MOVE .. 1198

$DSCALL OPT=MOVEPACK ... 1199

$DSCALL OPT=OPEN .. 1201

$DSCALL OPT=PRINT .. 1203

$DSCALL OPT=READ ... 1204

$DSCALL OPT=RENAME ... 1207

$DSCALL OPT=RENMEM ... 1208

$DSCALL OPT=SHOWALLOC .. 1209

$DSCALL OPT=SUBMIT .. 1211

$DSCALL OPT=UNALL.. 1212

$DSCALL OPT=UTILITY ... 1214

$DSCALL OPT=VOLSPACE .. 1217

$DSCALL OPT=WRITE .. 1218

Chapter 8: MVS System Symbols Interface 1221

Accessing MVS Static System Symbols .. 1222

$CAPKBIF PLEXSUB .. 1223

$CAPKBIF PLEXSYM COUNT .. 1225

$CAPKBIF PLEXSYM symbol NEXT .. 1225

$CAPKBIF PLEXSYM symbol VALUE ... 1226

24 Network Control Language Reference Guide

Chapter 9: Timer Services Interface 1227

About the Timer Services NCL Interface. .. 1227

$TICALL FUNC=ADD ... 1228

$TICALL FUNC=GET ... 1233

$TICALL FUNC=PUT ... 1236

$TICALL FUNC=DEL .. 1239

$TICALL FUNC=LIST ... 1240

$TICALL FUNC=START ... 1241

$TICALL FUNC=STOP .. 1242

$TICALL FUNC=STATUS .. 1243

$TICALL FUNC=NEXT .. 1244

Chapter 10: Persistent Global Variables Interface 1245

$CAGLBL OPT=LOAD .. 1245

$CAGLBL OPT=SAVE ... 1247

$CAGLBL OPT=PURGE ... 1248

$CAGLBL OPT=LIST .. 1249

$CAGLBL OPT=SHGLBL .. 1249

Appendix A: Event Distribution Services 1253

Sample Code ... 1253

System Event Names .. 1256

Extended Data .. 1268

Appendix B: Supported Language Codes for National Language Support 1269

Appendix C: Supported Character Sets 1271

Code Page Selection... 1271

DEC Character Code Page .. 1272

ASCII Character Code Page ... 1274

ISO Character Code Page .. 1275

Appendix D: Processing Double Byte Character Set Data 1277

About Double Byte Characters ... 1277

DBCS Support in NCL .. 1278

NCL Function Changes with &CONTROL DBCS Options ... 1279

Contents 25

&ASISTR .. 1280

&CONCAT .. 1280

&FNDSTR ... 1281

&LENGTH ... 1283

&OVERLAY .. 1284

&REMSTR .. 1287

&SELSTR .. 1288

&SETLENG .. 1290

&STR ... 1292

&SUBSTR ... 1293

Appendix E: &SOCKET Verbs 1297

About the Socket Interfaces ... 1297

TCP Sockets ... 1297

UDP Sockets .. 1299

Host Verb Set ... 1299

Name Services Verb Set ... 1300

Socket Built-in Functions .. 1300

System Variables .. 1300

Sample Code for TCP and UDP &SOCKET Verbs .. 1301

Examples of Using TCP &SOCKET Verbs ... 1302

Socket Interface Feedback and Error Codes ... 1304

TCP/IP Feedback Codes (&ZFDBK) .. 1304

TCP/IP Socket Errors (&ZSOCERRN) ... 1308

Interpreting Vendor-specific Error Codes (&ZSOCVERR) .. 1311

Interpreting CA TCPaccess Systems Error Codes ... 1312

Interpreting IBM Systems Error Codes .. 1313

TCP/IP Vendor Interface Restrictions and Limitations .. 1313

CA TCPaccess Communications Server .. 1314

IBM Communications Server ... 1314

Chapter 1: Introduction 27

Chapter 1: Introduction

This section contains the following topics:

About NCL (see page 27)
Format (see page 28)
Verbs (see page 29)
Built-in Functions (see page 30)
System Variable Format (see page 31)
Related Documentation (see page 31)

About NCL

NCL is a high-level interpretive language integrated into many components to
provide a fast, comprehensive, and advanced development tool to implement
the specific requirements of an installation. NCL is the vehicle through which
your product region is rapidly tailored to the needs of the installation.

NCL is based on free-form statement syntax that can process both system and
user-supplied data. Data is maintained in variables, which is manipulated and
changed as required.

Collections of NCL statements, which may include system commands, are
termed procedures and are stored in partitioned data sets (z/OS) or CMS files
(z/VM) called procedure libraries, which is edited and updated while your
product region is operational. Each NCL procedure is a separate member within
a procedure library.

There is one principal procedure library (or concatenation of libraries) used by
your product region. In addition to this system library, individual users under
z/OS is allocated an individual procedure library for their own use, as part of the
definition of their user ID.

NCL procedures can take many forms. They is a simple collection of comment
statements that provide an effective means of online documentation. They is a
collection of your product region commands in exactly the same format as
entered from a terminal. They is extended to include logical decision making
capabilities, the display of full-screen panels and the use of file processing
capabilities.

An NCL procedure can call or nest to another procedure to improve modularity.

Format

28 Network Control Language Reference Guide

In addition, certain NCL procedures are reserved for performing special
functions such as interfacing to unsolicited messages from VTAM (PPOPROC),
intercepting and reacting to other messages sent to the user terminal
(MSGPROC), and processing messages destined for the activity logs (LOGPROC).

Format

The following information is presented for each item described in this book:

■ On the left is the name of the verb or built-in. To the right of the name are
the permissible operands for that verb or built-in.

■ Each item contains some or all of the following section headings:

Operands

Description of operands.

Return Codes

Return code options set on completion of the item, with an explanation.

Examples

Examples of interface syntax.

Notes

Additional information about the item.

Example: Format

&INTCLEAR [TYPE={ ALL | REQ | RESP | ANY }]

UPPERCASE characters

Must be entered as shown for verb or built-in names or operands consisting
of uppercase characters, but can be entered in uppercase or lowercase.

Italic characters

Are variables that show the kind of information, rather than the exact
information that must be supplied. The actual entry replaces the italic
description. Valid types of data are described for each verb or built-in within
the operands section.

Underscored values

Indicate the defaulted value that is assumed for an operand if it is not
specified in the verb or built-in.

Verbs

Chapter 1: Introduction 29

{Braces}

Indicate the available options for an operand. One of the alternatives must
be selected. Do not include the braces when entering a specification.

[Square brackets]

Indicate optional specifications. Do not include square brackets when
entering a specification.

Or signs (|)

Separate options for an optional or mandatory specification. If a group of
options is enclosed by square brackets, and each is separated by an or sign,
none of the options have to be chosen. If none are coded, the default value
(underscored) is used.

Commas (,) and Equal (=) signs

Must be entered as shown. If commas or equal signs appear in brackets,
they are optional and used only if the accompanying optional operand is
used.

Ellipsis (…)

Denotes items that are repeated.

Verbs

Keywords denote and initiate a specific action. Depending on the verb, the
processing that occurs to carry out an action may require additional operands in
the form of values or variables. The result of the action can also modify or
create variables.

Examples: Verbs

The following example deletes a message received by MSGPROC:

&MSGDEL

The following example suspends the NCL process at this statement awaiting
operator input, which is placed in variables &1, &2, …

&PAUSE ARGS

Built-in Functions

30 Network Control Language Reference Guide

Built-in Functions

Built-in functions are special-purpose verbs that operate on one or more
parameters to give a result in a target variable; therefore, built-in functions
must be specified on the right of an assignment statement.

The following shows the general syntax for statements with built-in functions:

&target = &built-in &parm ... &parm

&target

Specifies the name of a variable that receives the result.

&built-in

Specifies the name of the built-in function invoked.

&parm

Represents one or more variables or values used as input parameters to the
function.

Note: The precise syntax for the function is discussed for each function, if
required.

Example: Built-in Functions

The following example shows the variable &C is the target of the &CONCAT
built-in function, which concatenates the values of the two variables &A and &B,
then puts result, ABCDEF, into &C.

&A = ABC

&B = DEF

&C = &CONCAT &A &B

System Variable Format

Chapter 1: Introduction 31

System Variable Format

System variables represent read-only information that is available to all
procedures in the system. These variables cannot be modified by procedures
and the information in the variable is either constant (for example, &TIME
always contains the current time, regardless of which procedure references the
variable) or procedure-dependent (for example, &LUNAME always returns the
name of the terminal associated with the NCL region in which the procedure is
executing).

The system variables documented are general purpose variables available to all
NCL procedures unless specifically noted otherwise. There are also special
system variables that occur only on completion of certain verbs and that
provide message profile information.

Related Documentation

For more information about writing and maintaining NCL procedures, see the
Network Control Language Programming Guide.

Chapter 2: Verbs and Built-in Functions 33

Chapter 2: Verbs and Built-in Functions

Summary Table

The following table is a list of the verbs and built-in functions available in
Network Control Language, with a brief description of their function.

The Feature/Component column indicates whether a specific product or
component must be included in the initialization parameters at region startup
before you can use the verb or built-in function.

Note: For more information about the initialization parameters, see the
Reference Guide.

Automation Services (AS) is an internal component that is enabled if any of the
following products are configured in the region: FT, NETSPY, OPSCICS, OPSOS,
SNA, SNAAUTO, TCPIP.

The column headed V/B indicates whether the item is a verb or built-in function.

Name Description Feature/
Component

V/B

&AOMALERT Generates or simulates an AOM event, WTO, VM MSG, or MVS
DOM, and routes it as required.

AS V

&AOMCONT Releases a message from an AOMPROC for delivery, passes the
message to another AOMPROC for processing, or sends a copy
of the current message to an ISR connected system.

AS V

&AOMDEL Deletes the message that an AOMPROC is processing. AS V

&AOMFLAG Alters the value of an AOM global flag. AS V

&AOMFLAG Inspects the value of an AOM global flag. AS B

&AOMGVAR Alters the value of an AOM global variable. AS V

&AOMGVAR Inspects the value of an AOM global variable. AS B

&AOMINIT Indicates to regard the current procedure as an AOMPROC,
and registers the procedure for message delivery.

AS V

&AOMMIGID Determines whether a migration ID is required. AS B

Summary Table

34 Network Control Language Reference Guide

Name Description Feature/
Component

V/B

&AOMMINLN Accesses the text of a specific minor line of a multiline WTO
message in an AOMPROC.

AS B

&AOMMINLT Accesses the line type of a specific minor line of a multiline
WTO message in an AOMPROC.

AS B

&AOMREAD Requests to make the next message available to an AOMPROC. AS V

&AOMREPL Alters the text of a message and release the message for local
delivery.

AS V

&APPC Provides access to LU6.2 conversations. V

&APPSTAT Returns the status for a VTAM application. B

&ASISTR Assigns a multiword string into a variable, retaining leading
blanks.

 B

&ASSIGN Updates lists of variables in one operation. V

&BOOLEXPR Evaluates a Boolean expression. B

&CALL procedure Invokes an NCL procedure. V

&CALL program Invokes a user program. V

&CMDLINE Writes text into your OCS command input line. V

&CNMALERT Sends a CNM record directly to CNMPROC in a local or remote
NEWS system for processing.

SNA V

&CNMCLEAR Requests to clear all outstanding CNM reply data solicited by
this NCL user.

SNA V

&CNMCONT Directs the current CNM record across a specific ISR link. SNA V

&CNMDEL Deletes a CNM record or stops ISR delivery of the record to a
remote region.

SNA V

&CNMPARSE Requests to parse the MDO data supplied into user variables. SNA V

&CNMREAD Requests to make the next CNM record available to an NCL
procedure.

SNA V

&CNMSEND Requests to send the data supplied across the CNM interface. SNA V

&CNMVECTR Requests to vector the data supplied into user variables. SNA V

&CONCAT Concatenates multiple variables/constants. B

&CONTROL Sets NCL procedure control characteristics. V

Summary Table

Chapter 2: Verbs and Built-in Functions 35

Name Description Feature/
Component

V/B

&DATECONV Changes a date format. B

&DEC Converts a hexadecimal number to its decimal equivalent. B

&DECODE Decodes part or all of an MDO. V

&DELAY Interrupts processing of a procedure for a specified period of
time.

 V

&DO Groups a sequence of NCL statements to form a logical
program function.

 V

&DOEND Signifies the logical end of a group of statements. V

&DOM Issues an MVS DOM to erase a non-roll delete (NRD) WTO. V

&DOUNTIL Builds a conditional loop with a test at the bottom. V

&DOWHILE Builds a conditional loop with a test at the top. V

&ELSE Specifies that the code following is the alternative path after
&IF, where the &IF condition is false.

 V

&ENCODE Encodes all or part of an MDO. V

&END Terminates the current nesting level. V

&ENDAFTER Terminates the current nesting level after executing the
command following the &ENDAFTER.

 V

&EVENT Signals an event occurrence. V

&EXIT Terminates the current nesting level. V

&FILE Connects, disconnects, switches, accesses, modifies, and
deletes file records.

 V

&FLUSH Terminates all nesting levels within an NCL process. V

&FNDSTR Determines whether a string occurs within one or more
variables.

 V

&GOSUB Branches to a subroutine within the procedure. V

&GOTO Branches to another statement within the procedure. V

&HEX Converts a decimal number to its hexadecimal equivalent. B

&HEXEXP Converts a character string to its hexadecimal equivalent. B

&HEXPACK Converts a hexadecimal string into equivalent characters. V

&IF Tests the truth of a logical expression. V

Summary Table

36 Network Control Language Reference Guide

Name Description Feature/
Component

V/B

&INTCLEAR Clears messages queued to a dependent processing
environment.

 V

&INTCMD Schedules a command to execute in the dependent
environment of the issuing process.

 V

&INTCONT Propagates a message to the next higher processing
environment.

 V

&INTREAD Retrieves the next message queued from the dependent
processing environment of the issuing process.

 V

&INTREPL Propagates a message to the next higher processing
environment, and changes the message text.

 V

&INVSTR Inverts a string. B

&LBLSTR Removes leading blanks from a string. B

&LENGTH Tells you the length of a variable or constant. B

&LOCK Obtains or releases access to a resource. V

&LOGCONT Resumes normal processing of a message delivered to
LOGPROC.

 V

&LOGDEL Deletes a log record that LOGPROC is processing. V

&LOGON Passes control of a terminal to another application. V

&LOGREAD Makes the next log message available to LOGPROC. V

&LOGREPL Replaces the text of the last log message delivered to
LOGPROC.

 V

&LOOPCTL Sets a new runaway loop control limit. V

&MAICMD Specifies an MAI primary command. SNAACCESS V

&MAICONT Sends the current data stream on to the terminal and/or the
application.

SNAACCESS V

&MAICURSA Sets up the cursor address to send to the application. SNAACCESS V

&MAIDEL Signifies not to deliver a data stream. SNAACCESS V

&MAIDSFMT Places the entire current data stream into variables. SNAACCESS V

&MAIFIND Determines whether a data stream contains a given string. SNAACCESS V

&MAIINKEY Sets the attention key that is to be simulated in a data stream. SNAACCESS V

Summary Table

Chapter 2: Verbs and Built-in Functions 37

Name Description Feature/
Component

V/B

&MAIPUT Builds a data stream to send to the PLU (application). SNAACCESS V

&MAIREAD Waits for the next data stream. SNAACCESS V

&MAIREPL Replaces a data stream destined for the terminal. SNAACCESS V

&MAISADD Adds a new session definition, based on user variables. SNAACCESS V

&MAISCMD Specifies an MAI session command against the current session. SNAACCESS V

&MAISGET Retrieves details of the specified session into user variables. SNAACCESS V

&MAISPUT Updates MAI session list entries. SNAACCESS V

&MASKCHK Tests a data string against a wildcard mask. B

&MSGCONT Resumes normal processing of a message delivered to
MSGPROC.

 V

&MSGDEL Deletes a message that MSGPROC is processing. V

&MSGREAD Makes the next message available to MSGPROC. V

&MSGREPL Replaces the text of a message delivered to MSGPROC. V

&NBLSTR Removes leading and trailing blanks from a string. B

&NDBADD Adds a record to an NDB database. V

&NDBCLOSE Signs off (disconnects) from an NDB database. V

&NDBCTL Alters NDB processing characteristics. V

&NDBDEF Adds, updates, or deletes field definitions. V

&NDBDEL Deletes a record from an NDB database. V

&NDBFMT Defines a list of fields for an &NDBGET to retrieve. V

&NDBGET Retrieves a record from an NDB database. V

&NDBINFO Retrieves information about an NDB database. V

&NDBOPEN Signs on (connects) to an NDB database. V

&NDBPHON Allows you to return a phonetic value for a character string,
typically a name.

 V

&NDBQUOTE Places quotes around data to protect special characters. B

&NDBSCAN Scans an NDB database for all records matching a search
argument.

 V

Summary Table

38 Network Control Language Reference Guide

Name Description Feature/
Component

V/B

&NDBSEQ Defines, deletes, or resets a sequential retrieval path for an
NDB database.

 V

&NDBUPD Updates a record in an NDB database. V

&NPFxCHK Tests a user's network partitioning authority for a resource. B

&NRDDEL Deletes NRD messages. V

&NUMEDIT Edits the format of a real number or integer. B

&OVERLAY Replaces a section of a data string with data from another
string.

 B

&PANEL Displays a full-screen panel. V

&PANELEND Gives up exclusive control of a display window. V

&PARSE Parses tokenized strings into variables. V

&PAUSE Suspends an NCL process. V

&PPI Allows exchange of data between programs. V

&PPOALERT Generates a simulated VTAM PPO message. V

&PPOCONT Resumes normal processing of a VTAM PPO message. V

&PPODEL Deletes a VTAM PPO message, or blocks its delivery. V

&PPOREAD Makes the next VTAM PPO message available to PPOPROC. V

&PPOREPL Resumes normal VTAM PPO message processing, after
replacing message text.

 V

&PROMPT Writes text to a user's terminal and awaits input. V

&QEXITR Terminates this procedure, plus all higher levels. V

&REMSTR Splits a data string and returns the end portion. B

&RETCODE Returns or resets the system return code. V

&RETSUB Returns from a subroutine within a procedure. V

&RETURN Passes variables to a higher nesting level. V

&RSCCHECK Tests the access of a user to a resource. B

&SECCALL Communicates with the security subsystem or the installation
security exit.

 V

&SELSTR Splits a data string and returns the front portion. B

Summary Table

Chapter 2: Verbs and Built-in Functions 39

Name Description Feature/
Component

V/B

&SETBLNK Explicitly sets a variable to blank. B

&SETLENG Sets the length of a variable. B

&SETVARS Extracts named keywords and associated data from a data
string.

 V

&SMFWRITE (z/OS only) Writes a record to the SMF data set. V

&SNAMS Provides the client/server interface to invoke object-oriented
services.

SNA V

&SOCKET Provides NCL control over allocation and management of
communications using TCP/IP.

 V

&STR Assigns a multiword string. B

&SUBSTR Extracts part of a variable or constant. B

&TBLSTR Removes trailing blanks from a string. B

&TRANS Translates characters within a string. B

&TYPECHK Tests variables and returns their type. B

&VARTABLE Creates and maintains vartables and vartable entries. V

&WRITE Writes a message. V

&WTO Issues a WTO. V

&WTOR Issues a WTOR and waits for a reply. V

&ZAMCHECK Indicates whether support is enabled for a specified access
method.

 B

&ZFEATURE Returns availability status of a feature. B

&ZNCLKWD Indicates whether the string is an NCL keyword. B

&ZOSCHK Indicates whether support is enabled for a specified operating
system.

 B

&ZPSKIP Sets new active panel skip data. V

&ZQUOTE and
&ZQUOTE2

Places quotes around a string. B

&ZSHRINK Removes leading and trailing spaces and reduces multiple
spaces within a string.

 B

&AOMALERT

40 Network Control Language Reference Guide

Name Description Feature/
Component

V/B

&ZSOCINFO Obtains information about the specific socket owned by the
process.

 B

&ZSUBST Returns a string with substituted data. B

&ZSYSPARM Returns the value of a systems parameter (SYSPARMS). B

&ZTCPERDS Returns a short message for a TCP/IP error code. B

&ZTCPERNM Returns the logical name of a TCP/IP error code. B

&ZTCPINFO Obtains information about the local host or TCP/IP vendor
stack.

 B

&ZTCPSUPP Determines whether the current TCP/IP vendor stack supports
a function.

 B

&ZUNQUOTE Removes one level of quotes from a string and undoes
&ZQUOTE.

 B

&AOMALERT

The &AOMALERT verb generates an event, message, WTO, or DOM occurrence,
as if it had been produced by either the local operating system interface, or
received across an AOM ISR link. The verb can also be used to send an
occurrence directly across an ISR link or to a specific AOMPROC.

Any NCL procedure can use &AOMALERT. It is not restricted to an AOMPROC, or
any particular environment. This allows processes outside of AOM to provide
input to AOM.

By default, &AOMALERT generates an EVENT, with a ROUTE option of
PROCONLY. Thus, the primary AOMPROC sees the event, and can process it.

A comprehensive set of operands allows specification of the exact occurrence to
generate, and the attributes of that occurrence.

&AOMALERT

Chapter 2: Verbs and Built-in Functions 41

This verb has the following format:

&AOMALERT [TYPE={ EVENT | WTO | MSG | DOM }]

 [SOS={ OS | VM }]

 [STATUS={ YES | NO }]

 [DOMAIN=domain | LINK=link | NCLID=nclid]

 [ROUTE={ PROCONLY | route } [LCLROUTE=route] [RMTROUTE=route]]

 [ALARM={ YES | NO }]

 [ASID=asid]

 [CLASS=class]

 [COLOR={ NO | BLUE | RED | PINK | GREEN | TURQUOISE | YELLOW | WHITE }]

 [DESC={ NONE | ALL | list }]

 [DOM-TRACK={ YES | NO }]

 [DOMID={ * | mvsdomid]

 [HLITE={ NO | USCORE | REVERSE | BLINK }]

 [ID={ AOMALERT | identifier }]

 [INTENS={ NORMAL | HIGH }]

 [JOBNAME=jobname]

 [JOBID=jobid]

 [JSTCB=jstcb]

 [LDOMAIN=domain]

 [MONITOR={ YES | NO }]

 [MSGCLASS={ 30 | msgclass }]

 [MSGCODE={ 00 | nn }]

 [MSGID=msgid]

 [MSGLEVEL={ IN | msglevel }]

 [NRD={ NO | OPER | YES }]

 [ODOMAIN=domain]

 [ROUTCDE = { 2 | NONE | ALL | list }]

 [RMTCLASS={ NONE | ALL | list }]

 [SCAN={ YES | NO }]

 [SOURCE={ PROP | GCS }]

 [TIME=hhmmss]

 [TRACE=*]

 [UFLAGS=nn | UFLAGn={ YES | NO }]

 [USERID=userid]

 [USERNODE=node]

 [DATA=msg, wto or event data]

&AOMALERT

42 Network Control Language Reference Guide

Operands:

TYPE={ EVENT | WTO | MSG | DOM }

Specifies the type of occurrence to generate.

TYPE=EVENT (the default)

Generates an AOM event message. An event message allows
notification to an AOMPROC of an event, but the message is never
delivered to authorized AOM receivers.

TYPE=WTO

Generates a simulated WTO message. In this case, several operands
allow specification of job name, JES job ID, message attributes, as well
as address space and DOMID information.

TYPE=MSG

Generates a simulated VM message. In this case, several operands allow
specification of VM user ID and node, message attributes and VM
message class.

TYPE=DOM

Generates a simulated MVS DOM. A DOMID must be specified, and it is
used to cause deletion of NRD messages.

Note: TYPE=DOM does not send the generated DOM to MVS. Use the
&DOM NCL verb for this.

SOS={ OS | VM }

Indicates the sourcing operating system. By default, this is the operating
system that this product region is running on.

SOS=OS

Indicates that the WTO, EVENT, or DOM is to be marked as originating
from an OS type system (including z/OS, MSP, and VOS3). In this case,
operands that imply or are relevant to TYPE=MSG (which implies
SOS=VM) are not permitted.

SOS=VM

Indicates that the MSG or EVENT is to be marked as originating from a
VM type system. In this case, operands that imply or are relevant to
TYPE=WTO or TYPE=DOM are not permitted.

For TYPE=EVENT, messages are marked as coming from either OS or VM.
Source information, such as job name, user ID, and so on, must be
consistent with the indicated or defaulted operating system. For example, if
SOS=VM is specified, JOBNAME and JOBID cannot be specified.

&AOMALERT

Chapter 2: Verbs and Built-in Functions 43

STATUS={ YES | NO }

Indicates whether this is a status only message. This parameter is ignored
for TYPE=DOM.

Status only messages are never delivered to Local AOM receivers
(regardless of the ROUTE options), and have an implied RMTCLASS=8 if the
RMTCLASS parameter is not specified.

STATUS=YES

Makes the message equivalent to the internally generated status
messages for such things as AOM START, AOM STOP, SYSTEM IN
SHUTDOWN that are queued to AOMPROC. This setting is useful if some
other procedure in the system, such as LOGPROC needs to send status
information to AOMPROC.

STATUS=NO

Specifies that the message is to be delivered normally.

DOMAIN=domain | LINK=link | NCLID=nclid

Allows the alert to be sent to a specific destination, either a specific
AOMPROC, or a specific ISR link identified either by LINK name (as defined
on this system), or DOMAIN ID (as defined on the remote system). None of
these operands is used with TYPE=DOM. Only one of these three operands
is specified.

DOMAIN=domain

Queues the message to the ISR link where the remote system has the
indicated domain ID. This operand makes the sending end independent of
the link name used locally to identify the remote system. If the message
cannot be queued, a non-zero &ZFDBK value indicates the reason.

LINK=link

Queues the message to the ISR link with the specified local LINK name. This
operand makes the sending end dependent on the link name. This is
advantageous when different remote systems could be (at different times)
connected with the same link name. If the message cannot be queued, a
non-zero &ZFDBK value indicates the reason.

&AOMALERT

44 Network Control Language Reference Guide

NCLID=nclid

Queues the message to the nominated AOMPROC in this system. If the
specified NCL ID is not found, is equal to the NCL ID of the issuing NCL
process, or is not a current primary or secondary AOMPROC, the &ZFDBK
system variable is set to 8 and the message not queued.

This option allows individual AOMPROCs to hold conversations with each
other, independent of the incoming message flow.

These options allow AOMPROCs in separate, ISR-connected systems to
communicate with each other independently of the unsolicited message
flow.

ROUTE={ PROCONLY | route } | [LCLROUTE=route] [RMTROUTE=route]

Specifies the AOM routing option for the current WTO, message, or event.

Specifying a single value for ROUTE sets both the local and remote route
options to the same value. Specifying values for LCLROUTE and RMTROUTE
allows individual setting of the local and remote AOM route options. Valid
values are:

NO

Does not deliver the message. If set from the screening table, the
message is not passed to Automation Services.

LOG

Delivers the message to the activity log only.

Note: If your product region has SYSPARMS AOMLOG=NO set, the
message is never logged.

MSG

Delivers the message to authorized AOM receivers and to the activity
log.

PROC

Queues the message to the primary AOMPROC, if it is active. If not, the
message is delivered as if ROUTE=MSG was specified. Following AOM
processing, ROUTE=PROC is treated as ROUTE=MSG.

PROCONLY

Queues the message to the primary AOMPROC, if it is active. If not, the
message is delivered as if ROUTE=NO was specified. Following AOM
processing, ROUTE=PROCONLY is treated as ROUTE=NO.

&AOMALERT

Chapter 2: Verbs and Built-in Functions 45

BOTH

Treats the message as if ROUTE=MSG was specified—it is immediately
queued to all eligible AOM receivers and logged. Following this, it is also
queued to the primary AOMPROC, if it is active. Regardless of the action
taken by any AOMPROC that handles the message, it is never
redelivered locally—it is treated as if ROUTE=NO was specified, and this
cannot be overridden by the ROUTE operand on any other verb.

If NCLID= is specified, the message is always queued to the specified NCL
procedure (if there), regardless of the ROUTE value specified. For example,
if ROUTE=NO is coded, the NCL procedure still gets the message. The same
applies for LINK= and DOMAIN=, although the message is discarded at the
remote end depending on the ISR command LCLROUTE and RMTROUTE
options in effect.

ALARM={ YES | NO }

Allows specification of the ALARM attribute for a WTO or MSG. If not
specified, the default, ALARM=NO, is assumed.

ASID=asid

Allows specification of an address space ID. This operand is only permitted
for TYPE=WTO or TYPE=EVENT with SOS=MVS. asid must contain exactly
four hexadecimal digits. This corresponds to the values provided by the
&AOMASID system variable. By specifying an address space ID that ties in to
MVS, any address-space DOM correctly correlates to this message, if it is
also marked as NRD=YES, DOM-TRACK=YES, or an AOMPROC uses
DOM-NOTIFY=YES.

If this operand is specified, the JSTCB operand must also be specified.

CLASS=class

Allows specification of an event class. This operand is only permitted for
TYPE=EVENT (which is the default if TYPE= is not specified).

The class value must be from 0 to 12 characters in length.

COLOR={ NO | BLUE | RED | PINK | GREEN | TURQUOISE | YELLOW | WHITE }

Allows specification of a color attribute for TYPE=WTO or TYPE=MSG. The
operand can also be spelt COLOUR.

&AOMALERT

46 Network Control Language Reference Guide

DESC={ NONE | ALL | list }

Allows specification of a descriptor code list, for TYPE=WTO or TYPE=MSG.
The list is a single descriptor number, or a list of numbers or ranges:

■ DESC=5

■ DESC=(3,6,12–14)

Note: For a list of valid descriptor codes, see the Administration Guide.

DOM-TRACK={ YES | NO }

Lets you indicate that, for TYPE=WTO, or TYPE=EVENT with SOS=MVS, any
subsequent DOM that matches this message follows it across any ISR links
automatically, even if the message or event is not marked NRD=YES.

DT is an acceptable abbreviation for this operand.

DOMID={ * | mvsdomid }

Allows specification of an MVS DOMID for TYPE=WTO, or TYPE=EVENT with
SOS=MVS, or TYPE=DOM (in which case it is required).

DOMID=*

Generates a DOMID internally. This DOMID will not match any valid
DOMID that MVS generates. This format is not valid for TYPE=DOM.

DOMID=mvsdomid

Allows specification of your own DOMID. mvsdomid must be eight
hexadecimal digits. The first two correspond to a system ID, the last six
are the DOMID.

Regardless of the specification of DOMID, after &AOMALERT the system
variable &ZDOMID contains the DOMID that was used, in the MVS (eight
hexadecimal digits) format. Thus, if &AOMALERT generated a DOMID, you
can save it for a future &AOMALERT TYPE=DOM.

Default: *

HLIGHT={ NO | USCORE | REVERSE | BLINK }

Allows specification of a highlight attribute for TYPE=WTO or TYPE=MSG.
The operand can also be spelt HLITE.

ID={ AOMALERT | identifier }

Allows specification of an optional 1- to 12-character identifier. This value is
made available to AOMPROC in &AOMID, and to an MSGPROC in
&ZMAOMID.

&AOMALERT

Chapter 2: Verbs and Built-in Functions 47

INTENS={ NORMAL | HIGH }

Specifies whether the intensity attribute is TYPE=WTO or TYPE=MSG.

JOBNAME=jobname

Allows specification of the job name that is to be regarded as the source of
a TYPE=WTO or TYPE=EVENT with SOS=MVS alert. This operand cannot be
specified if TYPE=MSG or SOS=VM is specified.

jobname is either null or one through eight characters in length.

This value corresponds to, and is derived from, the &AOMJOBNM and
&ZMAOMJN system variables.

JOBID=jobid

Allows specification of the JES job ID that is to be regarded as the source of
a TYPE=WTO or TYPE=EVENT with SOS=MVS alert. This operand cannot be
specified if TYPE=MSG or SOS=VM is specified.

jobid is either null or in the format typnnnnn where:

typ is JOB, STC, or TSU (abbreviated to J, S, or T), and nnnnn is a one- to
five-digit number.

This value corresponds to, and is derived from, the &AOMJOBID and
&ZMAOMJI system variables.

JSTCB=jstcb

Allows specification of a job-step TCB address. This operand is only
permitted for TYPE=WTO or TYPE=EVENT with SOS=MVS. jstcb must be
exactly eight hexadecimal digits. This corresponds to the values provided by
the &AOMJSTCB system variable. By specifying a job-step TCB address that
ties in to MVS, any JSTCB-specific DOMs correctly correlate to this message,
if it is also marked as NRD=YES, DOM-TRACK=YES, or an AOMPROC uses
DOM-NOTIFY=YES.

If this operand is specified, the ASID operand must also be specified.

LDOMAIN=domain

Allows specification of a specific last-handler domain value. If omitted, the
current domain ID is used (that is, the value in &ZNMDID).

The value must be 1 through 4 characters, the first alphabetic or national,
the remainder alphanumeric or national.

This operand corresponds to, and is initialized from, the &AOMLDID system
variable.

&AOMALERT

48 Network Control Language Reference Guide

MONITOR={ YES | NO }

This operand allows specification of the MONITOR attribute for TYPE=WTO
or TYPE=MSG. If YES, the message is eligible for delivery to MONITOR class
message receivers, and AOM class receivers.

MSGCLASS={ 30 | msgclass }

Specifies of a specific VM msgclass, for TYPE=MSG. This corresponds to the
IUCV *MSG message class. Classes 1 through 8 are IUCV message types;
class 30 is a programmable operator facility message type. Valid values are:

1

Message sent using CP MESSAGE and CP MSGNOH

2

Message sent using CP WARNING

3

Asynchronous CP messages, CP responses to a CP command executed
by the programmable operator facility virtual machine, and any other
console I/O initiated by CP

4

Message sent using CP SMSG command

5

Any data directed to the virtual console by the virtual machine
(WRTERM, LINEDIT, and others)

6

Error messages from CP (EMSG)

7

Information messages from CP (IMSG)

8

Single Console Image Facility (SCIF) message from CP 30 Message
coming from Automation Services

MSGCODE={ 00 | nn }

Allows specification of an MSGCODE value for TYPE=WTO or TYPE=MSG.
This value is used to restrict the delivery of the message to receivers with at
least one common MSGCODE in their user ID definition.

nn must be two hexadecimal digits. If omitted, 00 is assumed.

&AOMALERT

Chapter 2: Verbs and Built-in Functions 49

MSGID=msgid

Allows specification of a specific message id for type=WTO, MSG, or EVENT.
If omitted, no message ID value is set.

msgid is null, or 1 through 12 characters.

The value set by this parameter is available to an AOMPROC in the
&AOMMSGID system variable, and to an MSGPROC in the &ZMAOMMID
system variable.

MSGLEVEL={ IN | msglevel }

Allows specification of a message severity level, corresponding to the
&AOMMSGLV system variable, and the user profile AOMMSGLV values.

Only one message level is assigned. The default, IN, means informational.

NRD={ NO | OPER | YES }

Allows specification of the non-roll delete attribute for a message or event.

NRD=NO

Means the message is not to be regarded as NRD.

NRD=OPER

Causes the message to remain on OCS screens, but the system retains
no copy. When an operator deletes the message from the screen, it is
not recallable.

NRD=YES

Causes the message to remain on OCS screens, until the appropriate
DOM is sent (it could be produced by &AOMALERT TYPE=DOM, or an
MVS DOM). The system remembers the message, and it is recalled to
OCS screens with the NRDRET command.

ODOMAIN=domain

Allows specification of an originator domain value. If this operand is
omitted, the current domain ID is used (that is, the value in &ZNMDID).

The value must be 1 through 4 characters, the first alphabetic or national,
the remainder alphanumeric or national.

This operand corresponds to, and is initialized from, the &AOMODID system
variable.

&AOMALERT

50 Network Control Language Reference Guide

ROUTCDE={ 2 | NONE | ALL | list }

Allows specification of a list of routing codes for the generated WTO or
MSG. Either a single value or list of values is specified as follows:

ROUTCDE=5

ROUTCDE=(1,5,16-29,112)

RMTCLASS={ NONE | ALL | list }

Allows specification of a list of remote ISR delivery classes, for automatic ISR
delivery of WTO, MSG, or EVENT alerts. Remote classes are numbered from
1 to 8.

RMTCLASS=NONE means no remote classes. RMTCLASS=ALL is equivalent to
RMTCLASS=1–8.

Either a single value, or a list of values and ranges is specified:

RMTCLASS=5

RMTCLASS=(3,5-7)

If this parameter is omitted, RMTCLASS=ALL is assumed if STATUS=NO is
specified, else RMTCLASS=8 is assumed if STATUS=YES is specified or
defaulted.

SCAN={ YES | NO }

Allows specification of the scan-for-highlight (@) characters for message
display. If SCAN=YES is specified, when the message text is displayed on an
OCS screen, text between @ characters is displayed in high intensity.

SOURCE={ PROP | GCS }

Indicates the source of the message for TYPE=MSG or TYPE=EVENT with
SOS=VM.

PROP

Indicates the message is to be regarded as originating from the PROP
virtual machine IUCV interface.

GCS

Indicates the message is to be regarded as originating from the GCS
IUCV interface.

TIME=hhmmss

Specifies the message issue time. If omitted, the current time is used. This
parameter must be in the format hhmmss.

&AOMALERT

Chapter 2: Verbs and Built-in Functions 51

TRACE=*

Specifies that the current message is to be traced on the local system. Trace
messages are written to the activity log.

UFLAGS=nn | UFLAGn={ YES | NO }

Assigns a value to the 8 user flags, either by using a hexadecimal value to
assign all 8, or individually using UFLAG1, UFLAG2, and so on.

In an AOMPROC, the system variables &AOMUFLGn contains the set values.

In MSGPROC, the system variables &ZMAOMUFM and &ZMAOMUFn
contain the user flags in various formats. Variables are also set after an
&INTREAD if receiving unsolicited messages.

USERID=userid

Specifies the VM user ID that is to be regarded as the source of a TYPE=MSG
or TYPE=EVENT with SOS=VM alert. This operand cannot be specified if
TYPE=WTO or SOS=MVS is specified. userid is null, else it must be from 1 to
8 characters in length.

This value corresponds to, and is derived from, the &AOMUSERI and
&ZMAOMUI system variables.

USERNODE=node

Specifies the VM RSCS node that is to be regarded as the source of a
TYPE=MSG or TYPE=EVENT with SOS=VM alert. This operand cannot be
specified if TYPE=WTO or SOS=MVS is specified. node is null; otherwise, it
must be from 1 to 8 characters in length.

This value corresponds to, and is derived from, the &AOMUSERN and
&ZMAOMUN system variables.

DATA=msg, wto or event data

The optional message text to be associated with the WTO, MSG, or EVENT.

For TYPE=WTO, ensure that the first character of the text is the MVS flag
character (which is blank).

Examples: &AOMALERT

&AOMALERT DATA=MSG001 SYSTEM UP

&AOMALERT TYPE=EVENT STATUS=NO LINK=NEWYORK DATA=LA IS ONLINE

&AOMALERT TYPE=WTO STATUS=NO ROUTE=MSG DATA=*IEF233D COUNTERFEIT MSG

&AOMALERT

52 Network Control Language Reference Guide

Notes:

If NCLID, DOMAIN, or LINK were specified, &ZFDBK is set as follows:

0

Message queued successfully.

4

Destination domain same as ODOMAIN or LDOMAIN value.

8

Link/domain not found or NCL ID not found, not an AOMPROC, or same as
issuing process.

12

Link/domain not enabled outbound.

16

ISR storage shortage. Message not sent.

20

Queue overflow on ISR link.28 Internal ISR error.

In all other cases, &ZNCLID is set to 0.

The &ZDOMID system variable is always cleared to null by &AOMALERT, and, if
TYPE=WTO or TYPE=ALERT with OS=MVS message is generated, the supplied or
internally assigned MVS DOMID is placed in &ZDOMID in the MVS format (eight
hexadecimal digits).

When an AOMPROC reads a message produced by &AOMALERT, the
&AOMSALRT system variable is always set to YES. Thus, AOMPROCs can always
distinguish &AOMALERT-sourced messages.

More information:

&AOMREAD (see page 71)

&AOMCONT

Chapter 2: Verbs and Built-in Functions 53

&AOMCONT

The &AOMCONT verb is used in an AOMPROC procedure to request the
processing of a message in one of the following ways. The message could be a
WTO or WTOR, VM MSG, MVS DOM notify, or AOM EVENT that was previously
delivered for processing by an &AOMREAD.

■ Passed to your product region for normal delivery, including possible
automatic ISR delivery. The message is no longer available to the issuing
AOMPROC.

■ Passed to your product region for local delivery only. No automatic ISR
delivery is performed. The message is no longer available to the issuing
AOMPROC.

■ Passed to your product region for possible automatic ISR delivery only. The
message is not delivered to local AOM receivers. The message is no longer
available to the issuing AOMPROC.

■ Copied to a specified ISR link, or to all active ISR links. The message remains
available to the issuing AOMPROC.

■ Passed to another AOMPROC for further processing. The message is no
longer available to the issuing AOMPROC.

An AOM message passed to your product region for normal delivery is sent to
all OCS and ROF users with the following authorities:

■ AOM message receipt authority

■ Authorized to receive messages with the relevant routing codes and
message levels

The processing attributes of the message, set by the screening table when the
message was selected for routing to AOMPROC, is changed by specifying the
appropriate &AOMCONT operand. When this is done with the LINK= or
DOMAIN= operands, only the copy of the message that is sent to the ISR link has
its attributes altered.

When processing a multiline WTO message, only the current line of the message
is altered. However, if this is the first line, and the next &AOMREAD specifies
MINOR=NO, all lines will have the same attribute alterations applied.

Any operand specified overrides the current value of that message attribute.
Attribute modification operands are ignored if the current message is an MVS
DOM-notify message.

&AOMCONT

54 Network Control Language Reference Guide

The LINK, DOMAIN, and NCLID options are only valid when processing the first
line of a multiline WTO. The entire message (or a copy of it) is sent.

This verb has the following format:

&AOMCONT [ALL | LOCAL | REMOTE | NCLID=nclid | LINK={ * | link } | DOMAIN={ * | domain }]

 [ALARM={ YES | NO }]

 [COLOR={ NONE | BLUE | RED | PINK | GREEN | TURQUOISE | YELLOW | WHITE }]

 [DOM-NOTIFY={ NO | YES }]

 [DOM-TRACK={ NO | YES }]

 [HLIGHT={ NONE | USCORE | BLINK | REVERSE }]

 [ID=identifier]

 [INTENS={ LOW | HIGH }]

 [MONITOR={ YES | NO }]

 [MSGCODE=nn]

 [MSGID=msgid]

 [MSGLEVEL=msglevel]

 [NRD={ NO | OPER | YES }]

 [RMTCLASS={ ALL | NONE | LIST }]

 [ROUTCDE={ NONE | ALL | list }]

 [ROUTE=route | [LCLROUTE=route] [RMTROUTE=route]]

 [UFLAGn={ YES | NO }]

Operands:

ALL

Indicates that the current message is to be (possibly) altered as requested,
and released for both local and automatic remote ISR delivery. Following
this statement, this AOMPROC no longer owns the message, and until
another &AOMREAD is executed, the message-related system variables are
null.

For a multiline message, only the current line is processed, and the next line
is made available by issuing &AOMREAD MINOR=YES. If this was the last
line, or if the next &AOMREAD has MINOR=NO specified, then the entire
message is released.

LOCAL

Indicates that the current message is to be (possibly) altered as requested,
and released for local delivery only. No automatic ISR delivery is performed.
Following this statement, this AOMPROC no longer owns the message, and
until another &AOMREAD is executed, the message-related system
variables are null.

This option is invalid when processing minor lines of a multiline message. If
specified for the major line, the entire message is released.

&AOMCONT

Chapter 2: Verbs and Built-in Functions 55

REMOTE

Indicates that the current message is to be (possibly) altered as requested,
and released for automatic ISR remote delivery only. No local delivery is
performed. Following this statement, this AOMPROC no longer owns the
message, and until another &AOMREAD is executed, the message-related
system variables are null.

This option is invalid when processing minor lines of a multiline message. If
specified for the major line, the entire message is released.

NCLID=nclid

Indicates that the current message is to be passed to the specified
secondary AOMPROC. The nclid must correspond to a secondary AOMPROC
(that is, a procedure, executing in the AOMP environment, that has issued
&AOMINIT).

If the message is successfully queued to the secondary AOMPROC, this
AOMPROC no longer owns the message, and until another &AOMREAD is
executed, the message-related system variables are null. The &ZFDBK
system variable is set to 0. If the specified NCL ID cannot be found, or is not
a secondary AOMPROC, or is the same as the NCL ID of the issuing
AOMPROC, the &ZFDBK system variable is set to 8. The message remains
owned by this AOMPROC.

Note: If NCLID= is specified, you cannot specify other operands. This means
that the message attributes cannot be altered in this case.

This option is not valid for a minor line of a multiline message. If specified
for the major (first) line, the entire message is enqueued.

LINK={ * | link } | DOMAIN={ * | domain }

Enqueues a copy of the message to the indicated ISR link, specified by
LINK=link, or DOMAIN=domain; or enqueues a copy of the message to all
presently active and enabled (for AOM unsolicited outbound from this
system) ISR links, specified by LINK=* or DOMAIN=* (no route code,
message level, or RMT class filtering is done in this case).

In either case, the message remains under the control of the current
AOMPROC.

&AOMCONT

56 Network Control Language Reference Guide

When LINK=link or DOMAIN=domain is specified, the &ZFDBK system
variable is set as follows:

0

Message enqueued to specified ISR link.

1

Multiline message enqueued successfully to ISR link, but some minor
lines were lost due to overflows, and so on.

4

Not enqueued, either the destination domain matched the message
originator or last-handler domain, or the message has already been sent
to that link.

8

Not enqueued, link or domain name not found.

12

Not enqueued, cannot send AOM unsolicited outbound to this ISR link.

16

Not enqueued, storage shortage.

20

Not enqueued, outbound queue overflow.

24

Specific delete done for specified link or all links.

28

Not enqueued, ISR internal error.

&AOMCONT

Chapter 2: Verbs and Built-in Functions 57

When LINK=* or DOMAIN=* is specified, The &ZFDBK system variable is set
as follows:

0

Message enqueued to all eligible (and at least one) ISR links.

4

Message enqueued to some eligible links, but not delivered to some
because of some error such as already sent or came from that link, and
so on.

8

Not enqueued to any link. There were none, or all eligible links already
received a copy, or an &AOMDEL LINK/DOMAIN=* was previously
issued for this message (possibly by a previous AOMPROC that passed
this message to this AOMPROC).

If attribute alteration options are specified, only the copy enqueued to the
remote systems has its attributes altered. The current message is not
changed.

These options are not valid for minor lines of a multiline message. If used
for the major (first) line, a copy of the entire message is sent.

Note: After a message has been enqueued to any ISR link, it is no longer
eligible for any automatic ISR delivery. Also, it cannot be enqueued twice to
any link.

ALARM={ YES | NO }

Modifies the alarm attribute of the current message or event.

COLOR={ NONE | BLUE | RED | PINK | GREEN | TURQUOISE | YELLOW |
WHITE }

Modifies the color attribute for the current message or event. This operand
can also be spelt COLOUR.

&AOMCONT

58 Network Control Language Reference Guide

DOM-NOTIFY={ NO | YES } DOM-NOTIFY=YES

Indicates that this AOMPROC wants a DOM-notify message queued to it
when an appropriate MVS DOM is received.

This operand is only valid when ALL, LOCAL, or REMOTE is specified (or ALL
defaulted).

If the current message is not a WTO, WTOR, or MVS-sourced EVENT, no
DOM-notify occurs, because only MVS issues DOMs.

This operand is abbreviated to DN.

Note: Many messages never have a matching DOM generated, because they
were never intended to be non-roll delete. Careless use of
DOM-NOTIFY=YES can cause excessive storage wastage in the system as it
notes all messages that are to be DOM-NOTIFIED.

DOM-TRACK={ NO | YES }

Alters the current value of the DOM-TRACK option for an MVS-sourced
WTO, WTOR, or EVENT.

DOM-TRACK=YES causes the first following MVS DOM that matches this
message to follow it across the relevant ISR links.

This operand is abbreviated to DT.

Note: Many messages never have a matching DOM generated, because they
were never intended to be non-roll delete. Careless use of DOM-TRACK=YES
can cause excessive storage wastage in the sending system, as it notes the
sending of the message across the links.

HLIGHT={ NONE | USCORE | BLINK | REVERSE }

Modifies the highlight attribute for the current message or event. This
operand can also be spelt HLITE.

ID=identifier

Modifies the value of the AOM ID attribute, as seen in the &AOMID and
&ZMAOMID system variables.

The value is null, or from 1 to 12 characters.

INTENS={ LOW | HIGH }

Modifies the intensity attribute for the current message or event.

MONITOR={ YES | NO }

Alter the MONITOR attribute of the current message or event. The monitor
attribute determines whether MONITOR class OCS receivers also receive the
message even if they are not AOM receivers.

&AOMCONT

Chapter 2: Verbs and Built-in Functions 59

MSGCODE=nn

Modifies the MSGCODE mask for the current message or event.

MSGID=msgid

Allows specification of a specific message id for type=WTO, MSG, or EVENT.
If omitted, no message ID value is set. msgid is null, or 1 through 12
characters. The value set by this parameter is available to an AOMPROC in
the &AOMMSGID system variable, and to an MSGPROC in the
&ZMAOMMID system variable.

MSGLEVEL=msglevel

Modifies the message level of the current message.

NRD={ NO | OPER | YES }

Alters the NRD (non-roll delete) attribute of the current message.

Note: If the message has the NRD=YES attribute (already, or set by the
NRD=YES operand), then, following execution of &AOMCONT ALL, LOCAL, or
REMOTE, &ZDOMID contains the region-assigned DOMID, which the
&NRDDEL verb uses to delete the message from OCS screens.

RMTCLASS={ ALL | NONE | list }

Alters the ISR automatic delivery routing classes of the current message or
event. This operand can affect the links that receive this message, if ISR
automatic delivery occurs later.

ROUTCDE= {NONE | ALL | list }

Modifies the routing codes currently assigned to the current message.

ROUTE=route | [LCLROUTE=route] | [RMTROUTE=route]

Modifies the AOM routing option for the current message or event.

Specifying a single value for ROUTE sets both the local and remote route
options to the same value. Specifying values for LCLROUTE and RMTROUTE
allows individual setting of the local and remote AOM route options. Valid
values are:

NO

Does not deliver the message. If set from the screening table, the
message is not passed to Automation Services.

LOG

Delivers the message to the activity log only.

Note: If your product region has SYSPARMS AOMLOG=NO set, the
message is never logged.

&AOMCONT

60 Network Control Language Reference Guide

MSG

Delivers the message to authorized AOM receivers and to the activity
log.

PROC

Queues the message to the primary AOMPROC, if it is active. If not, the
message is delivered as if ROUTE=MSG was specified. Following AOM
processing, ROUTE=PROC is treated as ROUTE=MSG.

PROCONLY

Queues the message to the primary AOMPROC, if it is active. If not, the
message is delivered as if ROUTE=NO was specified. Following AOM
processing, ROUTE=PROCONLY is treated as ROUTE=NO.

BOTH

Treats the message as if ROUTE=MSG was specified—it is immediately
queued to all eligible AOM receivers and logged. Following this, it is also
queued to the primary AOMPROC, if it is active. Regardless of the action
taken by any AOMPROC that handles the message, it is never
redelivered locally—it is treated as if ROUTE=NO was specified, and this
cannot be overridden by the ROUTE operand on any other verb.

UFLAGn={ YES | NO }

Modifies one of the eight user flags that is initially set in the AOM screening
table.

Examples: &AOMCONT

&AOMCONT COLOR=PINK MONITOR=YES

&AOMCONT LINK=NY

&AOMCONT LINK=LA

&AOMCONT LOCAL COLOR=RED

&AOMCONT NCLID=&SUBID1

&AOMDEL

Chapter 2: Verbs and Built-in Functions 61

Notes:

■ If &AOMCONT is issued when no AOM message is current, the procedure is
terminated abnormally.

■ If the message had the NRD=YES attribute assigned or overridden, the
system variable &ZDOMID has the region-assigned DOMID that is used to
delete the message later from OCS consoles.

■ &AOMCONT REMOTE and &AOMCONT LOCAL complement &AOMDEL
LOCAL and &AOMDEL REMOTE. See &AOMDEL for more information.

■ The &AOMCONT verb always sets the system variable &AFDBK. If LINK=,
DOMAIN=, or NCLID= was not specified, it is always set to 0.

More information:

&AOMREAD (see page 71)
&AOMREPL (see page 75)
&AOMDEL (see page 61)

&AOMDEL

&AOMDEL is used within an AOMPROC procedure to request that the message
that was previously delivered for processing by &AOMREAD be deleted.

Options allow deletion as follows:

■ Completely, thus indicating that the message is not to be further delivered
anywhere

■ From the local system only. Automatic ISR delivery can still occur.

■ From ISR automatic delivery only. The message can still be locally delivered.

■ From a specific ISR link, or from all ISR links.

If the current message is an MVS DOM-notify message, &AOMDEL is treated as
an &AOMCONT.

&AOMDEL has the following format:

&AOMDEL [ALL | LOCAL | REMOTE | LINK={ * | link } | DOMAIN={ * | domain }]

 [DOM-NOTIFY={ NO | YES }]

&AOMDEL

62 Network Control Language Reference Guide

Operands:

ALL

Indicates that the current message is to be completely deleted. No further
processing takes place. The message is not delivered to authorized AOM
receivers, nor is it logged. No automatic ISR delivery takes place. Following
this statement, this AOMPROC no longer owns the message, and until
another &AOMREAD is executed, the message related system variables are
null.

If processing a multi-line message, only the current line is processed, and
the next line is made available by issuing &AOMREAD MINOR=YES. If this
was the last line, or if the next &AOMREAD has MINOR=NO specified, then
the entire message is released.

LOCAL

Indicates that the current message is to be deleted from the local system,
but that possible automatic ISR delivery is still to be processed. Following
this statement, this AOMPROC no longer owns the message, and until
another &AOMREAD is executed, the message related system variables are
null.

This operand is invalid when processing minor lines of a multi-line message.
If specified for the major line, the entire message is processed.

REMOTE

Indicates that the current message is to be delivered to the local system, but
that possible automatic ISR delivery is not to be performed. Following this
statement, this AOMPROC no longer owns the message, and until another
&AOMREAD is executed, the message related system variables are null.

This operand is invalid when processing minor lines of a multi-line message.
If specified for the major line, the entire message is processed.

Since, in this case, the message is locally delivered, if the message had the
NRD=YES attribute assigned or overridden, the system variable &ZDOMID
has the region-assigned DOMID that is used to later delete the message
from OCS consoles.

&AOMDEL

Chapter 2: Verbs and Built-in Functions 63

LINK={ * | link | DOMAIN={ * | domain }

Allows the prevention of automatic or specific delivery to a specific ISR link,
specified by LINK=link or DOMAIN=domain, or prevents any further
automatic or specific delivery to all ISR links, specified by LINK=* or
DOMAIN=*.

In either case, the message remains under the control of the current
AOMPROC.

When LINK=link or DOMAIN=domain is specified, the &ZFDBK system
variable is set as follows:

0

Message blocked from delivery to specified ISR link.

4

Specified ISR link not found or not enabled for AOM flow.

24

A copy of the current message has already been sent by an &AOMCONT
or previous automatic ISR delivery.

When LINK=* or DOMAIN=* is specified, the &ZFDBK system variable is
always set to 0.

DOM-NOTIFY={ NO | YES }

Indicates whether this AOMPROC wants to be notified of any future MVS
DOM for this message. This option is not valid with LINK= or DOMAIN=.

DOM-NOTIFY=YES causes the procedure to receive a DOM=notify message
when an MVS DOM that matches the message is received by AOM.

This operand is abbreviated to DN.

Note: Many messages never have a matching DOM generated, because they
were never intended to be non-roll-delete. Careless use of
DOM-NOTIFY=YES can cause excessive storage to be wasted in the system
as it notes all messages that are to be DOM-NOTIFIED.

Examples: &AOMDEL

&AOMDEL

&AOMDEL LOCAL DN=YES

&AOMDEL LINK=NY

&AOMGFLAG

64 Network Control Language Reference Guide

Notes:

■ &AOMDEL LOCAL and &AOMDEL REMOTE complement &AOMCONT
REMOTE and &AOMCONT LOCAL, except that no message attributes is
altered with &AOMDEL.

■ &AOMDEL LINK=* or DOMAIN=* also prevents the following &AOMCONT
LINK= or DOMAIN= from sending a message. The &ZFDBK system variable is
set to 4.

■ Issuing an &AOMDEL when no message is current causes the procedure to
be abnormally terminated with an error message.

More information:

&AOMCONT (see page 53)
&AOMREAD (see page 71)
&AOMREPL (see page 75)

&AOMGFLAG

&AOMGFLAG alters or inspects the value of an AOM global flag.

&AOMFLAG is used as a verb using the following format:

&AOMGFLAGn { ON | OFF }

When used as a built-in function, &AOMFLAG must be coded to the right of an
assignment statement:

&variable =&AOMGFLAGn

Used as a verb, &AOMGFLAG is coded within an AOMPROC procedure to alter
the value of an AOM global flag. These global flags are visible to the screening
table and is tested and altered by screening table statements.

Used as a built-in function, any NCL procedure can inspect the value of an AOM
global flag.

Operands:

n

Specifies the number of the global flag to alter or inspect. n must be from 1
to 32.

&AOMGVAR

Chapter 2: Verbs and Built-in Functions 65

ON | OFF

Specifies the new value of the indicated global flag.

ON sets the flag on, and OFF sets it off. The interpretation of these settings
is entirely dependent on the user.

Examples: &AOMGFLAG

&AOMGFLAG 5 ON -* set global flag 5 on

&AOMGFLAG 32 OFF -* set global flag 32 off

&FLAG7 = &AOMGFLAG 7 -* inspect the current value of

 -* global flag 7

Notes:

■ Screening table statements can test the value of an AOM global flag using
the GFLAG(n) screening criteria, or alter the value of the first 16 global flags
using SET GFLAG(n) = ON | OFF.

■ If used as a verb in a procedure that is not an AOMPROC, the procedure is
terminated with an error message.

&AOMGVAR

&AOMGVAR alters or inspects the value of an AOM global variable.

&AOMGVAR is used as a verb using the following format:

&AOMGVARn [value]

When used as a built-in function, &AOMGVAR must be coded to the right of an
assignment statement:

&variable =&AOMGVARn

Used as a verb, &AOMGVAR is coded within an AOMPROC procedure to alter
the value of an AOM global variable. These global variables are visible to the
screening table and is tested and altered by screening table statements.

&AOMINIT

66 Network Control Language Reference Guide

Used as a built-in function, any NCL procedure can inspect the value of an AOM
global variable.

Operands:

n

Specifies the number of the global variable to alter or inspect. n must be
from 1 to 16.

value

Specifies the new value of the indicated global variable. value is null, which
will set the global variable to all blanks. Otherwise, the value must be from 1
to 16 characters. The value will be stored in the indicated global variable,
padded with blanks if necessary. The interpretation of AOM global variables
is entirely dependent on the user.

Examples: &AOMGVAR

&AOMGVAR 3 CHICAGO -* set global variable 3 to 'CHICAGO'

&AOMGVAR 15 START -* set global variable 15 to 'START'

&VAR4 = &AOMGVAR 4 -* get current value of global

 -* variable 4

Notes:

■ Screening table statements can test the value of an AOM global variable
using the GVAR(n) screening criteria, or alter the value of a global variable
using SET GVAR(n) = value. The values can also be used in screening table
substitution, by using the &GVARn variable names.

■ If used as a verb, by a procedure that is not an AOMPROC, the procedure is
terminated with an error message.

&AOMINIT

&AOMINIT indicates that the current procedure is to be regarded as an
AOMPROC, and registers the procedure for message delivery.

&AOMINIT has the following format:

&AOMINIT

&AOMINIT

Chapter 2: Verbs and Built-in Functions 67

The &AOMINIT verb performs the following functions:

■ Registers the executing NCL procedure as a secondary AOMPROC, provided
that:

– The procedure is executing in the AOMP environment. This is the case if
the procedure is started by the primary AOMPROC, or &INTCMD started
by the primary AOMPROC, or was started by SUBMIT AOMP START
procname.

– The procedure is not the primary AOMPROC. The primary AOMPROC is
started by the SYSPARMS AOMPROC=procname command.

■ Marks the procedure (including the primary AOMPROC) as ready for AOM
message delivery. Normally, AOM messages marked for delivery to an
AOMPROC are not queued until an &AOMREAD has been executed.
Messages with ROUTE=PROC are treated as ROUTE=MSG, and
ROUTE=PROCONLY messages are discarded.

Sometimes, however, the primary AOMPROC might have housekeeping work to
perform before it is ready to process messages. By issuing &AOMINIT, following
messages are queued, ready for the first &AOMREAD.

Note: The procedure should not delay too long before issuing an &AOMREAD,
because the maximum queued message limit (as set by SYSPARMS
AOMPQLIM=) could be exceeded.

Registering a procedure as a secondary AOMPROC always makes it eligible for
messages. These messages can only be delivered by another AOMPROC issuing
&AOMCONT NCLID or by issuing &AOMALERT NCLID.

Notes:

The &ZFDBK system variable is set to the following values after executing
&AOMINIT:

0

&AOMINIT issued by primary AOMPROC. Messages are now queued.

4

&AOMINIT issued by valid procedure in AOMP environment. Procedure is
now a secondary AOMPROC. Messages is queued (using &AOMCONT
NCLID). This value is also returned if the procedure was already a secondary
AOMPROC.

An &AOMINIT issued by an NCL procedure that is not executing in the AOMP
environment causes the procedure to be terminated with an error message.

&AOMMIGID

68 Network Control Language Reference Guide

If the primary AOMPROC terminates for any reason, all secondary AOMPROCs
are also terminated, as the AOMP environment is terminated.

Registered secondary AOMPROCs that terminate have any queued messages
processed by normal AOM delivery. If the procedure terminates abnormally, the
message indicating the procedure error termination is queued to the primary
AOMPROC as an AOM status message.

&AOMMIGID

&AOMMIGID parses a system command string to determine if a migration ID is
required.

&AOMMIGID has the following format:

&result = &AOMMIGID command-string

The return value is NO (meaning no migration ID required) or YES (meaning a
migration ID is required). This value is used directly as the value for the MIGID
operand on a SYSCMD command.

If one of the following is true, then NO is always returned:

■ The current console type (as set by the AOMCTYPE SYSPARM) does not
support migration IDs (that is, the type is NOT EXTMCS).

■ No consoles are currently acquired.

If no command text is supplied, or if it is too long (more than 126 characters),
then an error is raised and the NCL procedure terminates.

Example: &AOMMIGID

&CMD=STR D J,L

&MIG=&AOMMIGID &CMD

&AOMMINLN

Chapter 2: Verbs and Built-in Functions 69

&AOMMINLN

&AOMMINLN has the following format:

&variable = &AOMMINLN n

Operand:

n

Specifies the minor line number.

0 returns the text of the major line. 1 to the value in the &AOMNMIN
system variable returns that minor line. A value greater than this returns a
null value.

Note: &AOMMINLN is used when any line of the multi-line WTO is current in an
AOMPROC. This means, if you use &AOMREAD MINOR=YES to read successive
minor lines (to access all attributes), any preceding or following line text is
accessed.

The &AOMMINLN built-in function returns the current value of the specified
minor line, when processing a multi-line WTO message in an AOMPROC.

The returned value is the text of the specified minor line. An index of 0 returns
the text of the major line.

Only an AOMPROC can use &AOMMINLN. If the current message is not a
multi-line WTO, a null value is returned.

Examples: &AOMMINLN

.IEC995I -* indicative dump mlwto

&MAJ = &AOMMINLN 0 -* get major line

&MIN1 = &AOMMINLN 1 -* get minor line 1

&MIN2 = &AOMMINLN 2 -* get minor line 2

&MIN3 = &AOMMINLN 3 -* get minor line 3

More information:

&AOMMINLT (see page 70)
&AOMREAD (see page 71)

&AOMMINLT

70 Network Control Language Reference Guide

&AOMMINLT

&AOMMINLT has the following format:

&variable = &AOMMINLT n

Operand:

n

Specifies the minor line number. 0 returns the type of the major line. A
value between 1 and the value in the &AOMNMIN system variable returns
the type of that minor line. A value greater than this returns a null value.

The &AOMMINLT built-in function returns the line type of the specified minor
line, when processing a multi-line WTO message in an AOMPROC.

The returned values are:

C

CONTROL line

CE

CONTROL plus END line

L

LABEL line

LE

LABEL plus END line

D

DATA line

E

END line

DE

DATA/END line

Only an AOMPROC can use &AOMMINLT. If the current message is not a
multi-line WTO, a null value is returned.

&AOMREAD

Chapter 2: Verbs and Built-in Functions 71

Examples: &AOMMINLT

.IEC995I -* indicative dump mlwto

&MAJT = &AOMMINLT 0 -* get major line type

&MINT1 = &AOMMINLT 1 -* get minor line 1 type

&MINT2 = &AOMMINLT 2 -* get minor line 2 type

&MINT3 = &AOMMINLT 3 -* get minor line 3 type

Note:

&AOMMINLT is used when any line of the multi-line WTO is current in an
AOMPROC. This means, if you use &AOMREAD MINOR=YES to read successive
minor lines (to access all attributes), any preceding or following line type is
accessed.

&AOMREAD

&AOMREAD is used within an AOMPROC to request delivery of the next AOM
message. If no message is immediately available, processing of the procedure is
suspended at this point and then resumes when the next message arrives.

Any messages and associated attributes routed to PROC, PROCONLY, or BOTH
from the screening table are delivered to &AOMREAD.

Multiple &AOMREAD statements is present within an AOMPROC but it is
recommended only one be used within a closed loop environment.

On completion of &AOMREAD the system variable &ZVARCNT are set to the
number of variables created, unless the SET operand is specified.

The profile of the message received by &AOMREAD is set in a suite of reserved
system variables. The message profile (which reflects the processing attributes
such as color, highlighting, source and delivery information that were set by the
screening table) provides a complete description of all the message attributes in
addition to the message text.

&AOMREAD has the following format:

&AOMREAD [WAIT={ YES | NO | 0 | nn }]

 [MINOR={ YES | NO }]

 { [VARS=prefix* [RANGE=(start,end)]] |

 [VARS={ name | var-name-list }] |

 [STRING { &name | string-name-list }] |

 [ARGS [RANGE=(start,end)]] |

 [SET] }

&AOMREAD

72 Network Control Language Reference Guide

Operands:

WAIT={ YES | NO | 0 | nn.nn }

Specifies what to do if no message is immediately available to satisfy the
&AOMREAD.

WAIT=YES, (the default) will cause the procedure to be suspended
indefinitely, pending receipt of a message.

WAIT=NO or WAIT=0 will cause the procedure to continue if no message is
pending. The system variable &RETCODE is set to 4 if no message was
pending. The procedure is never suspended in this case.

WAIT=nn.nn will cause the procedure to wait for up to nn.nn seconds for a
message. If none have arrived in this time, &RETCODE is set to 4 and the
procedure resumes execution. The range of nn.nn is 0.01 to 9999.99.

If an &AOMREAD is satisfied by a message, &RETCODE is set to 0.

MINOR={ YES | NO }

Specifies whether &AOMREAD is to return minor lines of a multi-line WTO
message.

MINOR=YES (the default) causes the individual lines of a multi-line WTO
message to be presented, in order, following the &AOMREAD of the major
line. This is useful if you wish to examine attributes of each line.

MINOR=NO causes the next &AOMREAD after reading a major line to skip
all the minor lines, and read the next message.

Note: Regardless of the MINOR= setting, whenever an AOMPROC has any
line of a multi-line WTO message current, the &AOMMINLN and
&AOMMINLT built-in functions allow access to the text and line type of any
minor line of the current message, and the &AOMNMIN system variable
indicates how many minor lines there are. MINOR=YES/NO has no effect
except in the case where the previous line read was a multi-line WTO major
line. Thus, you can use &AOMREAD MINOR=NO in a main processing loop,
and enter an inner processing loop, to read &AOMNMIN minor lines.

&AOMREAD

Chapter 2: Verbs and Built-in Functions 73

VARS=

Specifies that the message is to be tokenized into the nominated variables
before control is returned to the procedure. Each word of the message is
tokenized into the nominated variables from left to right. If insufficient
variables are provided, some data is lost. Excess variables are set to a null
value. The format of the operands that can be coded with VARS= are as
follows:

prefix*

Denotes that variables are generated automatically during the
tokenization process, and that the variable names are prefix1, prefix2,
and so on. The RANGE= operand is specified to indicate a starting and
ending suffix number. Prefix* cannot be used in conjunction with other
variable names.

name

Specifies the name of a variable, excluding the ampersand (&).

name(n)

Is the same as name, but n denotes the length of the data that is to be
placed in the variable.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements, n
denotes 'skip this number of words'. An asterisk (*) by itself is the same
as *(1).

STRING

Specifies that no tokenization is to be performed. The entire text of the
message is to be treated as a single string and returned to the procedure in
the nominated variables. The format of the operands associated with
STRING are:

&name

User specified variables, including the leading & into which the string
text is to be placed. Text is placed into each variable for the maximum
length of a variable.

&AOMREAD

74 Network Control Language Reference Guide

ARGS

Denotes that the message received is tokenized and placed word by word
into automatically generated variables of the form &1 through &n,
depending on how many are required to hold the message. The RANGE=
operand is coded to designate a start number and optionally, an end
number, which delimits the number of variables that are generated.

SET

Specifies that no tokenization of the incoming AOM message is performed,
but that the &AOMREAD statement is to return only the AOMPROC system
variables that relate to the message.

If SET is not coded, instructions must be coded on the &AOMREAD
statement specifying the tokenization requirements for the incoming AOM
message by using other &AOMREAD operands.

Examples: &AOMREAD

&AOMREAD VARS=(A,B,C,D,E,F,G,H,I,J) MINOR=NO

&AOMREAD VARS=A*

&AOMREAD ARGS RANGE=(2,60)

&AOMREAD STRING &DATA

&AOMREAD SET

Notes:

Following an &AOMREAD a useful technique is the use of an &GOTO statement,
using the ID of the message (set in &AOMID by a screening table GLOBAL,
MSGGROUP, or SET statement ID=id) to go to the routine that will process the
message.

When a message is delivered to &AOMREAD, a suite of system variables is set,
including one for the message prefix (&AOMMSGID). There is usually no need to
request further tokenization unless specific processing is required on the
message text. On this basis, using &AOMREAD SET should be sufficient.

&AOMREPL

Chapter 2: Verbs and Built-in Functions 75

The following example illustrates the use of both &AOMMSGID and &AOMID:

&CONTROL NOLABEL

.READ

&AOMREAD MINOR=NO SET

&GOTO .&AOMMSGID

&GOTO .&AOMID

&AOMCONT

&GOTO .READ

 :

-* Special msg processing

.IOS000I

 : &GOTO .READ

-* Special msg processing for screening table set ID.

.HASPMSGS

 :

&GOTO .READ

While testing and developing the primary AOMPROC you may need to
terminate the current version and invoke a new updated copy. The SYSPARMS
AOMPROC= command with FLUSH specified terminates the primary AOMPROC.
To start the primary AOMPROC, the same command is used, specifying the
member name from the relevant NCL library.

More information:

&AOMCONT (see page 53)
&AOMDEL (see page 61)
&AOMREPL (see page 75)

&AOMREPL

&AOMREPL is used within an AOMPROC procedure to request that a message,
which could be a WTO, a WTOR, or a VM message, that was previously delivered
for processing by an &AOMREAD, have the message text replaced and then
delivered locally. No automatic ISR delivery is performed.

An AOM message passed to your product region for normal delivery is sent to
all OCS and ROF users with AOM message receipt authority who are also
authorized to receive messages with the relevant routing codes and message
levels.

&AOMREPL

76 Network Control Language Reference Guide

The processing attributes of the message, set by the screening table when the
message was selected for routing to AOMPROC, is changed by specifying the
appropriate &AOMREPL operand.

When processing a multi-line WTO message, only the current line of the
message is altered, but if this is the first line, and the next &AOMREAD specifies
MINOR=NO, all lines have the same attribute alterations applied. The text of
these lines, however, is not altered. The text of individual lines is altered by
issuing &AOMREAD MINOR=YES to obtain each line in turn, and then issuing
&AOMREPL for each line.

Any operand specified will override the current value of that message attribute.
This statement is treated as &AOMDEL if this is an MVS DOM-notify message.

&AOMREPL has the following format:

&AOMREPL [LOCAL]

 [ALARM={ YES | NO }]

 [COLOR={ NONE | BLUE | RED | PINK | GREEN |TURQUOISE | YELLOW | WHITE }]

 [DOM-NOTIFY={ NO | YES }]

 [HLIGHT={ NONE | USCORE | BLINK | REVERSE }]

 [ID=identifier]

 [INTENS={ LOW | HIGH }]

 [MONITOR={ YES | NO }]

 [MSGCODE=nn]

 [MSGID=msgid]

 [MSGLEVEL=msglevel]

 [NRD={ NO | OPER | YES }]

 [ROUTCDE={ NONE | ALL | list }]

 [ROUTE=route | LCLROUTE=route]

 [SCAN={ YES | NO }]

 [UFLAGn={ YES | NO }]

 DATA=replacement message text

Operands:

LOCAL

Indicates that the current message is to be (possibly) altered as requested,
and is to be released for local delivery only. This occurs regardless of the
specification of LOCAL or not. This operand is provided for compatibility
with &AOMCONT LOCAL. No automatic ISR delivery is performed.

Following this statement, this AOMPROC no longer owns the message, and
until another &AOMREAD is executed, the message related system variables
are null.

&AOMREPL

Chapter 2: Verbs and Built-in Functions 77

ALARM={ YES | NO }

Modifies the alarm attribute of the current message or event.

COLOR={ NONE | BLUE | RED | PINK | GREEN | TURQUOISE | YELLOW |
WHITE }

Modifies the color attribute for the current message or event. This operand
can also be spelt COLOUR.

DOM-NOTIFY={ NO | YES }

DOM-NOTIFY=YES indicates that this AOMPROC wants a DOM-notify
message queued to it when an appropriate MVS DOM is received.

If the current message is not a WTO, WTOR, or MVS-sourced EVENT, no
DOM-notify ever occurs, as only MVS issues DOMs.

This operand is abbreviated to DN.

Note: Many messages never have a matching DOM generated, as they were
never intended to be non-roll-delete. Careless use of DOM-NOTIFY=YES can
cause excessive storage to be wasted in the system as it notes all messages
that are to be DOM-NOTIFIED.

HLIGHT={ NONE | USCORE | BLINK | REVERSE }

Modifies the highlight attribute for the current message or event. This
operand can also be spelt HLITE.

ID=identifier

Modifies the value of the AOM ID attribute, as seen in the &AOMID and
&ZMAOMID system variables.

The value is null, or from 1 to 12 characters.

INTENS={ LOW | HIGH }

Modifies the intensity attribute for the current message or event.

MONITOR={ YES | NO }

Alters the MONITOR attribute of the current message or event. The monitor
attribute determines whether MONITOR class OCS receivers also receive the
message, even if they are not AOM receivers.

MSGCODE=nn

Modifies the MSGCODE mask for the current message or event.

&AOMREPL

78 Network Control Language Reference Guide

MSGID=msgid

Allows specification of a specific message id for type=WTO, MSG, or EVENT.
If omitted, no message ID value is set.

msgid is null, or 1 to 12 characters.

The value set by this parameter is available to an AOMPROC in the
&AOMMSGID system variable, and to a MSGPROC in the &ZMAOMMID
system variable.

MSGLEVEL=msglevel

Modifies the message level of the current message.

For a list of valid message levels, see the Administration Guide.

NRD={ NO | OPER | YES }

Alters the NRD (Non-Roll-Delete) attribute of the current message.

Note: If the message has the NRD=YES attribute (already, or set by the
NRD=YES operand), then, following execution of &AOMCONT ALL, LOCAL, or
REMOTE, &ZDOMID will contain the region-assigned DOMID, that is used by
the &NRDDEL verb to delete the message from OCS screens.

ROUTCDE={ NONE | ALL | list }

Modifies the routing codes currently assigned to the current message.

ROUTE=route | LCLROUTE=route

Modifies the AOM routing option for the current message or event.

Because the message is only delivered locally, ROUTE= or LCLROUTE= have
the same effect. Valid values are:

NO

The message is not to be delivered. If set from the screening table, the
message is not passed to Automation Services.

LOG

The message is to be delivered to the activity log only.

Note: If your product region has SYSPARMS AOMLOG=NO set, the
message is never logged.

MSG

The message is to be delivered to authorized AOM receivers and to the
activity log.

&AOMREPL

Chapter 2: Verbs and Built-in Functions 79

PROC

The message is to be queued to the primary AOMPROC, if it is active. If
not, the message is to be delivered as if ROUTE=MSG was specified.
Following AOM processing, ROUTE=PROC is treated as ROUTE=MSG.

PROCONLY

The message is to be queued to the primary AOMPROC, if it is active. If
not, the message is to be delivered as if ROUTE=NO was specified.
Following AOM processing, ROUTE=PROCONLY is treated as ROUTE=NO.

BOTH

The message is immediately treated as if ROUTE=MSG was specified-it is
immediately queued to all eligible AOM receivers and logged. Following
this, it is also queued to the primary AOMPROC, if it is active. Regardless
of the action taken by any AOMPROC that handles the message, it is
never redelivered locally-it is treated as if ROUTE=NO was specified, and
this cannot be overridden by the ROUTE operand on any other verb.

SCAN={ YES | NO }

Indicates whether the replacement text has highlight characters (@) to
selectively highlight parts of the text.

UFLAGn={ YES | NO }

Modifies one of the eight user flags that is initially set in the AOM screening
table.

DATA=replacement message text

Specifies the replacement text for the message. Any text is specified, up to
256 characters. If the current message is part of a multi-line WTO, only the
current message text is replaced.

If this operand is omitted, &AOMREPL acts like &AOMDEL. The message is
deleted.

Examples: &AOMREPL

&AOMREPL COLOR=PINK MONITOR=YES DATA=&NEWMSG

&AOMREPL DATA=*&AOMMSGID MESSAGE SUPPRESSED BY AOMPROC

&APPC

80 Network Control Language Reference Guide

Notes:

■ IF &AOMREPL is issued when no AOM message is current, the procedure is
terminated abnormally.

■ If the message had the NRD=YES attribute assigned or overridden, the
system variable &ZDOMID will have the region-assigned DOMID that is used
to later delete the message from OCS consoles.

More information:

&AOMCONT (see page 53)
&AOMDEL (see page 61)
&AOMREAD (see page 71)

&APPC

&APPC provides access to LU6.2 conversations.

This verb has the following formats:

&APPC ALLOCATE_DELAYED

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC ALLOCATE_IMMEDIATE

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC

Chapter 2: Verbs and Built-in Functions 81

&APPC ALLOCATE_NOTIFY

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME= luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC { ALLOCATE_SESSION | ALLOCATE }

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [WAIT=nn]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC ATTACH_DELAYED

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC

82 Network Control Language Reference Guide

&APPC ATTACH_IMMEDIATE

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC ATTACH_NOTIFY

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC { ATTACH_SESSION | ATTACH }

 PROC=procname

 [SERVER=servername [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [WAIT=nn]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC CONFIRM

 [ID=id]

&APPC CONFIRMED

 [ID=id]

&APPC

Chapter 2: Verbs and Built-in Functions 83

&APPC CONNECT_DELAYED

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

&APPC CONNECT_IMMEDIATE

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

&APPC CONNECT_NOTIFY

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

&APPC { CONNECT_SESSION | CONNECT }

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [WAIT=nn]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

&APPC DEALLOCATE

 [TYPE={ SYNC | FLUSH | CONFIRM | ABEND | LOCAL }]

 [ID=id]

 [LOG=msg]

&APPC DEREGISTER

&APPC FLUSH

 [ID-id]

&APPC { PREPARE_TO_RECEIVE | PREPARE }

 [TYPE={ SYNC | FLUSH | CONFIRM }]

 [ID=id]

&APPC { RECEIVE_AND_WAIT | RECEIVE }

 [ID={ ANY | CLIENTS | SERVERS | id }]

 [WAIT=nn]

 [MDO=mdoname [MAP=mapname] | VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC RECEIVE_IMMEDIATE

 [ID=id]

 [MDO=mdoname [MAP=mapname] | VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC RECEIVE_NOTIFY

 [ID={ ANY | CLIENTS | SERVERS | id }]

&APPC

84 Network Control Language Reference Guide

&APPC REGISTER

 SERVER=servername [SCOPE={ REGION | USER | SYSTEM }]

 [CONNECT={ ACCEPT | NOTIFY | REJECT }]

 [RETRY={ YES | NO }]

 [CONVLIM={ 100 | nnn }]

&APPC REQUEST_TO_SEND

 [ID=id]

&APPC RPC

 PROC=procname

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [SHARE | SHARE=(shrvars1,shrvars2,...,shrvarsn) |

 NOSHARE=(shrvars1,shrvars2,...,shrvarsn)]

 [RETCODE=varname]

 [PARMS=(parm1,parm2,...,parmn)]

&APPC SEND_AND_CONFIRM

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC SEND_AND_DEALLOCATE

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

 [TYPE={ SYNC | FLUSH | CONFIRM }]

 [LOG=msg]

&APPC SEND_AND_FLUSH

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

 [CONT={ YES | NO }]

&APPC { SEND_AND_PREPARE_TO_RECEIVE | SEND_AND_PREPARE }

 [ID=id]

 [TYPE={ SYNC | FLUSH | CONFIRM }]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC

Chapter 2: Verbs and Built-in Functions 85

&APPC { SEND_DATA | SEND }

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

 [CONT={ YES | NO }]

&APPC SEND_ERROR

 [ID=id]

 [LOG=msg]

&APPC SET_SERVER_MODE

 [CONNECT={ ACCEPT | NOTIFY | REJECT }]

 [RETRY={ YES | NO }]

 [CONVLIM=nnn]

&APPC START

 PROC=proc

 [SERVER=servername SCOPE={ REGION | USER | SYSTEM }]]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [NOTIFY={ NO | YES }]

 [VARS=(genvars1,genvars2,...,genvarsn)]

 [PARMS=(parm1,parm2,...,parmn)]

&APPC TEST

 [ID=id]

&APPC TRANSFER_ACCEPT

 [ID=id]

 [NCLID=nclid | SERVER=servername]

 [ARGS | VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC TRANSFER_CONNECT

 [ID=id]

 [NCLID=nclid | SERVER=servername]

 [WAIT=nn]

&APPC TRANSFER_REJECT

 ID=id

 [NCLID=nclid | SERVER=servername]

 [RETRY={ YES | NO }]

&APPC { TRANSFER_REQUEST | TRANSFER }

 [NCLID=nclid | SERVER=servername]

 [ID=id]

 [WAIT=nn]

&APPC

86 Network Control Language Reference Guide

&APPC Return Code Information

All &APPC verb options complete by setting a number of NCL variables with
return code information.

General completion code information is contained within the &RETCODE system
variable, and is qualified by the &ZFDBK system variable. &RETCODE values of 0
and 4 occur in normal operation, while &RETCODE values of 8 or higher indicate
an error condition. If an error is detected, the &SYSMSG user variable is set
providing an explanation of the error condition.

A number of APPC system variables are available providing information about
the current conversation being operated. For example, following a receive
operation, the &ZAPPCWR and &ZAPPCWRI (the what-received indicators)
provide information about what satisfied the receive.

&RETCODE and &ZFDBK

The &RETCODE system variable provides general completion information as
follows:

0

Operation successful

4

Conversation ended (or operation unsuccessful)

8

Remote program error

12

State error

16

LU6.2 architected error

&APPC

Chapter 2: Verbs and Built-in Functions 87

These values can provide sufficient feedback information to control simple
procedures; however, more detailed information is available to assist in
debugging or real-time recovery of certain errors. This information is provided
by the &ZFDBK system variable, which is set in conjunction with &RETCODE.

&RETCODE &ZFDBK Meaning

0 0 Operation successful

4 0 Normal conversation deallocation

 4 Immediate request failure

8 0 Program_error_purging

 4 Program_error_no_truncation

 8 Program_error_truncation

12 0 State error

16 0 Parameter error

 4 Allocation_failure_retry

 8 Allocation_failure_no_retry

 12 Sync_level_not_supported_by_LU

 16 Deallocate_abend_prog

 20 Deallocate_abend_svc

 24 Deallocate_abend_timer

 28 Svc_error_purging

 32 Svc_error_no_truncation

 36 Svc_error_truncation

 40 Resource_failure_retry

 44 Resource_failure_no_retry

 48 FMH_data_not_supported

 52 Mapping_not_supported

 56 Map_not_found

 60 Map_execution_failure

 64 Security_not_valid

 68 TPN_not_recognized

&APPC

88 Network Control Language Reference Guide

&RETCODE &ZFDBK Meaning

 72 PIP_not_allowed

 76 PIP_not_specified_correctly

 80 Conversation_type_mismatched

 84 Sync_level_not_supported_by_program

 88 Trans_pgm_not_avail_retry

 92 Trans_pgm_not_avail_no_retry

&RETCODE 0 always signifies a successful operation and is equivalent to the
LU6.2 architected RETURN_CODE value of OK.

&RETCODE 4 with &ZFDBK 0 is normally set when, following a receive operation,
a deallocation flush is received indicating normal conversation termination.

&RETCODE 4 with &ZFDBK 4 is set when an immediate request is unsuccessful,
for example, an ALLOCATE_IMMEDIATE or RECEIVE_IMMEDIATE cannot be
satisfied.

&RETCODE 8 always signifies that the remote program issued an error through
the SEND_ERROR request.

&RETCODE 12 always signifies that the procedure has issued a verb from an
invalid state. This value usually indicates a programming error; however, in
some cases the state is changed internally when severe errors occur. Recovery is
possible depending upon the sophistication of the procedure.

&RETCODE 16 always signifies a serious error. In most cases, these errors are
unrecoverable; however, some recovery is possible depending upon the
sophistication of the procedure.

Note: For more information about &ZFDBK values, see IBM's SNA Transaction
Programmer's Reference Manual for LU Type 6.2 (GC30-3084-4).

&APPC ALLOCATE_DELAYED

Chapter 2: Verbs and Built-in Functions 89

&APPC ALLOCATE_DELAYED

A conversation is started when an allocate request is issued to attach a
transaction program in the conversation partner system. ALLOCATE_DELAYED
indicates that this is a conversation allocation request where delayed session
allocation is permitted. Provided the request is valid, control is returned to the
procedure immediately and conversation operation is permitted pending a
session becoming available for the conversation.

&APPC ALLOCATE_DELAYED has the following format:

&APPC ALLOCATE_DELAYED

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

TRANSID=transid

Provides the local transaction identifier for this conversation, as defined in
the TCT. If no transaction is known by that identifier then the allocation
fails, otherwise the TCT entry is used to complete details for the allocation.
This operand is required.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the TCT
or OSCT is used to select a default mode name. If present, modename must
correspond to a valid mode defined for the APPC link, or the allocation fails.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
TCT is used to nominate the default SYNC level. If SYNC level of NONE is
specified, or defaulted, then the &APPC CONFIRM and CONFIRMED
requests, the &APPC PREPARE_TO_RECEIVE TYPE=CONFIRM request, and
the DEALLOCATE TYPE=CONFIRM request cannot be used.

&APPC ALLOCATE_DELAYED

90 Network Control Language Reference Guide

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password
under which the transaction is to be started in the remote system. If the
transaction being allocated is defined in the TCT with SECURITY=NONE,
these operands are ignored.

If the TCT entry is defined with SECURITY=SAME, SECURITY=USERPSWD, or
SECURITY=USER, the supplied user ID and password are included by APPC in
the attach header for validation in the remote system.

If the user ID is specified, but no password is supplied, the user ID is
included in the attach header, but the already verified indicator will not be
set unless the user ID is that of the requesting user environment. However,
if it is a same LU transaction, APPC performs lock and key processing to
determine whether the target user ID is signed on by the requester.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand value is used to indicate the environment
where the procedure should be attached.

If ENV=CURRENT is specified, or defaulted, the attached target procedure
has the same relationship to the allocating procedure as it would have if it
had been invoked by a START command.

If ENV=DEPENDENT is specified, the new process is attached in a dependent
environment. It has the same relationship to the allocating procedure as it
would if it had been invoked using an &INTCMD START command.

If ENV=BACKGROUND is specified, the new process is attached in the
background APPC server region for the requesting user ID, in the same
manner as if the request was sourced from a remote system.

The LUNAME operand nominates the network LU name where the remote
transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

&APPC ALLOCATE_DELAYED

Chapter 2: Verbs and Built-in Functions 91

If LUNAME=luname is specified then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization, otherwise the allocation
will fail. If luname resolves to the local LU, the conversation proceeds
exactly as it would for a remote system, not as described for the ENV
parameter. That is, it executes the remote end of the conversation in the
appropriate APPC environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
When LINK is specified then the LUNAME parameter cannot be used. The
link must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the allocate request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

Note: The ENV LUNAME, LINK, and DOMAIN operands are mutually
exclusive.

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

This operand specifies a list of parameters to be passed to the procedure.
The parameter list must be enclosed by parentheses, and each pair of
parameters must be separated by a comma.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, it is
delimited by the next comma or closing parenthesis encountered. Any other
characters are considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result is placed in the next
initialization parameter in the called procedure.

&APPC ALLOCATE_DELAYED

92 Network Control Language Reference Guide

A quoted parameter is terminated only by a closing quote of the same type
as the opening quote. Only a comma delimiting the next parameter, or a
closing parenthesis terminating the entire parameter list, can immediately
follow the closing quote. The entire quoted string is passed to the target
procedure unchanged, except that the delimiting quotes are removed.
Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.
For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

This would set the following variables in the called procedure (assume
&USER has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

Note: If used, the PARMS operand must be the last operand on the &APPC
statement.

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

Provides the list of any Program Initialization Parameters (PIP data) to
be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of
those indicated. Each token implicated by the VARS option is passed as
a separate parameter in the PIP sub-field list. If the remote conversation
partner is an NCL procedure, PIP data will be available when the remote
procedure is invoked as &1,&2....&n in the usual manner.

Examples: &APPC ALLOCATE_DELAYED

&APPC ALLOCATE_DELAYED TRANSID=DBQUERY

&APPC ALLOCATE_DELAYED TRANSID=DBQUERY LINK=NMA

&APPC ALLOCATE_DELAYED

Chapter 2: Verbs and Built-in Functions 93

Return Codes:

The return codes are:

0

request successful

4

request unsuccessful

8

remote program error

12

state check

16

request or conversation error

&ZFDBK is set, plus all APPC system variables.

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and following
successful completion of this request the conversation enters send state locally.
When the remote program or procedure is attached to service the conversation
it is in receive state.

&APPC ALLOCATE_DELAYED

94 Network Control Language Reference Guide

Notes:

■ If no target system information is supplied, then a default destination must
be provided by the TCT; otherwise the allocation fails.

■ When using an ALLOCATE_DELAYED request for a valid transaction, a return
code of 0 (request successful) is normal. The allocation is assumed complete
and the conversation enters send state. This allows the procedure to
continue processing pending session assignment and means that the
procedure can consume system resource (such as storage) by sending data
before any output path is established. However, in controlled situations this
can usefully lead to overlapped processing and can provide the most
efficient LU6.2 usage in certain cases.

■ No information is returned on the allocate request about whether a session
was actually assigned, and it is possible for subsequent conversation
requests, such as a SEND_DATA, to fail with a return code of 16 indicating
an allocation failure. It is also possible that subsequent conversation
requests will cause procedure execution to be suspended pending actual
session assignment. This occurs, for example, when following a number of
SEND_DATA requests a CONFIRM request is issued, or when internal
buffering limits are reached.

Relationship to LU6.2 Verb Set:

&APPC ALLOCATE_DELAYED is equivalent to the LU6.2 verb MC_ALLOCATE with
the RETURN_CONTROL(DELAYED_ALLOCATION_PERMITTED) option.

More information:

&APPC ALLOCATE_SESSION (see page 106)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ALLOCATE_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 95

&APPC ALLOCATE_IMMEDIATE

ALLOCATE_IMMEDIATE indicates that this is an immediate conversation
allocation request and that the allocation is conditional upon a session being
immediately available. If no session is immediately assigned to the conversation,
the allocation fails.

&APPC ALLOCATE_IMMEDIATE has the following format:

&APPC ALLOCATE_IMMEDIATE

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

TRANSID=transid (Mandatory)

Provides the local transaction ID for this conversation, as defined in the TCT.
If no transaction is known by that identifier then the allocation fails,
otherwise the TCT entry is used to complete details for the allocation.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted the TCT
or OSCT is used to select a default mode name. If present, modename must
correspond to a valid one defined for the APPC link or the allocation will fail.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted the
TCT is used to nominate the default SYNC level. If SYNC level of NONE is
specified, or defaulted, then the &APPC CONFIRM and CONFIRMED
requests, the &APPC PREPARE_TO_RECEIVE TYPE=CONFIRM request, and
the DEALLOCATE TYPE=CONFIRM request cannot be used.

&APPC ALLOCATE_IMMEDIATE

96 Network Control Language Reference Guide

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password
under which the transaction is to be started in the remote system. If the
transaction being allocated is defined in the TCT with SECURITY=NONE,
these operands are ignored.

If the TCT entry is defined with SECURITY=SAME, SECURITY=USERPSWD, or
SECURITY=USER, the supplied user ID and password is included by APPC in
the attach header for validation in the remote system.

If the user ID is specified, but no password is supplied, the user ID is
included in the attach header, but the already verified indicator will not be
set unless the user ID is that of the requesting user environment. However,
if it is a same LU transaction, APPC performs lock and key processing to
determine whether the target user ID is signed on by the requester.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand value is used to indicate the environment
where the procedure should be attached.

If ENV=CURRENT is specified, or defaulted, the attached target procedure
has the same relationship to the allocating procedure as it would have if it
had been invoked by a START command.

If ENV=DEPENDENT is specified, the new process is attached in a dependent
environment. It has the same relationship to the allocating procedure as it
would if it had been invoked using an &INTCMD START command.

If ENV=BACKGROUND is specified, the new process is attached in the
background APPC server region for the requesting user ID, in the same
manner as if the request was sourced from a remote system.

The LUNAME operand nominates the network LU name where the remote
transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

&APPC ALLOCATE_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 97

If LUNAME=luname is specified then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization, otherwise the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
When LINK is specified then the LUNAME parameter cannot be used. The
link must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the allocate request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

Note: The ENV LUNAME, LINK, and DOMAIN operands are mutually
exclusive.

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

This operand specifies a list of parameters to be passed to the procedure.
The parameter list must be enclosed by parentheses, and each pair of
parameters must be separated by a comma.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, it is
delimited by the next comma or closing parenthesis encountered. Any other
characters are considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

&APPC ALLOCATE_IMMEDIATE

98 Network Control Language Reference Guide

A quoted parameter is terminated only by a closing quote of the same type
as the opening quote. Only a comma delimiting the next parameter, or a
closing parenthesis terminating the entire parameter list, can immediately
follow the closing quote. The entire quoted string is passed to the target
procedure unchanged, except that the delimiting quotes are removed.
Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.
For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN&2&3 PROC=MYPROC&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

Note: If used, the PARMS operand must be the last operand on the &APPC
statement.

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

Provides the list of any Program Initialization Parameters (PIP data) to
be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of
those indicated. Each token implicated by the VARS option is passed as
a separate parameter in the PIP sub-field list. If the remote conversation
partner is an NCL procedure PIP data will be available when the remote
procedure is invoked as &1,&2,....&n in the usual manner.

Examples: &APPC ALLOCATE_IMMEDIATE

&APPC ALLOCATE_IMMEDIATE TRANSID=DBQUERY

&APPC ALLOCATE_IMMEDIATE TRANSID=DBPUT VARS=DATA

&APPC ALLOCATE_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 99

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is set, plus all APPC system variables.

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and following
successful completion the conversation enters send state locally. When the
remote program or procedure is attached to service the conversation it is in
receive state.

Notes:

■ If no target system information is supplied, a default destination must be
provided by the TCT; otherwise, the allocation fails.

■ An ALLOCATE_IMMEDIATE is used to perform conditional allocation where
the procedure wants to keep executing even when there is no session
immediately available for communication. The allocation is retried at some
later time. Consider also the use of the ALLOCATE_NOTIFY request.

■ When no session is available, this request completes with &RETCODE set to
4, and &ZFDBK set to 0.

&APPC ALLOCATE_NOTIFY

100 Network Control Language Reference Guide

Relationship to LU6.2 Verb Set:

&APPC ALLOCATE_IMMEDIATE is equivalent to the LU6.2 verb MC_ALLOCATE
with the RETURN_CONTROL(IMMEDIATE) option.

More information:

&APPC ALLOCATE_SESSION (see page 106)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ALLOCATE_NOTIFY

ALLOCATE_NOTIFY allows the procedure to request an asynchronous allocation
which does not complete until a session is assigned for the conversation.

A conversation is started when an allocate request is issued to attach a
transaction program in the conversation partner system. ALLOCATE_NOTIFY
indicates that this conversation allocation request is asynchronous and that
control is to be returned to the procedure immediately. However conversation
operation is unavailable until a session is assigned to the conversation and the
procedure is notified of this event.

&APPC ALLOCATE_NOTIFY has the following format:

&APPC ALLOCATE_NOTIFY

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME= luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

TRANSID=transid

Specifies the local transaction identifier for this conversation, as defined in
the TCT. If no transaction is known by that identifier, then the allocation
fails; otherwise, the TCT entry is used to complete details for the allocation.
This operand is required.

&APPC ALLOCATE_NOTIFY

Chapter 2: Verbs and Built-in Functions 101

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the TCT
or OSCT is used to select a default mode name. If present, the modename
must correspond to a valid one defined for the APPC link or the allocation
fails.

SYNC= { NONE | CONFIRM }

Specifies the synchronization level for the conversation. If SYNC level of
NONE is specified, then the &APPC CONFIRM and CONFIRMED requests, the
&APPC PREPARE_TO_RECEIVE TYPE=CONFIRM request, and the
DEALLOCATE TYPE=CONFIRM request cannot be used.

Default: Set by TCT

USERID=userid [PASSWORD=password]

Specify the target user ID and, optionally, the password under which the
transaction starts on the remote system. If the transaction being allocated is
defined in the TCT with SECURITY=NONE, these operands are ignored.

If the TCT entry is defined with SECURITY=SAME, SECURITY=USERPSWD, or
SECURITY=USER, APPC includes the supplied user ID and password in the
attach header for validation in the remote system.

If the user ID is specified but no password is supplied, the user ID is included
in the attach header. The already verified indicator is not set unless the user
ID is that of the requesting user environment. However, if it is a same LU
transaction, APPC performs lock and key processing to determine whether
the target user ID is signed on by the requester.

PROFILE=profile

Specifies the profile name to place in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

&APPC ALLOCATE_NOTIFY

102 Network Control Language Reference Guide

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand specifies that the allocation is to take place entirely within
the local region of the allocating procedure. If the allocation request came
from a remote system, this operand is ignored. Otherwise, the ENV operand
value specifies the environment where the procedure is attached.

If ENV=CURRENT is specified, or defaulted, the attached target procedure
has the same relationship to the allocating procedure as it would have if it is
invoked using a START command.

If ENV=DEPENDENT is specified, the new process is attached in a dependent
environment. The process has the same relationship to the allocating
procedure as it would if it is invoked using an &INTCMD START command.

If ENV=BACKGROUND is specified, the new process is attached in the
background APPC server region for the requesting user ID, in the same
manner as if the request was sourced from a remote system.

The LUNAME operand nominates the name of the network LU where you
want to allocate the remote transaction. When LUNAME is specified, the
LINK parameter cannot be used. LUNAME is abbreviated to LU.

If LUNAME=luname is specified, then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization. Otherwise, the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LUNAME (where you want to allocate the remote
transaction). When LINK is specified then the LUNAME parameter cannot be
used.

The link must either be active or be defined in the Dynamic Link Table with
an explicit link and LU name (that is, not LUMASK). This requirement allows
it to be initialized by the allocate request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV LUNAME, LINK, and DOMAIN operands are mutually exclusive.

Default: ENV=CURRENT

&APPC ALLOCATE_NOTIFY

Chapter 2: Verbs and Built-in Functions 103

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

Specifies a list of parameters to pass to the procedure. Enclose the
parameter list by parentheses, and separate each pair of parameters by a
comma.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted; otherwise, it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis encountered delimits it. Any other characters
are considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed. Normal quote
rules apply, that is, two consecutive quotes of the same type as the opening
quote are treated as a single occurrence in the resulting string. No
substitution is performed on the contents of the quoted string. For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

&RETCODE or &END in the called procedure sets the return codes.

Note: If used, the PARMS operand must be the last operand on the &APPC
statement.

&APPC ALLOCATE_NOTIFY

104 Network Control Language Reference Guide

Alternatively, the VARS operand is used to specify the allocation
parameters:

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

Provides the list of any Program Initialization Parameters (PIP data) to
be passed to the transaction processor in the remote end upon
initialization of the conversation. Each token implicated by the VARS
option is passed as a separate parameter in the PIP subfield list. If the
remote conversation partner is an NCL procedure, PIP data becomes
available when the remote procedure is invoked as &1,&2....&n in the
usual manner.

Examples: &APPC ALLOCATE_NOTIFY

&APPC ALLOCATE_NOTIFY TRANSID=DBQUERY

&APPC ALLOCATE_NOTIFY TRANSID=DBPUT VARS=DATA LINK=NMA

 .

 .

 .

&INTREAD TYPE=REQ VARS=NFYMSG

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC ALLOCATE_NOTIFY

Chapter 2: Verbs and Built-in Functions 105

This request also sets the system variable &ZAPPCID, which returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and following
notification and successful completion the conversation enters send state
locally. When the remote program or procedure is attached to service the
conversation it is in receive state.

Notification Message Format:

When an ALLOCATE_NOTIFY request completes (with return code=0), and
subsequent session allocation completes either successfully or unsuccessfully,
the following message is placed on the request queue of the internal
environment for the NCL procedure:

N00101 NOTIFY: APPC EVENT: ALLOCATE RESOURCE: &zappcid

&zappcid contains the conversation identifier returned by the
ALLOCATE_NOTIFY request.

Notes:

■ If no target system information is supplied, then the TCT must provide a
default destination; otherwise, the allocation fails.

■ Using ALLOCATE_NOTIFY has no significant advantages over
ALLOCATE_SESSION unless concurrent processing using other NCL resources
is required. The internal environment of the NCL procedure receives the
notification, which is accessed by issuing an &INTREAD TYPE=REQUEST. No
information is provided on the notification as to the success or otherwise of
the allocation. An &APPC TEST is used to set return code information on the
next operation attempted. If the allocation was unsuccessful, an allocation
error is returned.

■ The allocation request is canceled by issuing an &APPC DEALLOCATE
TYPE=ABEND request for the conversation concerned, or is automatically
canceled if the NCL process terminates.

&APPC ALLOCATE_SESSION

106 Network Control Language Reference Guide

Relationship to LU6.2 Verb Set:

&APPC ALLOCATE_NOTIFY has no exact equivalent in the LU6.2 verb options,
but is merely an asynchronous form of the LU6.2 verb MC_ALLOCATE with the
RETURN_CONTROL(WHEN_SESSION_ ALLOCATED) option.

More information:

&APPC ALLOCATE_SESSION (see page 106)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ALLOCATE_SESSION

The ALLOCATE_SESSION request does not complete until a session is assigned
for the conversation.

ALLOCATE_SESSION indicates a synchronous conversation allocation request
and that control is not returned to the procedure until a session has been
successfully assigned to the conversation. This is the most usual method of
conversation allocation. The ALLOCATE_SESSION verb option is abbreviated to
ALLOCATE.

&APPC ALLOCATE_SESSION has the following format:

&APPC { ALLOCATE_SESSION | ALLOCATE }

 TRANSID=transid

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [WAIT=nn]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

TRANSID=transid

Provides the local transaction identifier for this conversation, as defined in
the TCT. If no transaction is known by that identifier, then the allocation
fails; otherwise the TCT entry is used to complete details for the allocation.
This operand is required.

&APPC ALLOCATE_SESSION

Chapter 2: Verbs and Built-in Functions 107

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the TCT
or OSCT is used to select a default mode name. If present, the modename
must correspond to a valid one defined for the APPC link or the allocation
fails.

SYNC={ NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
TCT is used to nominate the default SYNC level. If SYNC level of NONE is
specified, or defaulted, then the &APPC CONFIRM and CONFIRMED
requests, the &APPC PREPARE_TO_RECEIVE TYPE=CONFIRM request, and
the DEALLOCATE TYPE=CONFIRM request cannot be used.

WAIT=nn

Specifies the time, in seconds (for example, 10), or seconds and hundredths
(for example, 1.25), for which the procedure is prepared to wait for a
session. If not successful before this interval expires, the allocate request is
canceled, and an unsuccessful return code results (&RETCODE is set to 4,
&ZFDBK is set to 0).

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password
under which the transaction is to be started in the remote system.

If the transaction being allocated is defined in the TCT with
SECURITY=NONE, these operands are ignored.

If the TCT entry is defined with SECURITY=SAME, SECURITY=USERPSWD, or
SECURITY=USER, APPC includes the supplied user ID and password in the
attach header for validation on the remote system.

If the user ID is specified, but no password is supplied, the user ID is
included in the attach header, but the already verified indicator is not set
unless the user ID is that of the requesting user environment. However, if it
is a same LU transaction, APPC performs lock and key processing to
determine whether the target user ID is signed on by the requester.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

&APPC ALLOCATE_SESSION

108 Network Control Language Reference Guide

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand specifies the environment where the
procedure is attached.

If ENV=CURRENT, or defaulted, the attached target procedure has the same
relationship to the allocating procedure as it would have if a START
command invokes it.

If ENV=DEPENDENT, the new process is attached in a dependent
environment. The process has the same relationship to the allocating
procedure as it would if an &INTCMD START command invokes it.

If ENV=BACKGROUND, the new process is attached in the background APPC
server region for the requesting user ID, in the same manner as if the
request was sourced from a remote system.

The LUNAME operand nominates the name of the network LU where the
remote transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

If LUNAME=luname is specified, then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization. Otherwise, the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
If LINK is specified, then the LUNAME parameter cannot be used. The link
must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV, LUNAME, LINK, and DOMAIN operands are mutually exclusive.

&APPC ALLOCATE_SESSION

Chapter 2: Verbs and Built-in Functions 109

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

Specifies a list of parameters to pass to the procedure. Parentheses enclose
the parameter list, and a comma separates each pair of parameters.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis delimits it. Any other characters are
considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

If used, the PARMS operand must be the last operand on the &APPC
statement.

&APPC ALLOCATE_SESSION

110 Network Control Language Reference Guide

Alternatively, the VARS operand is used to specify the allocation
parameters:

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

The VARS operand provides the list of any Program Initialization Parameters
(PIP data) to be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of those
indicated. Each token implicated by the VARS option is passed as a separate
parameter in the PIP subfield list. If the remote conversation partner is an
NCL procedure, PIP data is available when the remote procedure is invoked
as &1,&2....&n in the usual manner.

Examples: &APPC ALLOCATE_SESSION

&APPC ALLOCATE_SESSION TRANSID=DBQUERY

&APPC ALLOCATE TRANSID=DBPUT VARS=DATA LINK=NMA

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

This request also sets the system variable &ZAPPCID, which returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation, if the NCL process is operating more than one
conversation concurrently.

&APPC ALLOCATE_SESSION

Chapter 2: Verbs and Built-in Functions 111

State Transition:

The request is deemed to be performed from the reset state. Following
successful completion of this request, the conversation enters send state locally.
When the remote program or procedure is attached to service the conversation,
it is in receive state.

Notes:

■ If no target system information is supplied, TCT must provide a default
destination; otherwise, the request fails.

■ The ALLOCATE_SESSION request is the simplest allocation option to use and
is generally the most resource efficient because resources are not allocated
until a session is available for the conversation. While the request is queued
pending session availability the procedure is suspended. Upon completion,
the procedure can continue processing based purely upon the success or
otherwise of the allocation request.

&APPC ALLOCATE_SESSION

112 Network Control Language Reference Guide

Relationship to LU6.2 Verb Set:

&APPC ALLOCATE or &APPC ALLOCATE_SESSION is equivalent to the LU6.2 verb
MC_ALLOCATE with the RETURN_CONTROL (WHEN_SESSION_ALLOCATED)
option.

The &APPC TRANSID parameter is equivalent to the LU6.2 verb MC_ALLOCATE
TPN(tpn) option. However, rather than specifying the remote transaction
program name directly, the TRANSID parameter allows a level of indirection and
validation by first examining the Transaction Control Table for the TRANSID,
then inserting the GLOBALID from the TCT as the TPN parameter for the
request.

The &APPC ENV parameter is equivalent to the LU6.2 verb MC_ALLOCATE
LU_NAME(OWN) option.

The &APPC LUNAME=luname parameter is equivalent to the LU6.2 verb
MC_ALLOCATE LU_NAME(OTHER(luname)) option.

The &APPC LINK=linkname parameter is equivalent to the LU6.2 verb
MC_ALLOCATE LU_NAME(OTHER(luname)) option where linkname is considered
to be the locally known name for the actual network luname concerned.

The &APPC PARMS or VARS=(var1,var2,...,varn) parameter is equivalent to the
LU6.2 verb MC_ALLOCATE PIP(YES(var1,var2,...,varn)) option.

The &APPC MODENAME and SYNC parameters are equivalent to the LU6.2 verb
MC_ALLOCATE MODE_NAME and SYNC_LEVEL parameters respectively.

The &APPC USERID, PASSWORD and PROFILE operands are equivalent to the
LU6.2 verb MC_ALLOCATE SECURITY parameter. NCL conversation security
options can also be set through the TCT entry (see the DEFTRANS command).

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ATTACH_DELAYED

Chapter 2: Verbs and Built-in Functions 113

&APPC ATTACH_DELAYED

ATTACH_DELAYED allows the requester to specify the target procedure name to
be attached to the conversation. The request is only useful when both ends of
the conversation reside in APPC systems.

ATTACH_DELAYED indicates a request to attach an NCL procedure to service the
APPC conversation. This request is a more direct way of creating a conversation
where both ends are to execute within an APPC system.

&APPC ATTACH_DELAYED has the following format:

&APPC ATTACH_DELAYED

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

PROC=procname

(Mandatory) Nominates the target procedure by name. The operand is used
where the conversation is known to take place between two NCL
procedures, and where the target procedure is either within the local
system, or a remote APPC system, as specified by the LOCAL, LU, or LINK
operands. This operand is used instead of the TRANSID operand to target an
explicit procedure. However, bypassing the Transaction Control Table is
often not desirable. The default security parameter for this type of
allocation is SAME. The parameter indicates that a signed on user allocates
the target procedure in a signed on region, while an unsecured region
allocates the procedure in the background APPC region.

SERVER=servername

Specifies the logical name for this NCL process. The name must be up to 32
characters long and unique within the scope as determined by the SCOPE
operand, or the request fails.

&APPC ATTACH_DELAYED

114 Network Control Language Reference Guide

SCOPE={ REGION | USER | SYSTEM }

Provides the scope for the registration of servername (which must be
unique within the scope indicated) and is valid only if the SERVER operand is
present. Valid scopes are:

REGION

Indicates that servername is to be unique within the current session, as
defined by a particular connection to your product region.

USER

Indicates that servername is to be unique across all sessions associated
with the particular user ID

SYSTEM

Indicates that servername is to be unique within this product region.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system transaction ATTACH TCT entry is used to select a default mode name
in the usual manner. If present, modename must correspond to a valid one
defined for the APPC link or the allocation fails.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system ATTACH TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password,
under which the transaction is to be started in the remote system.

The ATTACH system transaction uses SECURITY=SAME processing.
Therefore, APPC includes the supplied user ID and password in the attach
header for validation in the remote system.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

&APPC ATTACH_DELAYED

Chapter 2: Verbs and Built-in Functions 115

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand specifies the environment where the
procedure is attached.

If ENV=CURRENT, or defaulted, the attached target procedure has the same
relationship to the allocating procedure as it would have if a START
command invokes it.

If ENV=DEPENDENT, the new process is attached in a dependent
environment. The process has the same relationship to the allocating
procedure as it would if an &INTCMD START command invokes it.

If ENV=BACKGROUND, the new process is attached in the background APPC
server region for the requesting user ID, in the same manner as if the
request was sourced from a remote system.

The LUNAME operand nominates the name of the network LU where the
remote transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

If LUNAME=luname is specified, then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization. Otherwise, the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
If LINK is specified, then the LUNAME parameter cannot be used. The link
must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV, LUNAME, LINK, and DOMAIN operands are mutually exclusive.

&APPC ATTACH_DELAYED

116 Network Control Language Reference Guide

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

Specifies a list of parameters to pass to the procedure. Parentheses enclose
the parameter list, and a comma separates each pair of parameters.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis delimits it. Any other characters are
considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

If used, the PARMS operand must be the last operand on the &APPC
statement.

&APPC ATTACH_DELAYED

Chapter 2: Verbs and Built-in Functions 117

Alternatively, the VARS operand is used to specify the allocation
parameters:

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

The VARS operand provides the list of any Program Initialization Parameters
(PIP data) to be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of those
indicated. Each token implicated by the VARS option is passed as a separate
parameter in the PIP subfield list. If the remote conversation partner is an
NCL procedure, PIP data is available when the remote procedure is invoked
as &1,&2....&n in the usual manner.

Examples: &APPC ATTACH_DELAYED

&APPC ATTACH_DELAYED PROC=MYPROC LINK=SOLSYD

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

This request also sets the system variable &ZAPPCID, which returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation, if the NCL process is operating more than one
conversation concurrently.

&APPC ATTACH_DELAYED

118 Network Control Language Reference Guide

State Transition:

The request is deemed to be performed from the reset state. Following
successful completion of this request, the conversation enters send state locally.
When the remote program or procedure is attached to service the conversation,
it is in receive state.

Notes:

■ If no target system information is supplied, TCT must provide a default
destination; otherwise, the request fails.

■ When using an ATTACH_DELAYED request for a valid transaction, a return
code of 0 (request successful) is normal. The allocation is assumed complete
and the conversation enters send state. This allows the procedure to
continue processing, pending session assignment, and means that the
procedure can consume system resource (such as storage) by sending data
before any output path is established.

However, in controlled situations, this can usefully lead to overlapped
processing and can provide the most efficient LU6.2 usage in certain cases.

■ No information is returned on the attach request about whether a session
was assigned. Subsequent conversation requests, such as a SEND_DATA,
may fail with a return code of 16 indicating an allocation failure. Subsequent
conversation requests may also cause procedure execution to be suspended
pending actual session assignment. This condition occurs, for example,
when following a number of SEND_DATA requests, a CONFIRM request is
issued, or when internal buffering limits are reached.

Relationship to LU6.2 Verb Set:

&APPC ATTACH_DELAYED is equivalent to the LU6.2 verb MC_ALLOCATE with
the RETURN_CONTROL(DELAYED_ ALLOCATION_PERMITTED) option.

More information:

&APPC ATTACH_SESSION (see page 132)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ATTACH_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 119

&APPC ATTACH_IMMEDIATE

ATTACH_IMMEDIATE allows the requester to specify the target procedure name
to be attached to the conversation. The request is useful only when both ends
of the conversation reside in APPC systems.

ATTACH_IMMEDIATE indicates a request to attach an NCL procedure to service
the APPC conversation. This request is a more direct way of creating a
conversation where both ends are to execute within an APPC system.

&APPC ATTACH_IMMEDIATE has the following format:

&APPC ATTACH_IMMEDIATE

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

PROC=procname

(Mandatory) Nominates the target procedure by name. The operand is used
where the conversation is known to take place between two NCL
procedures, and where the target procedure is either within the local
system, or a remote APPC system, as specified by the LOCAL, LU, or LINK
operands. This operand is used instead of the TRANSID operand to target an
explicit procedure. However, bypassing the Transaction Control Table is
often not desirable. The default security parameter for this type of
allocation is SAME. The parameter indicates that a signed on user allocates
the target procedure in a signed on region, while an unsecured region
allocates the procedure in the background APPC region.

SERVER=servername

Specifies the logical name for this NCL process. The name must be up to 32
characters long and unique within the scope as determined by the SCOPE
operand, or the request fails.

&APPC ATTACH_IMMEDIATE

120 Network Control Language Reference Guide

SCOPE={ REGION | USER | SYSTEM }

Provides the scope for the registration of servername (which must be
unique within the scope indicated) and is valid only if the SERVER operand is
present. Valid scopes are:

REGION

Indicates that servername is to be unique within the current session, as
defined by a particular connection to your product region.

USER

Indicates that servername is to be unique across all sessions associated
with the particular user ID

SYSTEM

Indicates that servername is to be unique within this product region.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system transaction ATTACH TCT entry is used to select a default mode name
in the usual manner. If present, modename must correspond to a valid one
defined for the APPC link or the allocation fails.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system ATTACH TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password,
under which the transaction is to be started in the remote system.

The ATTACH system transaction uses SECURITY=SAME processing.
Therefore, APPC includes the supplied user ID and password in the attach
header for validation in the remote system.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

&APPC ATTACH_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 121

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand specifies the environment where the
procedure is attached.

If ENV=CURRENT, or defaulted, the attached target procedure has the same
relationship to the allocating procedure as it would have if a START
command invokes it.

If ENV=DEPENDENT, the new process is attached in a dependent
environment. The process has the same relationship to the allocating
procedure as it would if an &INTCMD START command invokes it.

If ENV=BACKGROUND, the new process is attached in the background APPC
server region for the requesting user ID, in the same manner as if the
request was sourced from a remote system.

The LUNAME operand nominates the name of the network LU where the
remote transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

If LUNAME=luname is specified, then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization. Otherwise, the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
If LINK is specified, then the LUNAME parameter cannot be used. The link
must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV, LUNAME, LINK, and DOMAIN operands are mutually exclusive.

&APPC ATTACH_IMMEDIATE

122 Network Control Language Reference Guide

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

Specifies a list of parameters to pass to the procedure. Parentheses enclose
the parameter list, and a comma separates each pair of parameters.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis delimits it. Any other characters are
considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

If used, the PARMS operand must be the last operand on the &APPC
statement.

&APPC ATTACH_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 123

Alternatively, the VARS operand is used to specify the allocation
parameters:

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

The VARS operand provides the list of any Program Initialization Parameters
(PIP data) to be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of those
indicated. Each token implicated by the VARS option is passed as a separate
parameter in the PIP subfield list. If the remote conversation partner is an
NCL procedure, PIP data is available when the remote procedure is invoked
as &1,&2....&n in the usual manner.

Example: &APPC ATTACH_IMMEDIATE

&APPC ATTACH_IMMEDIATE PROC=MYPROC

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

This request also sets the system variable &ZAPPCID, which returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation, if the NCL process is operating more than one
conversation concurrently.

&APPC ATTACH_IMMEDIATE

124 Network Control Language Reference Guide

State Transition:

The request is deemed to be performed from the reset state. Following
successful completion of this request, the conversation enters send state locally.
When the remote program or procedure is attached to service the conversation,
it is in receive state.

Notes:

■ If no target system information is supplied, TCT must provide a default
destination; otherwise, the request fails.

■ An ATTACH_IMMEDIATE is used to perform conditional allocation where the
procedure wants to keep executing, even when there is no session
immediately available for communication. The allocation is retried at some
later time. Consider also the use of the ATTACH_NOTIFY request.

■ When no session is available, this request completes with &RETCODE set to
4, and &ZFDBK set to 0.

Relationship to LU6.2 Verb Set:

&APPC ATTACH_IMMEDIATE is equivalent to the LU6.2 verb MC_ALLOCATE with
the RETURN_CONTROL(IMMEDIATE) option.

More information:

&APPC ATTACH_SESSION (see page 132)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ATTACH_NOTIFY

Chapter 2: Verbs and Built-in Functions 125

&APPC ATTACH_NOTIFY

ATTACH_NOTIFY allows the requester to specify the target procedure name to
be attached to the conversation. The request is useful only when both ends of
the conversation reside in APPC systems.

ATTACH_NOTIFY indicates a request to attach an NCL procedure to service the
APPC conversation. This request is a more direct way of creating a conversation
where both ends are to execute within an APPC system.

&APPC ATTACH_NOTIFY has the following format:

&APPC ATTACH_NOTIFY

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

PROC=procname

(Mandatory) Nominates the target procedure by name. The operand is used
where the conversation is known to take place between two NCL
procedures, and where the target procedure is either within the local
system, or a remote APPC system, as specified by the LOCAL, LU, or LINK
operands. This operand is used instead of the TRANSID operand to target an
explicit procedure. However, bypassing the Transaction Control Table is
often not desirable. The default security parameter for this type of
allocation is SAME. The parameter indicates that a signed on user allocates
the target procedure in a signed on region, while an unsecured region
allocates the procedure in the background APPC region.

SERVER=servername

Specifies the logical name for this NCL process. The name must be up to 32
characters long and unique within the scope as determined by the SCOPE
operand, or the request fails.

&APPC ATTACH_NOTIFY

126 Network Control Language Reference Guide

SCOPE={ REGION | USER | SYSTEM }

Provides the scope for the registration of servername (which must be
unique within the scope indicated) and is valid only if the SERVER operand is
present. Valid scopes are:

REGION

Indicates that servername is to be unique within the current session, as
defined by a particular connection to your product region.

USER

Indicates that servername is to be unique across all sessions associated
with the particular user ID

SYSTEM

Indicates that servername is to be unique within this product region.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system transaction ATTACH TCT entry is used to select a default mode name
in the usual manner. If present, modename must correspond to a valid one
defined for the APPC link or the allocation fails.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system ATTACH TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password,
under which the transaction is to be started in the remote system.

The ATTACH system transaction uses SECURITY=SAME processing.
Therefore, APPC includes the supplied user ID and password in the attach
header for validation in the remote system.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

&APPC ATTACH_NOTIFY

Chapter 2: Verbs and Built-in Functions 127

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand specifies the environment where the
procedure is attached.

If ENV=CURRENT, or defaulted, the attached target procedure has the same
relationship to the allocating procedure as it would have if a START
command invokes it.

If ENV=DEPENDENT, the new process is attached in a dependent
environment. The process has the same relationship to the allocating
procedure as it would if an &INTCMD START command invokes it.

If ENV=BACKGROUND, the new process is attached in the background APPC
server region for the requesting user ID, in the same manner as if the
request was sourced from a remote system.

The LUNAME operand nominates the name of the network LU where the
remote transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

If LUNAME=luname is specified, then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization. Otherwise, the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
If LINK is specified, then the LUNAME parameter cannot be used. The link
must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV, LUNAME, LINK, and DOMAIN operands are mutually exclusive.

&APPC ATTACH_NOTIFY

128 Network Control Language Reference Guide

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

Specifies a list of parameters to pass to the procedure. Parentheses enclose
the parameter list, and a comma separates each pair of parameters.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis delimits it. Any other characters are
considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

If used, the PARMS operand must be the last operand on the &APPC
statement.

&APPC ATTACH_NOTIFY

Chapter 2: Verbs and Built-in Functions 129

Alternatively, the VARS operand is used to specify the allocation
parameters:

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

The VARS operand provides the list of any Program Initialization Parameters
(PIP data) to be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of those
indicated. Each token implicated by the VARS option is passed as a separate
parameter in the PIP subfield list. If the remote conversation partner is an
NCL procedure, PIP data is available when the remote procedure is invoked
as &1,&2....&n in the usual manner.

Example: &APPC ATTACH_NOTIFY

&APPC ATTACH_NOTIFY PROC=MYPROC LINK=SOLSYD

 .

 .

 .

&INTREAD TYPE=REQ VARS=NFYMSG

&APPC ATTACH_NOTIFY

130 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

This request also sets the system variable &ZAPPCID, which returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation, if the NCL process is operating more than one
conversation concurrently.

State Transition:

The attach is deemed to be performed from reset state and, following
notification and successful completion, the conversation enters send state
locally. When the remote program or procedure is attached to service the
conversation, it is in receive state.

Notification Message Format:

When an ATTACH_NOTIFY request completes (with return code=0), and
subsequent session attachment completes, either successfully or unsuccessfully,
the following message is placed on the request queue of the internal
environment for the NCL procedure:

N00101 NOTIFY: APPC EVENT: ALLOCATE RESOURCE: &zappcid

where the value &zappcid is the conversation identifier returned by the
ATTACH_NOTIFY request.

&APPC ATTACH_NOTIFY

Chapter 2: Verbs and Built-in Functions 131

Notes:

■ If no target system information is supplied, TCT must provide a default
destination; otherwise, the request fails.

■ Using ATTACH_NOTIFY has no significant advantages over
ATTACH_SESSION, unless concurrent processing using other NCL resources
is required. Notification is provided by way of a request sent to the internal
environment of the NCL procedure, and is accessed by issuing an &INTREAD
TYPE=REQUEST. No information is provided on the notification as to the
success or otherwise of the allocation. An &APPC TEST is used to set return
code information on the next operation attempted. If the allocation was
unsuccessful, an allocation error is returned.

■ The allocation request is canceled by issuing an &APPC DEALLOCATE
TYPE=ABEND request for the conversation concerned, or is automatically
canceled if the NCL process terminates.

Relationship to LU6.2 Verb Set:

&APPC ATTACH_NOTIFY has no exact equivalent in the LU6.2 verb options, but
is merely an asynchronous form of the LU6.2 verb MC_ALLOCATE with the
RETURN_CONTROL(WHEN_SESSION_ ALLOCATED) option.

More information:

&APPC ATTACH_SESSION (see page 132)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC ATTACH_SESSION

132 Network Control Language Reference Guide

&APPC ATTACH_SESSION

ATTACH_SESSION allows the requester to specify the target procedure name to
be attached to the conversation. The request is useful only when both ends of
the conversation reside in APPC systems.

ATTACH_SESSION indicates a request to attach an NCL procedure to service the
APPC conversation. This request is a more direct way of creating a conversation
where both ends are to execute within an APPC system.

&APPC ATTACH_SESSION has the following format:

&APPC { ATTACH_SESSION | ATTACH }

 PROC=procname

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [WAIT=nn]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [PARMS=(parm1,parm2,...,parmn) |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

PROC=procname

(Mandatory) Nominates the target procedure by name. The operand is used
where the conversation is known to take place between two NCL
procedures, and where the target procedure is either within the local
system, or a remote APPC system, as specified by the LOCAL, LU, or LINK
operands. This operand is used instead of the TRANSID operand to target an
explicit procedure. However, bypassing the Transaction Control Table is
often not desirable. The default security parameter for this type of
allocation is SAME. The parameter indicates that a signed on user allocates
the target procedure in a signed on region, while an unsecured region
allocates the procedure in the background APPC region.

SERVER=servername

Specifies the logical name for this NCL process. The name must be up to 32
characters long and unique within the scope as determined by the SCOPE
operand, or the request fails.

&APPC ATTACH_SESSION

Chapter 2: Verbs and Built-in Functions 133

SCOPE={ REGION | USER | SYSTEM }

Provides the scope for the registration of servername (which must be
unique within the scope indicated) and is valid only if the SERVER operand is
present. Valid scopes are:

REGION

Indicates that servername is to be unique within the current session, as
defined by a particular connection to your product region.

USER

Indicates that servername is to be unique across all sessions associated
with the particular user ID

SYSTEM

Indicates that servername is to be unique within this product region.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system transaction ATTACH TCT entry is used to select a default mode name
in the usual manner. If present, modename must correspond to a valid one
defined for the APPC link or the allocation fails.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system ATTACH TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

WAIT=nn

Specifies the time, in seconds (for example, 10), or seconds and hundredths
(for example, 1.25), for which the procedure is prepared to wait for a
session. If not successful before this interval expires, the attach request is
canceled with an unsuccessful return code (&RETCODE is set to 4, and
&ZFDBK is set to 0).

USERID=userid [PASSWORD=password]

These operands nominate the target user ID and, optionally, the password,
under which the transaction is to be started in the remote system.

The ATTACH system transaction uses SECURITY=SAME processing.
Therefore, APPC includes the supplied user ID and password in the attach
header for validation in the remote system.

&APPC ATTACH_SESSION

134 Network Control Language Reference Guide

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

The ENV operand is the default destination, indicating that the allocation is
to take place entirely within the local region of the allocating procedure. If
the allocation request came from a remote system, this is ignored.
Otherwise, the ENV operand specifies the environment where the
procedure is attached.

If ENV=CURRENT, or defaulted, the attached target procedure has the same
relationship to the allocating procedure as it would have if a START
command invokes it.

If ENV=DEPENDENT, the new process is attached in a dependent
environment. The process has the same relationship to the allocating
procedure as it would if an &INTCMD START command invokes it.

If ENV=BACKGROUND, the new process is attached in the background APPC
server region for the requesting user ID, in the same manner as if the
request was sourced from a remote system.

The LUNAME operand nominates the name of the network LU where the
remote transaction is to be allocated. When LUNAME is specified, the LINK
parameter cannot be used. LUNAME is abbreviated to LU.

If LUNAME=luname is specified, then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization. Otherwise, the allocation
fails. If luname resolves to the local LU, the conversation proceeds exactly as
it would for a remote system, not as described for the ENV parameter. That
is, it executes the remote end of the conversation in the appropriate APPC
environment within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LU where the remote transaction is to be allocated.
If LINK is specified, then the LUNAME parameter cannot be used. The link
must either be active, or be defined in the Dynamic Link Table with an
explicit link and LU name (that is, not LUMASK) to allow it to be initialized by
the request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV, LUNAME, LINK, and DOMAIN operands are mutually exclusive.

&APPC ATTACH_SESSION

Chapter 2: Verbs and Built-in Functions 135

PARMS=(parm1,parm2,...,parmn) | VARS=var |
VARS=(var1, var2, ..., varn) | VARS=prefix* [RANGE=(start,end)]

Specifies a list of parameters to pass to the procedure. Parentheses enclose
the parameter list, and a comma separates each pair of parameters.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis delimits it. Any other characters are
considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

If used, the PARMS operand must be the last operand on the &APPC
statement.

&APPC ATTACH_SESSION

136 Network Control Language Reference Guide

Alternatively, the VARS operand is used to specify the allocation
parameters:

VARS=var | VARS=(var1,var2,...,varn) |
VARS=prefix* [RANGE=(start,end)]

The VARS operand provides the list of any Program Initialization Parameters
(PIP data) to be passed to the transaction processor in the remote end upon
initialization of the conversation. The VARS definition must be one of those
indicated. Each token implicated by the VARS option is passed as a separate
parameter in the PIP subfield list. If the remote conversation partner is an
NCL procedure, PIP data is available when the remote procedure is invoked
as &1,&2....&n in the usual manner.

Examples: &APPC ATTACH_SESSION

&APPC ATTACH_SESSION PROC=MYPROC LINK=SOLMELB

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

This request also sets the system variable &ZAPPCID, which returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation, if the NCL process is operating more than one
conversation concurrently.

&APPC ATTACH_SESSION

Chapter 2: Verbs and Built-in Functions 137

State Transition:

The request is deemed to be performed from the reset state. Following
successful completion of this request, the conversation enters send state locally.
When the remote program or procedure is attached to service the conversation,
it is in receive state.

Notes:

■ If no target system information is supplied, TCT must provide a default
destination; otherwise, the request fails.

■ The ATTACH_SESSION request is the simplest allocation option to use and is
generally the most resource efficient, as resources are not allocated until a
session is available for the conversation. While the request is queued
pending session availability, the procedure is suspended. Upon completion,
the procedure can continue processing based purely upon the success or
otherwise of the allocation request.

&APPC ATTACH_SESSION

138 Network Control Language Reference Guide

Relationship to LU6.2 Verb Set:

&APPC ATTACH_SESSION is equivalent to the LU6.2 verb MC_ALLOCATE with
the RETURN_CONTROL (WHEN_SESSION_ALLOCATED) option.

The &APPC PROC parameter is equivalent to the LU6.2 verb MC_ALLOCATE
TPN(tpn) option, and specifies the name of the procedure to be attached on the
remote APPC system to service the transaction.

The &APPC ENV parameter is equivalent to the LU6.2 verb MC_ALLOCATE
LU_NAME(OWN) option.

The &APPC LUNAME=luname parameter is equivalent to the LU6.2 verb
MC_ALLOCATE LU_NAME(OTHER(luname)) option.

The &APPC LINK=linkname parameter is equivalent to the LU6.2 verb
MC_ALLOCATE LU_NAME(OTHER(luname)) option where the linkname is
considered to be the locally known name for the actual network luname
concerned.

The &APPC PARMS or VARS=(var1,var2,...,varn) parameter is equivalent to the
LU6.2 verb MC_ATTACH PIP(YES(var1,var2,...,varn)) option.

The &APPC MODENAME and SYNC parameters are equivalent to the LU6.2 verb
MC_ALLOCATE MODE_NAME and SYNC_LEVEL parameters respectively.

The &APPC USERID, PASSWORD and PROFILE operands are equivalent to the
LU6.2 verb MC_ALLOCATE SECURITY parameter. NCL conversation security
options can also be set through the system TCT entry (see the DEFTRANS
command).

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC CONFIRM

Chapter 2: Verbs and Built-in Functions 139

&APPC CONFIRM

&APPC CONFIRM sends a request for confirmation to the conversation partner
and waits for the reply.

CONFIRM indicates this is a conversation confirmation request.

&APPC CONFIRM has the following format:

&APPC CONFIRM [ID=id]

Operand:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

Examples: &APPC CONFIRM

&APPC CONFIRM

&APPC CONFIRM ID=999

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC CONFIRM

140 Network Control Language Reference Guide

State Transition:

The CONFIRM request can only be issued from send state. When the remote
program responds with the CONFIRMED request, the return code is set to 0 and
no local state change occurs. If the remote program issues SEND_ERROR the
return code is set to 8 and the local state is changed to receive state.

Notes:

■ This request is useful in synchronizing processing in both ends of the
conversation, and provides a means to request verification of the receipt of
conversation data.

■ If following a successful confirmation, the next conversation action is to
receive data, consider using the PREPARE_TO_RECEIVE TYPE= CONFIRM or
TYPE=FLUSH request, for improved communication efficiency.

■ If following a successful confirmation, the next conversation action is to
deallocate the conversation, consider using the DEALLOCATE
TYPE=CONFIRM request for improved communication efficiency.

Relationship to LU6.2 Verb Set:

&APPC CONFIRM is equivalent to the LU6.2 verb MC_CONFIRM.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC CONFIRMED

Chapter 2: Verbs and Built-in Functions 141

&APPC CONFIRMED

&APPC CONFIRMED sends a reply to the conversation partner's request for a
reply (&APPC CONFIRM).

CONFIRMED indicates this is a conversation confirmation reply.

&APPC CONFIRMED has the following format:

&APPC CONFIRMED [ID=id]

Operand:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

Examples: &APPC CONFIRMED

&APPC CONFIRMED

&APPC CONFIRMED ID=999

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC CONFIRMED

142 Network Control Language Reference Guide

State Transition:

The CONFIRMED request can only be issued from one of the confirm states,
namely, confirm, confirm_send, or confirm_deallocate.

Confirm state is entered as a result of the remote program sending the
CONFIRM request, and following the CONFIRMED reply the local program
re-enters receive state.

Confirm_send state is entered as a result of the remote program sending the
PREPARE_TO_RECEIVE TYPE=CONFIRM request, and following the CONFIRMED
reply the local program enters send state.

Confirm_deallocate state is entered as a result of the remote program sending
the DEALLOCATE TYPE=CONFIRM request, and following the CONFIRMED reply
the local program enters deallocate state.

Notes:

■ This request is useful when synchronizing processing in both ends of the
conversation, and provides a means to verify the receipt of conversation
data.

■ To send a negative acknowledgement, use the SEND_ERROR request.

Relationship to LU6.2 Verb Set:

&APPC CONFIRMED is equivalent to the LU6.2 verb MC_CONFIRMED.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC CONNECT_DELAYED

Chapter 2: Verbs and Built-in Functions 143

&APPC CONNECT_DELAYED

CONNECT_DELAYED allows the requester to start a conversation with an
existing NCL process in either the local or a connected APPC system.

CONNECT_DELAYED indicates that this is a request to connect to an active NCL
process. Unless the target system cannot be reached, this request will normally
be accepted. However, once accepted, the connection request remains pending
a transfer of information to the target process. After such a transfer, the
conversation might subsequently fail due to communication failures, or the
inability to locate the desired active process.

&APPC CONNECT_DELAYED has the following format:

&APPC CONNECT_DELAYED

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

Operands:

NCLID=nclid

Identifies the target process for the APPC connection request, by specifying
its 6-digit NCL ID. The NCL ID referenced is in the local system or in a
connected APPC system.

SERVER=servername

Specifies the logical name for this NCL process. It must be 1 to 32 characters
long and unique within the current scope.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system CONNECT TCT entry is used to select a default mode name in the
usual manner. If present, modename must correspond to a valid one
defined for the APPC link or the allocation will fail.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system CONNECT TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

&APPC CONNECT_DELAYED

144 Network Control Language Reference Guide

LUNAME=luname | LINK=linkname | DOMAIN=domain

The LUNAME operand nominates the network LU name where the process
to be connected is executing. When LUNAME is specified, the LINK
parameter cannot be used. If LUNAME=luname is specified then the target
system must be connected to the local system with an APPC link, or must
have an appropriate entry in the Dynamic Link Table to permit link
initialization, otherwise the allocation fails.

If luname resolves to the local LUNAME, the process being connected must
be within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LUNAME. When LINK is specified then the LUNAME
parameter cannot be used. The link must either be active, or be defined in
the Dynamic Link Table with an explicit link and LUNAME name (that is, not
LUMASK) to allow it to be initialized by the allocate request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV LUNAME, LINK, and DOMAIN operands are mutually exclusive.

Example: &APPC CONNECT_DELAYED

&APPC CONNECT_DELAYED NCLID=&TARGETID

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC CONNECT_DELAYED

Chapter 2: Verbs and Built-in Functions 145

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and, following
successful completion of this request, the conversation enters send state locally.
When the remote program or procedure is attached to service the conversation,
it is in receive state.

Notes:

■ Following a successful connect request, the &ZAPPCID system variable
contains the new conversation identifier. The conversation is allocated in
send state as usual, and is subsequently operated in the same manner as
any other allocated conversation. Similarly, once the connection request is
accepted in the target process, the APPC conversation is operated like any
other attached conversation in that process.

■ If confirmation of the connection to the target process is required, use the
CONFIRM protocol following the connect request.

More information:

&APPC ALLOCATE_DELAYED (see page 89)
&APPC ATTACH_DELAYED (see page 113)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC CONNECT_IMMEDIATE

146 Network Control Language Reference Guide

&APPC CONNECT_IMMEDIATE

&APPC CONNECT_IMMEDIATE allows the requester to start a conversation with
an existing NCL process in either the local or a connected APPC system.

CONNECT_IMMEDIATE indicates that this is a request to connect to an active
NCL process. Unless the target system cannot be reached, this request will
normally be accepted. However, once accepted, the connection request
remains pending a transfer of information to the target process. After such a
transfer, the conversation might subsequently fail due to communication
failures, or the inability to locate the desired active process.

This verb has the following format:

&APPC CONNECT_IMMEDIATE

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

Operands:

NCLID=nclid

(Mandatory) Identifies the target process for the APPC connection request
by specifying its 6-digit NCL ID. The NCL ID referenced is in the local system
or in a connected APPC system.

SERVER=servername

Provides an alternative way to identify the target process for the APPC
connection request by specifying its registered server name.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system CONNECT TCT entry is used to select a default mode name. If
present, modename must correspond to a valid one defined for the APPC
link or the allocation will fail.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system CONNECT TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

&APPC CONNECT_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 147

LUNAME=luname | LINK=linkname | DOMAIN=domain

The LUNAME operand nominates the network LU name where the process
to be connected is executing. When LUNAME is specified, the LINK
parameter cannot be used.

If LUNAME=luname is specified, the target system must be connected to the
local system with an APPC link, or must have an appropriate entry in the
Dynamic Link Table to permit link initialization, otherwise the allocation
fails.

If luname resolves to the local LUNAME, the process being connected must
be within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LUNAME. When LINK is specified then the LUNAME
parameter cannot be used. The link must either be active, or be defined in
the Dynamic Link Table with an explicit link and LU name (that is, not
LUMASK) to allow it to be initialized by the allocate request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV LUNAME, LINK, and DOMAIN operands are mutually exclusive.

Example: &APPC CONNECT_IMMEDIATE

&APPC CONNECT_IMMEDIATE NCLID=&TARGETID

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC CONNECT_IMMEDIATE

148 Network Control Language Reference Guide

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and following
successful completion the conversation enters send state locally. When the
remote program or procedure is attached to service the conversation it is in
receive state.

Notes:

■ Following a successful connect request, the &ZAPPCID system variable
contains the new conversation identifier. The conversation is allocated in
send state as usual, and is subsequently operated in the same manner as
any other allocated conversation. Similarly, once the connection request is
accepted in the target process, the APPC conversation is operated like any
other attached conversation in that process.

■ If confirmation of the connection to the target process is required, use the
CONFIRM protocol following the connect request.

More information:

&APPC ALLOCATE_IMMEDIATE (see page 95)
&APPC ATTACH_IMMEDIATE (see page 119)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC CONNECT_NOTIFY

Chapter 2: Verbs and Built-in Functions 149

&APPC CONNECT_NOTIFY

&APPC CONNECT_NOTIFY allows the requester to start a conversation with an
existing NCL process in either the local or a connected APPC system.

CONNECT_NOTIFY indicates that this is a request to connect to an active NCL
process. Unless the target system cannot be reached, this request will normally
be accepted. However, once accepted, the connection request remains pending
a transfer of information to the target process. After such a transfer, the
conversation might subsequently fail due to communication failures, or the
inability to locate the desired active process.

This verb has the following format:

&APPC CONNECT_NOTIFY

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

Operands:

NCLID=nclid

(Mandatory) Identifies the target process for the APPC connection request
by specifying its 6-digit NCL ID. The NCL ID referenced is in the local system
or in a connected APPC system.

SERVER=servername

Provides an alternative way to identify the target process for the APPC
connection request by specifying its registered server name.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system CONNECT TCT entry is used to select a default mode name. If
present, modename must correspond to a valid one defined for the APPC
link or the allocation will fail.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system CONNECT TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

&APPC CONNECT_NOTIFY

150 Network Control Language Reference Guide

LUNAME=luname | LINK=linkname | DOMAIN=domain

The LUNAME operand nominates the network LU name where the process
to be connected is executing. When LUNAME is specified, the LINK
parameter cannot be used.

If LUNAME=luname is specified then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization, otherwise the allocation
fails. If luname resolves to the local LUNAME, the process being connected
must be within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LUNAME. When LINK is specified then the LUNAME
parameter cannot be used. The link must either be active, or be defined in
the Dynamic Link Table with an explicit link and LU name (that is, not
LUMASK) to allow it to be initialized by the allocate request.

The DOMAIN operand allows the target APPC system to be identified by
domain name.

The ENV LUNAME, LINK, and DOMAIN operands are mutually exclusive.

Examples: &APPC CONNECT_NOTIFY

&APPC CONNECT_NOTIFY NCLID=&TARGETID

 .

 .

 .

&INTREAD TYPE=REQ VARS=NFYMSG

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&APPC CONNECT_NOTIFY

Chapter 2: Verbs and Built-in Functions 151

&ZFDBK is also set, plus all APPC system variables.

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and following
notification and successful completion the conversation enters send state
locally. When the remote program or procedure is attached to service the
conversation it is in receive state.

Notes:

■ Following a successful connect request, the &ZAPPCID system variable
contains the new conversation identifier. The conversation is allocated in
send state as usual, and is subsequently operated in the same manner as
any other allocated conversation. Similarly, once the connection request is
accepted in the target process, the APPC conversation is operated like any
other attached conversation in that process.

■ If confirmation of the connection to the target process is required, use the
CONFIRM protocol following the connect request.

More information:

&APPC ALLOCATE_NOTIFY (see page 100)
&APPC ATTACH_NOTIFY (see page 125)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC CONNECT_SESSION

152 Network Control Language Reference Guide

&APPC CONNECT_SESSION

&APPC CONNECT_SESSION allows the requester to start a conversation with an
existing NCL process in either the local or a connected APPC system.

CONNECT_SESSION indicates that this is a request to connect to an active NCL
process. Unless the target system cannot be reached, this request will normally
be accepted. However, once accepted, the connection request remains pending
a transfer of information to the target process. After such a transfer, the
conversation might subsequently fail due to communication failures, or the
inability to locate the desired active process.

This verb has the following format:

&APPC { CONNECT_SESSION | CONNECT }

 { NCLID=nclid | SERVER=servername }

 [MODENAME=modename]

 [SYNC={ NONE | CONFIRM }]

 [WAIT=nn]

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

Operands:

NCLID=nclid

Identifies the target process for the APPC connection request by specifying
its 6-digit NCL ID. The NCL ID referenced is in the local system or in a
connected APPC system.

SERVER=servername

Provides an alternative way to identify the target process for the APPC
connection request by specifying its registered server name.

MODENAME=modename

Nominates the session mode name for the conversation. If omitted, the
system CONNECT TCT entry or OSCT is used to select a default mode name.
If present, modename must correspond to a valid one defined for the APPC
link or the allocation will fail.

SYNC= { NONE | CONFIRM }

Nominates the synchronization level for the conversation. If omitted, the
system CONNECT TCT entry is used to nominate the default SYNC level. If
SYNC level of NONE is specified, or defaulted, then the &APPC CONFIRM
and CONFIRMED requests, the &APPC PREPARE_TO_RECEIVE
TYPE=CONFIRM request, and the DEALLOCATE TYPE=CONFIRM request
cannot be used.

&APPC CONNECT_SESSION

Chapter 2: Verbs and Built-in Functions 153

WAIT=nn

Specifies the time, in seconds (for example, 10), or seconds and hundredths
(for example, 1.25), for which the procedure is prepared to wait for a
session. If not successful before this interval expires, the connect request is
canceled, and an unsuccessful return code results (&RETCODE is set to 4,
&ZFDBK is set to 0).

LUNAME=luname | LINK=linkname | DOMAIN=domain

The LUNAME operand nominates the network LU name where the process
to be connected is executing. When LUNAME is specified, the LINK
parameter cannot be used.

If LUNAME=luname is specified then the target system must be connected
to the local system with an APPC link, or must have an appropriate entry in
the Dynamic Link Table to permit link initialization, otherwise the allocation
will fail. If luname resolves to the local LUNAME, the process being
connected must be within the local system.

The LINK operand nominates the name of the APPC link connecting the local
system with the target LUNAME. When LINK is specified then the LUNAME
parameter cannot be used. The link must either be active, or be defined in
the Dynamic Link Table with an explicit link and LU name (that is, not
LUMASK) to allow it to be initialized by the allocate request. The DOMAIN
operand allows the target APPC system to be identified by domain name.

The ENV LUNAME, LINK, and DOMAIN operands are mutually exclusive.

Example: &APPC CONNECT_SESSION

&APPC CONNECT_SESSION NCLID=&TARGETID LINK=SOLSYD

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

&APPC CONNECT_SESSION

154 Network Control Language Reference Guide

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

State Transition:

The allocation is deemed to be performed from reset state and following
successful completion the conversation enters send state locally. When the
remote program or procedure is attached to service the conversation it is in
receive state.

Notes:

■ Following a successful connect request, the &ZAPPCID system variable
contains the new conversation identifier. The conversation is allocated in
send state as usual, and is subsequently operated in the same manner as
any other allocated conversation. Similarly, once the connection request is
accepted in the target process, the APPC conversation is operated like any
other attached conversation in that process.

■ If confirmation of the connection to the target process is required, use the
CONFIRM protocol following the connect request.

More information:

&APPC ALLOCATE_SESSION (see page 106)
&APPC ATTACH_SESSION (see page 132)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC DEALLOCATE

Chapter 2: Verbs and Built-in Functions 155

&APPC DEALLOCATE

&APPC DEALLOCATE requests conversation termination and deallocation of its
resources.

&APPC DEALLOCATE is used when an NCL procedure detects an error situation.
The process can abnormally terminate the conversation with the remote
application. In this case, it can provide a text string to be included in the Error
Log GDS variable.

This verb has the following format:

&APPC DEALLOCATE

 [TYPE={ SYNC | FLUSH | CONFIRM | ABEND | LOCAL }]

 [ID=id]

 [LOG=msg]

Operands:

TYPE={ SYNC | FLUSH | CONFIRM | ABEND | LOCAL }

Specifies the deallocate option as follows:

■ TYPE=SYNC is issued from send state only, and is the default. If the
conversation sync level is CONFIRM it is equivalent to the DEALLOCATE
TYPE=CONFIRM option, otherwise a DEALLOCATE TYPE=FLUSH is
assumed.

■ TYPE=FLUSH is issued from send state only, and results in all data being
flushed, forcing its transmission to the conversation partner before
unconditional deallocation occurs (see Notes for this option).

■ TYPE=CONFIRM is issued from send state only, and results in all data
being flushed and a confirmation being requested before deallocation
occurs (see Notes for this option).

■ TYPE=ABEND is issued from the send, defer, receive, or any of the
confirm states to abnormally terminate the conversation.

■ TYPE=LOCAL is issued from the deallocate state only to terminate the
conversation and free any locally held resources after a remote
deallocation has occurred.

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

&APPC DEALLOCATE

156 Network Control Language Reference Guide

LOG=msg

Allowed for TYPE=ABEND only. It must be the last operand specified for the
verb. All data following the LOG= operand is placed unchanged into the
message area of the Error Log GDS variable sent to the remote application
with the abnormal termination indication.

If the remote application is an NCL procedure, it can access this text, after
receiving an error return code in the &ZAPPCELM system variable.

Examples: &APPC DEALLOCATE

&APPC DEALLOCATE TYPE=FLUSH

&APPC DEALLOCATE TYPE=LOCAL

&APPC DEALLOCATE TYPE=ABEND LOG=&ERRMSG

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The DEALLOCATE request is issued in certain states according to the TYPE option
used. Following successful completion, the conversation enters reset state, that
is, it becomes inoperable.

&APPC DEALLOCATE

Chapter 2: Verbs and Built-in Functions 157

Notes:

■ A DEALLOCATE TYPE=LOCAL request is the only conversation action
permissible once the deallocate state is entered. This state follows receipt
of a DEALLOCATE TYPE=FLUSH or TYPE=ABEND from the remote
conversation partner.

■ Normal deallocation (that is, of TYPE=SYNC, FLUSH or CONFIRM) can fail if
an error is received from the remote program before the deallocation is
processed.

■ A DEALLOCATE TYPE=FLUSH (or TYPE=SYNC where the conversation was
allocated with SYNC_LEVEL=NONE), is not subject to any confirmation from
the remote partner. Hence, as it is issued from send state, if no intervening
error conditions have arisen it is always successful.

■ When a DEALLOCATE TYPE=CONFIRM (or TYPE=SYNC where the
conversation was allocated with SYNC_LEVEL=CONFIRM) is issued, the
deallocation is subject to a confirmation from the remote partner. Once
confirmation is received locally (that is, the remote program issues
CONFIRMED), the deallocation completes successfully. However, if the
remote program instead issues a SEND_ERROR the conversation is not
terminated and locally enters receive state.

■ If a DEALLOCATE ABEND is issued, or a procedure terminates before the
conversation has been allocated to a session, no data will flow.

Relationship to LU6.2 Verb Set:

&APPC DEALLOCATE is equivalent to the LU6.2 verb MC_DEALLOCATE.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC DEREGISTER

158 Network Control Language Reference Guide

&APPC DEREGISTER

&APPC DEREGISTER allows any executing NCL server process to DEREGISTER its
server name to prevent further client access.

DEREGISTER indicates that this is a request to DEREGISTER the NCL server
process, so that access to clients is no longer available. Any pending
conversations that have not been notified to the server are immediately
rejected, but active conversations are unaffected.

This verb has the following format:

&APPC DEREGISTER

Return Codes:

The return codes are as follows:

0

DEREGISTER accepted

16

DEREGISTER rejected (not registered)

Note:

When &APPC DEREGISTER is issued, any pending conversations are abended
with the appropriate RETRY option.

More information:

&APPC REGISTER (see page 172)
&APPC SET_SERVER_MODE (see page 195)

&APPC FLUSH

Chapter 2: Verbs and Built-in Functions 159

&APPC FLUSH

&APPC FLUSH flushes any locally buffered information and forces its
transmission to the remote conversation partner.

FLUSH indicates a conversation flush request.

This verb has the following format:

&APPC FLUSH [ID-id]

Operand:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

Example: &APPC FLUSH

&APPC SEND_DATA VARS=DATA

&APPC FLUSH

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC FLUSH

160 Network Control Language Reference Guide

State Transition:

The FLUSH request can only be issued from send state and no state changes
occur.

Note:

Plan carefully before you use this request. Usually, the system manages the
requirement to flush send buffers based on session parameters, conversation
parameters, and the current state of processing. As data accumulates for a
conversation or if some form of reply is required from the remote end, all
queued output is scheduled automatically for transmission in optimum message
units. Issuing the FLUSH request unnecessarily can reduce such efficiencies.

Relationship to LU6.2 Verb Set:

&APPC FLUSH is equivalent to the LU6.2 verb MC_FLUSH.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC PREPARE_TO_RECEIVE

Chapter 2: Verbs and Built-in Functions 161

&APPC PREPARE_TO_RECEIVE

&APPC PREPARE_TO_RECEIVE changes processing from sending to receiving
data.

PREPARE_TO_RECEIVE indicates that the conversation has terminated send
operations and is next expecting to receive data.

This verb has the following format:

&APPC { PREPARE_TO_RECEIVE | PREPARE }

 [TYPE={ SYNC | FLUSH | CONFIRM }]

 [ID=id]

Operands:

TYPE={ SYNC | FLUSH | CONFIRM }

Specifies the level of confirmation required for any data previously sent to
the remote conversation partner as follows:

■ TYPE=SYNC is the default and, if the conversation sync level is CONFIRM,
then it is equivalent to the PREPARE_TO_RECEIVE TYPE=CONFIRM
option; otherwise a PREPARE_TO_RECEIVE TYPE=FLUSH is assumed.

■ TYPE=FLUSH results in all data being flushed, forcing its transmission to
the conversation partner, but no confirmation reply is required (see
Notes for this option).

■ TYPE=CONFIRM results in all data being flushed and a confirmation
being requested (see Notes for this option).

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

Examples: &APPC PREPARE_TO_RECEIVE

&APPC PREPARE_TO_RECEIVE TYPE=FLUSH

&APPC PREPARE_TO_RECEIVE TYPE=CONFIRM

&APPC PREPARE_TO_RECEIVE

162 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The PREPARE_TO_RECEIVE request is issued from send state only, and results in
receive state being entered.

Notes:

■ In many cases the use of PREPARE_TO_RECEIVE is eliminated without loss of
function. Since it implies that the next action on the conversation is to
receive data, the eventual receipt of such data from the remote
conversation partner is interpreted as implicit confirmation of any previous
data sent, thus eliminating the need for the remote program to issue an
explicit CONFIRMED request before sending its data.

■ Further, if the next action locally is to receive, the PREPARE_TO_RECEIVE
(TYPE=FLUSH) request itself is implied by simply issuing a RECEIVE request
following the completion of all SEND requests.

Relationship to LU6.2 Verb Set:

&APPC PREPARE_TO_RECEIVE is equivalent to the LU6.2 verb
MC_PREPARE_TO_RECEIVE. The LU6.2 verb has a LOCKS parameter which is not
supported by &APPC.

&APPC RECEIVE_AND_WAIT

Chapter 2: Verbs and Built-in Functions 163

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC RECEIVE_AND_WAIT

This option of the &APPC verb is used to receive any data sent by the
conversation partner, or await its arrival if none is currently available. The short
form is &APPC RECEIVE.

RECEIVE_AND_WAIT indicates a synchronous conversation receive request. If
data is available, it is returned in the variables indicated. If no data is
immediately available, the procedure is suspended until data arrives, or some
error condition arises, at which time the request completes. A process can
identify a class of conversation that satisfies a receive request. Only one event
will satisfy the receive; any other events remain pending.

This verb has the following format:

&APPC{ RECEIVE_AND_WAIT | RECEIVE }

 [ID={ ANY | CLIENTS | SERVERS | id }]

 [WAIT=nn]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

&APPC RECEIVE_AND_WAIT

164 Network Control Language Reference Guide

Operands:

ID={ ANY | CLIENTS | SERVERS | id }

If ID=ANY, no state changes occur. Any conversation, either client or server,
that is in receive state satisfies the request.

If ID=CLIENTS, no state changes occur. Any client conversation that is in
receive state satisfies the request. If operating in automatic connection
accept mode, a new conversation can provide the data that satisfies such a
receive.

If ID=SERVERS, no state changes occur. Any server conversation that is in
the receive state satisfies the request.

If ID=id (or allowed to default to the current conversation), then this
conversation must be in receive state, or it is automatically placed in receive
state, if possible, before the request is accepted.

WAIT=nnn

Specifies the time, in seconds (for example, WAIT=10), or seconds and
hundredths (for example, WAIT=1.25), for which the procedure is prepared
to wait for a receive to be satisfied.

If not successful before this interval expires, the receive request is canceled
with an unsuccessful return code (that is, &RETCODE is set to 4, and &ZFDBK
is set to 4).

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

One of the options must be specified. The operand specifies how the
incoming data is formatted.

If MDO= is used, the data is formatted into an MDO with the name
mdoname. If the incoming data is mapped (that is, a map name is sent with
the data), and MAP= is not specified, then the received map name is used to
connect to Mapping Services Mapping Support. If the incoming data is not
mapped, then it is the responsibility of the requester to connect to Mapping
Services Mapping Support, if necessary, using the MAP operand.

The VARS= operand is used to provide the list of NCL variables that contains
the data received on the conversation (the usual NCL VARS definitions
apply). If the incoming data is not mapped, or the map name is other than
$NCL, then the data stream received is segmented into the variables
nominated. If the data is mapped and the map name is $NCL, then each
variable is reconstructed as it was on the send request in the conversation
partner. Unused variables are set to null.

&APPC RECEIVE_AND_WAIT

Chapter 2: Verbs and Built-in Functions 165

Examples: &APPC RECEIVE_AND_WAIT

&APPC RECEIVE_AND_WAIT VARS=DATA

&APPC RECEIVE_AND_WAIT ID=CLIENTS VARS=DATA

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The RECEIVE_AND_WAIT request is issued from either send or receive state, and
the conversation enters or remains in receive state while the WHAT_RECEIVED
indicator (&ZAPPCWR) contains DATA (that is, DATA_COMPLETE,
DATA_TRUNCATED, or DATA_ INCOMPLETE).

If the WHAT_RECEIVED indicator contains SEND (where the remote
conversation partner has issued PREPARE_TO_RECEIVE) the local state changes
to send.

If the WHAT_RECEIVED indicator contains CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE, then the local procedure should issue the CONFIRMED
request following which the state changes to receive, send, or deallocate
respectively.

&APPC RECEIVE_AND_WAIT

166 Network Control Language Reference Guide

Notes:

■ When RECEIVE_AND_WAIT is issued from send state, an implied
PREPARE_TO_RECEIVE TYPE=FLUSH is issued. This is the most efficient way
of changing the direction of conversation flow.

■ Following the interval expiry for a RECEIVE_AND_WAIT request that
specified a WAIT interval, the &RETCODE is set to 4, and &ZFDBK to 0 when
no data is available to satisfy the request.

■ If the remote conversation partner deallocates the conversation normally,
&RETCODE is set to 4 and &ZFDBK to 4.

■ Server conversations are those that have been initiated locally (by issuing
&APPC ALLOCATE, &APPC ATTACH, or &APPC CONNECT) while client
conversations are those that have been initiated remotely. The system
variable &ZAPPCCSI indicates whether a conversation is a CLIENT or SERVER
conversation.

■ When using the CLIENT, SERVER, or ANY operands, the process must be in
automatic ACCEPT connect mode, otherwise the request is rejected with a
state check. The verbs &APPC REGISTER, &APPC DEREGISTER, and &APPC
SET_SERVER_MODE is used to alter the connect mode of the process.

Relationship to LU6.2 Verb Set:

&APPC RECEIVE_AND_WAIT is equivalent to the LU6.2 verb
MC_RECEIVE_AND_WAIT.

More information:

&APPC REGISTER (see page 172)
&APPC DEREGISTER (see page 158)
&APPC SET_SERVER_MODE (see page 195)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC RECEIVE_IMMEDIATE

Chapter 2: Verbs and Built-in Functions 167

&APPC RECEIVE_IMMEDIATE

&APPC RECEIVE_IMMEDIATE receives data sent from the remote conversation
partner, if any is queued; otherwise returns to the procedure for processing to
continue.

RECEIVE_IMMEDIATE indicates that this is an immediate conversation receive
request. If data is available, it is returned on this request; otherwise the
operation completes unsuccessfully.

This verb has the following format:

&APPC RECEIVE_IMMEDIATE

 [ID=id]

 [MDO=mdoname [MAP=mapname]| VARS=var |

 VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

Mandatory-one of the options must be specified. It indicates how the
incoming data should be formatted.

If MDO= is used, the data is formatted into an MDO with the name
mdoname. If the incoming data is mapped (that is, a map name is sent with
the data), and MAP= is not specified, then the received map name is used to
connect to Mapping Services Mapping Support. If the incoming data is not
mapped, then it is the requester's responsibility to connect to Mapping
Services Mapping Support, if required, using the MAP operand.

The VARS= operand is used to provide the list of NCL variables that will
contain the data received on the conversation (the usual NCL VARS
definitions apply). If the incoming data is not mapped, or the map name is
other than $NCL, then the data stream received is segmented into the
variables nominated. If the data is mapped and the map name is $NCL, then
each variable is reconstructed as it was on the send request in the
conversation partner. Unused variables are set to null.

&APPC RECEIVE_IMMEDIATE

168 Network Control Language Reference Guide

Example: &APPC RECEIVE_IMMEDIATE

&APPC RECEIVE_IMMEDIATE VARS=DATA

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The RECEIVE_IMMEDIATE request is issued from receive state only and the
conversation remains in receive state while the WHAT_RECEIVED indicator
(&ZAPPCWR) contains DATA (that is, DATA_COMPLETE, DATA_TRUNCATED or
DATA_INCOMPLETE).

If the WHAT_RECEIVED indicator contains SEND (where the remote
conversation partner has issued PREPARE_TO_RECEIVE) the local state changes
to send.

If the WHAT_RECEIVED indicator contains CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE then the local procedure should issue the CONFIRMED
request following which the state changes to receive, send, or deallocate
respectively.

&APPC RECEIVE_NOTIFY

Chapter 2: Verbs and Built-in Functions 169

Notes:

■ Following a RECEIVE_IMMEDIATE request, the &RETCODE is set to 4, and
&ZFDBK to 0 when no data is available to satisfy the request.

■ If the remote conversation partner deallocates the conversation normally,
the &RETCODE is set to 4, and &ZFDBK to 4.

Relationship to LU6.2 Verb Set:

&APPC RECEIVE_IMMEDIATE is equivalent to the LU6.2 verb
MC_RECEIVE_IMMEDIATE.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC RECEIVE_NOTIFY

&APPC RECEIVE_NOTIFY requests that a notification be sent to the procedure
when data is available to be received (for example, by a RECEIVE_IMMEDIATE
request).

RECEIVE_NOTIFY indicates this is an asynchronous conversation receive request.
If the request is accepted, the procedure continues execution and is notified of
data arrival, or other completion condition, by a notification event being
queued to the procedure's internal environment (see below for more details on
the form of notification). No data is ever returned by this request. When the
notify event is received, the RECEIVE_IMMEDIATE or RECEIVE_AND_WAIT
requests is used to return any data that arrived.

This verb has the following format:

&APPC RECEIVE_NOTIFY

 [ID={ ANY | CLIENTS | SERVERS | id }]

&APPC RECEIVE_NOTIFY

170 Network Control Language Reference Guide

Operand:

ID={ ANY | CLIENTS | SERVERS | id }

If ID=ANY is specified, no state changes occur, but the receive request is
satisfied by any conversation, either client or server, that is in receive state.

If ID=CLIENTS is specified, no state changes occur, but the receive request is
satisfied by any client conversation that is in receive state. If operating in
automatic connection accept mode, a new conversation can provide the
data that satisfies such a receive.

If ID=SERVERS is specified, no state changes occur, but the receive request is
satisfied by any server conversation that is in the receive state.

ID=id Specifies the conversation identifier (as first returned by the system
variable &ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

Example: &APPC RECEIVE_NOTIFY

&APPC RECEIVE_NOTIFY

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC RECEIVE_NOTIFY

Chapter 2: Verbs and Built-in Functions 171

State Transition:

The RECEIVE_NOTIFY request is issued from either send or receive state and the
conversation enters receive state while the WHAT_RECEIVED indicator
(&ZAPPCWR) contains DATA (that is, DATA_COMPLETE, DATA_TRUNCATED or
DATA_INCOMPLETE).

If the WHAT_RECEIVED indicator contains SEND (where the remote
conversation partner has issued PREPARE_TO_RECEIVE) the local state changes
to send.

If the WHAT_RECEIVED indicator contains CONFIRM, CONFIRM_SEND, or
CONFIRM_DEALLOCATE then the local procedure should issue the CONFIRMED
request following which the state changes to receive, send, or deallocate
respectively.

Notification Message Format:

When a RECEIVE_NOTIFY request is satisfied, either successfully or
unsuccessfully, the following message is placed on the request queue of the
internal environment for the NCL procedure:

N00101 NOTIFY: APPC EVENT: RECEIVE RESOURCE: &zappcid

where the value &zappcid is the conversation identifier returned by the original
ALLOCATE request, or set when this procedure was attached as the remote end
of the conversation.

Notes:

■ When RECEIVE_NOTIFY is issued from send state, an implied
PREPARE_TO_RECEIVE TYPE=FLUSH is issued. This is the most efficient way
of changing the direction of conversation flow.

■ If the remote conversation partner deallocates the conversation normally,
the &RETCODE is set to 4, and &ZFDBK to 4.

Relationship to LU6.2 Verb Set:

&APPC RECEIVE_NOTIFY is equivalent to the LU6.2 verb MC_POST_ON_RECEIPT.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC REGISTER

172 Network Control Language Reference Guide

&APPC REGISTER

&APPC REGISTER allows any executing NCL process to attempt to register itself
with a server name, and optionally provides its conversation options for
client/server processing.

This verb has the following format:

&APPC REGISTER

 SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]

 [CONNECT={ ACCEPT | NOTIFY | REJECT }]

 [RETRY={ YES | NO }]

 [CONVLIM={ 100 | nnn }]

Operands:

SERVER=servername

(Mandatory) Specifies the logical name to register for the NCL process to be
recognized as a server. It may be up to 32 characters long and unique within
the scope as determined by the SCOPE operand, or the registration is
rejected. If the registration is accepted, the other operands determine the
server condition for accepting client connections.

SCOPE={ REGION | USER |SYSTEM }

Provides the scope for the registration of servername (which must be
unique within the scope indicated). Valid scopes are:

REGION

Indicates that servername is to be unique within the current session, as
defined by a particular connection to your product region.

USER

Indicates that servername is to be unique across all sessions associated
with the particular user ID

SYSTEM

Indicates that servername is to be unique within this product region.

&APPC REGISTER

Chapter 2: Verbs and Built-in Functions 173

CONNECT={ ACCEPT | NOTIFY | REJECT }

Sets the client connection mode for the server process issuing the
registration request.

If CONNECT=ACCEPT is specified, or defaulted, any client conversations
directed to this server are automatically accepted. They are connected to
the process as a standard conversation and immediately satisfy an
appropriate receive request.

If CONNECT=NOTIFY is specified, any queued or new client connection
requests are notified to the server's &INTREAD queue in the same manner
as a transfer request. In this case the server can choose to accept or reject
the connection by use of the &APPC TRANSFER options. Until the
conversation is accepted by the &APPC TRANSFER_ACCEPT, it cannot be
operated by the process.

Note: This mode of connection is the only one that allows the server to
obtain any PIP data carried with the new conversation.

If CONNECT=REJECT is specified, any queued or new conversations are
rejected with a condition of retry, or no retry, as determined by the RETRY
operand. This is normally done only when the server is closing down to
indicate end of processing.

RETRY={ YES | NO }

Sets the retry status for rejected connection requests. Rejection is due to an
explicit CONNECTION=REJECT state, or due to the process conversation limit
being reached.

If RETRY=YES is specified, or defaulted, connections are failed with a return
code conveyed to the initiator of:

TRANS_PGM_NOT_AVAIL_RETRY

For RETRY=NO, the conversation fails with:

TRANS_PGM_NOT_AVAIL_NO_RETRY

CONVLIM={ 100 | nnn }

Sets the conversation limit for the process. If this limit is reached at any
stage during processing, subsequent connection requests are automatically
placed in the pending queue.

Example: & APPC REGISTER

&APPC REGISTER SERVER=PRINTSERVER

&APPC REQUEST_TO_SEND

174 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Register accepted

16

Duplicate server name error

Notes:

An NCL process is registered as a server in the following ways:

■ By starting the process using the START command and specifying a server
name

■ By starting the process using the &APPC START verb, issued from another
process and specifying a server name

■ By specifying a server name in the TCT entry that will service a transaction

■ Directly, by issuing the &APPC REGISTER verb

More information:

&APPC DEREGISTER (see page 158)
&APPC SET_SERVER_MODE (see page 195)

&APPC REQUEST_TO_SEND

&APPC REQUEST_TO_SENT notifies the remote program that the local
conversation partner would like to send data.

REQUEST_TO_SEND indicates that the local procedure wants to enter send
state.

This verb has the following format:

&APPC REQUEST_TO_SEND [ID=id]

&APPC REQUEST_TO_SEND

Chapter 2: Verbs and Built-in Functions 175

Operand:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

Example: &APPC REQUEST_TO_SEND

&APPC REQUEST_TO_SEND

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The REQUEST_TO_SEND request can only be issued from receive state or one of
the confirm states. No state changes occur as a result of this request.

&APPC REQUEST_TO_SEND

176 Network Control Language Reference Guide

Notes:

■ Use this request only in controlled situations where the local program wants
to send data. However, no state changes occur. The remote conversation
partner has the discretion to detect that the REQUEST_TO_SEND was issued
(by examining the REQUEST_TO_SEND_RECEIVED indicator, &ZAPPCRTS)
and issuing the appropriate requests to turn the conversation around.

■ The SEND_ERROR request is used (with great discretion) to force the send
state if necessary.

Relationship to LU6.2 Verb Set:

&APPC REQUEST_TO_SEND is equivalent to the LU6.2 verb
MC_REQUEST_TO_SEND.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC RPC

Chapter 2: Verbs and Built-in Functions 177

&APPC RPC

&APPC RPC allows the calling procedure to call an NCL procedure in either the
same or any connected APPC system.

As part of the remote procedure call, the initiating procedure can pass any
number of NCL variables, and/or MDOs, as shared variables, to be presented in
the context of the new process.

This verb has the following format:

&APPC RPC

 PROC=procname

 [LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [SHARE | SHARE=(shrvars1,shrvars2,...,shrvarsn) |

 NOSHARE=(shrvars1,shrvars2,...,shrvarsn)]

 [RETCODE=varname]

 [PARMS=(parm1,parm2,...,parmn)]

Operands:

PROC=procname

(Mandatory) Indicates the NCL procedure to be called.

LUNAME=luname | LINK=linkname | DOMAIN=domain

Determines where the procedure is to be executed.

USERID=userid [PASSWORD=password]

Nominates an alternate user ID and, optionally, the password, under which
this process is to be started. The user ID and password are verified by the
security exit in the target system before the new process is initiated.

The RPC system transaction uses SECURITY=SAME processing; therefore the
supplied user ID and password are included by APPC in the attach header
for validation in the remote system.

PROFILE=profile

Specifies the profile name to be placed in the attach header access security
fields. If this operand is omitted, no profile is used. APPC makes no use of
the PROFILE operand.

&APPC RPC

178 Network Control Language Reference Guide

SHARE | SHARE=(shrvars1,shrvars2,...,shrvarsn) |
NOSHARE=(shrvars1,shrvars2,...,shrvarsn)

Specifies the set of NCL variables, and/or MDOs, to be shared or not shared
with the called procedure.

If the SHARE or NOSHARE operands are omitted, no variable sharing occurs
for this call. If the SHARE keyword is coded without parameters, the current
&CONTROL SHRVARS (or NOSHRVARS) setting is used for the call.

If the SHARE or NOSHARE keyword is used with parameters, any current
&CONTROL SHRVARS settings are ignored for this execution. When SHARE is
used the called procedure obtains a copy of each variable, and/or MDO,
referenced by the SHARE operand. When NOSHARE is used, the called
procedure obtains a copy of all NCL variables and MDO data not specified by
the operand.

The parameter values for SHARE and NOSHARE cannot be substituted on
the statement.

The operand can specify a single value or a list of values. Each item in the
list can reference a single variable or MDO, or multiple variables or MDOs. A
single variable is referenced by including its entire name. For example, an
entry in the list of 'ABC' refers to the single NCL variable &ABC, as though
VARS=ABC were coded. A single MDO is referenced by including its entire
name followed by a full stop. For example, an entry in the list of 'ABC.'
refers to the single MDO named ABC, as though MDO=ABC were coded.

A range of NCL variables is referenced by including a name prefix followed
by an asterisk. For example, an entry in the list of '$CNM*' refers to
$CNM1...$CNMnnn. The range is set explicitly, for example '$CNM*(1,10)'
(or '$CNM(1,10)') refers to the variables $CNM1 to $CNM10. If not set
explicitly, all variables of the form $CNMnnn will be assumed.

A generic list of NCL variables and MDOs is referenced by including a name
prefix followed by a > symbol. For example, an entry in the list of '$NW>'
refers to all variables, and MDOs, with names beginning with &$NW.

RETCODE=varname

Specifies the name of a local NCL variable that will contain the &RETCODE
value from the called procedure.

&APPC RPC

Chapter 2: Verbs and Built-in Functions 179

PARMS=(parm1,parm2,...,parmn)

Specifies a list of parameters to be passed to the procedure. The parameter
list must be enclosed by parentheses, and each pair of parameters must be
separated by a comma. PARMS must be the last operand specified in the
statement.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2 and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, it is
delimited by the next comma or closing parenthesis encountered. Any other
characters are considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A quoted parameter is terminated only by a closing quote of the same type
as the opening quote. Only a comma delimiting the next parameter, or a
closing parenthesis terminating the entire parameter list, can immediately
follow the closing quote. The entire quoted string is passed to the target
procedure unchanged, except that the delimiting quotes are removed.
Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN &2 &3 PROC=MYPROC &4 variable “&FRED” in error

Return Codes are as set by &RETCODE or &END in the called procedure.

Note: If used, the PARMS operand must be the last operand on the &APPC
statement.

Examples: &APPC RPC

&APPC RPC PROC=SHOWUSER PARMS=(ABC)

&APPC RPC

180 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Request successful

8

Remote program error

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

The system variable &ZAPPCID is also set by this request and returns the system
conversation identifier allocated to the conversation. This value is saved and
supplied on the ID operand of subsequent &APPC requests to nominate a
specific conversation where the NCL process is operating more than one
conversation concurrently.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SEND_AND_CONFIRM

Chapter 2: Verbs and Built-in Functions 181

&APPC SEND_AND_CONFIRM

&APPC SEND_AND_CONFIRM sends a single data record and a request for
confirmation to the conversation partner and waits for the reply.

This verb has the following format:

&APPC SEND_AND_CONFIRM

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

Indicates how the outgoing data is formatted. If the MDO operand is used,
the data is formatted into an MDO with the name mdoname. If the outgoing
data is mapped (that is, a map name is sent with the data) and MAP= is not
specified, then the received map name is used to connect to Mapping
Services Mapping Support. If the outgoing data is not mapped, then it is the
responsibility of the requester to connect to Mapping Services Mapping
Support, if necessary, using the MAP operand.

The VARS= operand provides the list of NCL variables that contain the data
received on the conversation (the usual NCL VARS definitions apply). If the
outgoing data is not mapped, or the map name is other than $NCL, then the
data stream received is segmented into the variables nominated. If the data
is mapped and the map name is $NCL, then each variable is reconstructed
as it was on the send request in the conversation partner. Unused variables
are set to null.

Examples: &APPC_SEND_AND_CONFIRM

&APPC_SEND_AND_CONFIRM MDO=CLIENTRQST

&APPC_SEND_AND_CONFIRM VARS=ALERT

&APPC SEND_AND_CONFIRM

182 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Data sent and CONFIRMED has been received

4

Request unsuccessful

8

Other program issued SEND_ERROR

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

See &APPC SEND (see page 190) and &APPC CONFIRM (see page 139).

Note:

The SEND_AND_CONFIRM is a convenient way of combining two basic APPC
operations, that of sending data and of confirming receipt of that data. The verb
is equivalent to issuing an &APPC SEND_DATA followed by an &APPC CONFIRM
request.

Relationship to LU6.2 Verb Set:

■ &APPC SEND_DATA is equivalent to the LU6.2 verb MC_SEND_DATA.

■ The &APPC SEND_DATA operands of VARS and MDO are used in place of the
LU6.2 verb SEND_DATA options DATA and LENGTH.

■ The &APPC SEND_DATA operand MAP=mapname is equivalent to the LU6.2
verb SEND_DATA option MAP(YES(mapname)).

■ &APPC does not support the FMH_DATA parameter of the LU6.2 verb
SEND_DATA.

■ &APPC CONFIRMED is equivalent to the LU6.2 verb MC_CONFIRMED.

&APPC SEND_AND_DEALLOCATE

Chapter 2: Verbs and Built-in Functions 183

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SEND_AND_DEALLOCATE

&APPC SEND_AND_DEALLOCATE sends a single data record to the remote
conversation partner and requests conversation termination and deallocation of
its resources.

This verb has the following format:

&APPC SEND_AND_DEALLOCATE

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

 [TYPE={ SYNC | FLUSH | CONFIRM }]

Operands:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

Indicates how the outgoing data should be formatted. If the MDO operand
is used, the data is formatted into an MDO with the name mdoname. If the
outgoing data is mapped (that is, a map name is sent with the data), and
MAP= is not specified, then the received map name is used to connect to
Mapping Services Mapping Support. If the outgoing data is not mapped,
then it is the requester's responsibility to connect to Mapping Services
Mapping Support, if required, using the MAP operand.

The VARS= operand is used to provide the list of NCL variables that will
contain the data received on the conversation. (The usual NCL VARS
definitions apply). If the outgoing data is not mapped, or the map name is
other than $NCL, then the data stream received will be segmented into the
variables nominated. If the data is mapped and the map name is $NCL, then
each variable is reconstructed as it was on the send request in the
conversation partner. Unused variables are set to null.

&APPC SEND_AND_DEALLOCATE

184 Network Control Language Reference Guide

TYPE={ SYNC | FLUSH | CONFIRM }

Specifies the deallocate option. TYPE=SYNC is the default. If the
conversation sync level is CONFIRM, it is equivalent to the DEALLOCATE
TYPE=CONFIRM option; otherwise a DEALLOCATE TYPE=FLUSH is assumed.

TYPE=FLUSH results in all data being flushed, forcing its transmission to the
conversation partner before unconditional deallocation occurs.

TYPE=CONFIRM results in all data being flushed and a confirmation being
requested before deallocation occurs.

Examples: &APPC SEND_AND_DEALLOCATE

&APPC SEND_AND_DEALLOCATE MDO=ALERT

&APPC SEND_AND_DEALLOCATE TYPE=FLUSH

Return Codes:

The return codes are as follows:

0

Data sent and conversation deallocated

8

Other program issued SEND_ERROR

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

See &APPC SEND (see page 190) and &APPC DEALLOCATE (see page 155).

Note:

The SEND_AND_DEALLOCATE is a convenient way of combining two basic APPC
operations, that of sending data and of deallocating the conversation resources.
It is equivalent to issuing an &APPC SEND_DATA followed by an &APPC
DEALLOCATE request.

&APPC SEND_AND_FLUSH

Chapter 2: Verbs and Built-in Functions 185

Relationship to LU6.2 Verb Set:

■ &APPC SEND_DATA is equivalent to the LU6.2 verb MC_SEND_DATA.

■ The &APPC SEND_DATA operands of VARS and MDO are used in place of the
LU6.2 verb SEND_DATA options DATA and LENGTH.

■ The &APPC SEND_DATA operand MAP=mapname is equivalent to the LU6.2
verb SEND_DATA option MAP(YES(mapname)).

■ The FMH_DATA parameter of the LU6.2 verb SEND_DATA is not supported
by &APPC.

■ &APPC DEALLOCATE is equivalent to the LU6.2 verb MC_DEALLOCATE.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SEND_AND_FLUSH

&APPC SEND_AND_FLUSH sends a single data record to the remote
conversation partner and flushes any locally buffered information and forces its
transmission to the remote conversation partner.

This verb has the following format:

&APPC SEND_AND_FLUSH

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

 [CONT={ YES | NO }]

&APPC SEND_AND_FLUSH

186 Network Control Language Reference Guide

Operands:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

Indicates how the outgoing data should be formatted. If the MDO operand
is used, the data is formatted into an MDO with the name mdoname. If the
outgoing data is mapped (that is, a map name is sent with the data), and
MAP= is not specified, then the received map name is used to connect to
Mapping Services Mapping Support. If the outgoing data is not mapped,
then it is the requester's responsibility to connect to Mapping Services
Mapping Support, if required, using the MAP operand.

The VARS= operand is used to provide the list of NCL variables that will
contain the data received on the conversation. (The usual NCL VARS
definitions apply). If the outgoing data is not mapped, or the map name is
other than $NCL, then the data stream received will be segmented into the
variables nominated. If the data is mapped and the map name is $NCL, then
each variable is reconstructed as it was on the send request in the
conversation partner. Unused variables are set to null.

CONT={ YES | NO }

Applies to OPERTYPE=GDS conversations only, and indicates whether the
current GDS variable is to be continued with the next send. If CONT=NO is
specified (or defaulted), the current send is the last or only logical record
sent for the GDS variable. CONT=YES indicates that the continuation bit is to
be set in the current logical record.

Example: &APPC SEND_AND_FLUSH

&APPC SEND_AND_FLUSH VARS=DATA

&APPC SEND_AND_FLUSH

Chapter 2: Verbs and Built-in Functions 187

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

See &APPC SEND (see page 190) and &APPC FLUSH (see page 159).

Note:

The SEND_AND_FLUSH is a convenient way of combining two basic APPC
operations, that of sending data and of flushing the conversation. It is
equivalent to issuing an &APPC SEND_DATA followed by an &APPC FLUSH
request.

Relationship to LU6.2 Verb Set:

■ &APPC SEND_DATA is equivalent to the LU6.2 verb MC_SEND_DATA.

■ The &APPC SEND_DATA operands of VARS and MDO are used in place of the
LU6.2 verb SEND_DATA options DATA and LENGTH.

■ The &APPC SEND_DATA operand MAP=mapname is equivalent to the LU6.2
verb SEND_DATA option MAP(YES(mapname)).

■ The FMH_DATA parameter of the LU6.2 verb SEND_DATA is not supported
by &APPC.

■ &APPC FLUSH is equivalent to the LU6.2 verb MC_FLUSH.

&APPC SEND_AND_PREPARE_TO_RECEIVE

188 Network Control Language Reference Guide

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SEND_AND_PREPARE_TO_RECEIVE

&APPC SEND_AND_PREPARE_TO_RECEIVE sends a single data record to the
remote conversation partner and changes processing from sending to receiving
data.

This verb has the following format:

&APPC { SEND_AND_PREPARE_TO_RECEIVE | SEND_AND_PREPARE }

 [ID=id]

 [TYPE={ SYNC | FLUSH | CONFIRM }]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

TYPE={ SYNC | FLUSH | CONFIRM }

Specifies the level of confirmation required for any data previously sent to
the remote conversation partner as follows:

TYPE=SYNC is the default and ,if the conversation sync level is CONFIRM, it is
equivalent to the PREPARE_TO_RECEIVE TYPE=CONFIRM option; otherwise
a PREPARE_TO_RECEIVE TYPE=FLUSH is assumed.

TYPE=FLUSH results in all data being flushed, forcing its transmission to the
conversation partner but no confirmation reply is required (see Notes for
this option).

TYPE=CONFIRM results in all data being flushed and a confirmation being
requested (see Notes for this option).

&APPC SEND_AND_PREPARE_TO_RECEIVE

Chapter 2: Verbs and Built-in Functions 189

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

Indicates how the outgoing data should be formatted. If the MDO operand
is used, the data is formatted into an MDO with the name mdoname. If the
outgoing data is mapped (that is, a map name is sent with the data), and
MAP= is not specified, then the received map name is used to connect to
Mapping Services Mapping Support. If the outgoing data is not mapped,
then it is the requester's responsibility to connect to Mapping Services
Mapping Support, if required, using the MAP operand.

The VARS= operand is used to provide the list of NCL variables that will
contain the data received on the conversation. (The usual NCL VARS
definitions apply). If the outgoing data is not mapped, or the map name is
other than $NCL, then the data stream received will be segmented into the
variables nominated. If the data is mapped and the map name is $NCL, then
each variable is reconstructed as it was on the send request in the
conversation partner. Unused variables are set to null.

Examples: &APPC SEND_AND_PREPARE_TO_RECEIVE

&APPC SEND_AND_PREPARE_TO_RECEIVE TYPE=FLUSH

&APPC SEND_AND_PREPARE_TO_RECEIVE TYPE=CONFIRM

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC SEND_DATA

190 Network Control Language Reference Guide

State Transition:

See &APPC SEND (see page 190) and &APPC PREPARE_TO_RECEIVE (see
page 161).

Note:

The SEND_AND_PREPARE_TO_RECEIVE is a convenient way of combining two
basic APPC operations, that of sending data and of preparing to receive data. It
is equivalent to issuing an &APPC SEND_DATA followed by an &APPC
PREPARE_TO_RECEIVE request.

Relationship to LU6.2 Verb Set:

■ &APPC SEND_DATA is equivalent to the LU6.2 verb MC_SEND_DATA.

■ The &APPC SEND_DATA operands of VARS and MDO are used in place of the
LU6.2 verb SEND_DATA options DATA and LENGTH.

■ The &APPC SEND_DATA operand MAP=mapname is equivalent to the LU6.2
verb SEND_DATA option MAP(YES(mapname)).

■ The FMH_DATA parameter of the LU6.2 verb SEND_DATA is not supported
by &APPC.

■ &APPC PREPARE_TO_RECEIVE is equivalent to the LU6.2 verb
MC_PREPARE_TO_RECEIVE. The LU6.2 verb has a LOCKS parameter which is
not supported by &APPC.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SEND_DATA

&APPC SEND_DATA sends a single data record to the remote conversation
partner.

This verb has the following format:

&APPC{ SEND_DATA | SEND }

 [ID=id]

 [MDO=mdoname [MAP=mapname] |

 VARS=var | VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

 [CONT={ YES | NO }]

&APPC SEND_DATA

Chapter 2: Verbs and Built-in Functions 191

Operands:

SEND_DATA

Indicates this is a conversation request to send data to the remote
conversation partner.

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

MDO=mdoname [MAP=mapname] | VARS=var |
VARS=(var1,var2,...,varn) | VARS=prefix* [RANGE=(start,end)]

Specifies the name of the MDO (which is an element or field) or variables to
be sent as application data on this send request. The named MDO item is
extracted and sent as a contiguous byte stream as the data for this send
operation.

MAP=mapname nominates the map name to be sent to the remote end. If
omitted, but the MDO operand is used, then the fully qualified element (or
field) name derived from Mapping Services Mapping Support is assumed as
the map name. If omitted, and the VARS operand is used, then MAP=$NCL is
assumed (as described for VARS=). No map name is sent if the remote
application does not support data mapping. Map names is up to 64
characters long. Valid Mapping Services map names can consist of up to 8
name segments, each of up to 12 characters, and each separated by a
period.

The VARS= operand is used to provide the list of NCL variables to be passed
to the transaction processor in the remote end for this send operation (the
usual NCL VARS definitions apply). If the remote conversation partner
supports data mapping, and no map name is supplied, MAP=$NCL is
assumed, and the data sent is formatted as a series of vectors, one per
token referenced. If some other map name is used, or the conversation
partner does not support data mapping, then all tokens are concatenated
together to form the data contents to be sent to the other end.

CONT={ YES | NO }

Applies to OPERTYPE=GDS conversations only, and indicates whether the
current GDS variable is to be continued with the next send. If CONT=NO is
specified (or defaulted), the current send is the last or only logical record
sent for the GDS variable. CONT=YES indicates that the continuation bit is to
be set in the current logical record.

&APPC SEND_DATA

192 Network Control Language Reference Guide

Example: &APPC SEND_DATA

SEND_DATA VARS=DATA

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The SEND_DATA request can only be issued from send state. No state changes
occur as a result of this request.

Note:

This request does not necessarily result in any actual transmission taking place
as data is normally buffered within the system until some trigger condition
results in session transmission becoming necessary. The FLUSH request is used
to ensure data transmission if required.

Relationship to LU6.2 Verb Set:

■ &APPC SEND_DATA is equivalent to the LU6.2 verb MC_SEND_DATA.

■ The &APPC SEND_DATA operands of VARS and MDO are used in place of the
LU6.2 verb SEND_DATA options DATA and LENGTH.

■ The &APPC SEND_DATA operand MAP=mapname is equivalent to the LU6.2
verb SEND_DATA option MAP(YES(mapname)).

■ The FMH_DATA parameter of the LU6.2 verb SEND_DATA is not supported
by &APPC.

&APPC SEND_ERROR

Chapter 2: Verbs and Built-in Functions 193

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SEND_ERROR

&APPC SEND_ERROR signals an error condition to the remote conversation
partner.

SEND_ERROR indicates this is a request to signal an error condition to the
conversation partner. A text string can also be provided which will be included
in the Error Log GDS variable.

This verb has the following format:

&APPC SEND_ERROR

 [ID=id]

 [LOG=msg]

Operands:

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

LOG=msg

When this operand is used it must be the last specified for the verb. All data
following the LOG= operand is placed unchanged into the message area of
the Error Log GDS variable sent to the remote application with the error
indication.

If the remote application is an NCL procedure, it can access this text after
receiving an error return code, in the &ZAPPCELM system variable.

Example: &APPC SEND_ERROR

&APPC SEND_ERROR LOG=&ERRMSG

&APPC SEND_ERROR

194 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

The SEND_ERROR request is issued from send, receive, confirm, confirm_send,
or confirm_deallocate states, and as a result the conversation is placed in send
state.

Notes:

■ After receiving a SEND_ERROR message an &APPC procedure returns a
program error condition (&RETCODE set to 8) on the next request.

■ The SEND_ERROR request is used to indicate a negative acknowledgement
to a received CONFIRM request. No data is supplied on the SEND_ERROR
request itself. However, on completion, the procedure will be in send state
and can send any data required to the conversation partner.

■ When used from confirm_deallocate state, (that is, having received a
DEALLOCATE TYPE=CONFIRM request), a SEND_ERROR causes the
deallocate to be rejected and processing continues with the local
conversation in send state.

■ SEND_ERROR is issued from send state. In this case no state changes occur
but the remote conversation partner still receives an error condition
(&RETCODE set to 8 for &APPC procedures) on the next request.

■ SEND_ERROR is used to force send state, but this should only be done in a
controlled manner.

&APPC SET_SERVER_MODE

Chapter 2: Verbs and Built-in Functions 195

Relationship to LU6.2 Verb Set:

&APPC SEND_ERROR is equivalent to the LU6.2 verb MC_SEND_ERROR.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC SET_SERVER_MODE

&APPC SET_SERVER_MODE allows a server process to declare its APPC
operational mode concerning client connection.

SET_SERVER_MODE indicates that this is a request to set the mode of operation
for APPC client conversations concerning this server process. This request can
only be issued by a process that is a registered server. If the server was
registered using the START command, or through the TCT option on attaching
the transaction, any client conversations directed to the server remain in a
pending mode until the SET_SERVER_MODE request is issued. For these servers,
this should be the first &APPC option used to set the server's client connection
mode.

This verb has the following format:

&APPC SET_SERVER_MODE

 [CONNECT={ ACCEPT | NOTIFY | REJECT }]

 [RETRY={ YES | NO }]

 [CONVLIM=nnn]

&APPC SET_SERVER_MODE

196 Network Control Language Reference Guide

Operands:

CONNECT={ ACCEPT | NOTIFY | REJECT }

Changes the client connection mode for the server process. Unless this
operand is specified, the connection mode remains unchanged.

If the server was registered by other than an explicit &APPC REGISTER
request, queued client conversations remain in a pending state until the
connection option is explicitly set by this request.

If CONNECT=ACCEPT is specified, any queued or new client connection
requests are automatically accepted by the process and satisfy an
appropriate receive request.

If CONNECT=NOTIFY is specified, any queued or new client connection
requests are notified to the server's &INTREAD queue in the same manner
as a transfer request. In this case the server can choose to accept or reject
the connection by use of the &APPC TRANSFER options. Until the
conversation is accepted by the &APPC TRANSFER_ACCEPT, it cannot be
operated by the process.

This mode of connection is the only one that allows the server to obtain any
PIP data carried with the new conversation.

If CONNECT=REJECT is specified, any queued or new conversations are
rejected with a condition of retry, or no retry, as determined by the RETRY
operand.

RETRY={ YES | NO }

Sets the retry status for rejected connection requests. Rejection could be
due to an explicit CONNECTION=REJECT state, or due to the process
conversation limit being reached.

If RETRY=YES is specified, or defaulted, connections are failed with a return
code conveyed to the initiator of:

TRANS_PGM_NOT_AVAIL_RETRY

For RETRY=NO, the conversation fails with:

TRANS_PGM_NOT_AVAIL_NO_RETRY

CONVLIM=nnn

Sets the conversation limit for the process. If this limit is reached at any
stage during processing, subsequent connection requests are automatically
placed in the pending queue.

&APPC SET_SERVER_MODE

Chapter 2: Verbs and Built-in Functions 197

Example: & APPC SET_SERVER_MODE

&APPC SET_SERVER_MODE CONNECT=ACCEPT

Return Codes:

The return codes are as follows:

0

Set server mode accepted

16

Set server mode error

Notes:

■ If the process is not already registered as a server, the SET_SERVER_MODE
verb fails.

■ This verb does not provide defaults, so to change the value of an option, its
operand must be specified.

More information:

&APPC REGISTER (see page 172)
&APPC DEREGISTER (see page 158)

&APPC START

198 Network Control Language Reference Guide

&APPC START

&APPC START allows the calling procedure to start a new NCL process in either
the same or any connected APPC system.

As part of the start request, the initiating procedure can pass any number of
NCL variables, MDOs, or both, which are copied and created in the context of
the new process. The initiating procedure can issue the request and continue
processing without any indication that the new process has started. The
procedure can also specify that the request not complete until the new process
has successfully started, or failed to start.

This verb has the following format:

&APPC START

 PROC=proc

 [SERVER=servername

 [SCOPE={ REGION | USER | SYSTEM }]]

 [ENV={ CURRENT | DEPENDENT | BACKGROUND } |

 LUNAME=luname | LINK=linkname | DOMAIN=domain]

 [USERID=userid [PASSWORD=password]]

 [PROFILE=profile]

 [NOTIFY={ NO | YES }]

 [VARS=(genvars1,genvars2,...,genvarsn)]

 [PARMS=(parm1,parm2,...,parmn)]

Operands:

PROC=proc

Specifies the name of the NCL procedure to start.

SERVER=servername

Specifies the logical name for this NCL process. The name must be up to 32
characters long and unique within the scope as determined by the SCOPE
operand, or the request fails.

&APPC START

Chapter 2: Verbs and Built-in Functions 199

SCOPE={ REGION | USER | SYSTEM }

Provides the scope for the registration of servername (which must be
unique within the scope indicated) and is valid only if the SERVER operand is
present. Valid scopes are:

REGION

Indicates that servername is to be unique within the current session, as
defined by a particular connection to your product region.

USER

Indicates that servername is to be unique across all sessions associated
with the particular user ID

SYSTEM

Indicates that servername is to be unique within this product region.

ENV={ CURRENT | DEPENDENT | BACKGROUND } | LUNAME=luname |
LINK=linkname | DOMAIN=domain

Specifies where to initiate the started procedure.

If ENV=CURRENT (or defaulted), the new process starts as a peer of the
requesting process.

If ENV=DEPENDENT, the new process starts as a dependent of the
requesting process. If either the USERID or PROFILE operand is present, and
specifies a user other than the requesting user ID, the ENV operand is
ignored. The new process is started in the APPC region for the target user
ID.

If ENV=BACKGROUND, the new process is attached in the background APPC
server region for the requesting user ID, in the same manner as if the
request was sourced from a remote system.

If LUNAME=luname, LINK=linkname, or DOMAIN=domain, the new process
is always started in the APPC region for the target user on the indicated
APPC system. If an existing APPC region for the target user does not exist,
one is created through this function.

This is true even where LUNAME=luname is used to specify the local system,
and hence behaves differently from the use of the ENV operand.

If the DOMAIN operand is used but the APPC system cannot be located by
domain name (for example, where an INMC link has not been activated to
the system and therefore the domain is unknown), the request fails.

&APPC START

200 Network Control Language Reference Guide

USERID=userid [PASSWORD=password]

Specifies an alternate user ID and, optionally, the password, under which
this process is to start. The security exit in the target system verifies the
user ID and password before the new process is initiated.

The START system transaction uses SECURITY=SAME processing; therefore,
APPC includes the supplied user ID and password in the attach header for
validation in the remote system.

PROFILE=profile

Specifies the profile name to place in the attach header access security
fields. If omitted, no profile is used. APPC makes no use of the PROFILE
operand.

NOTIFY={ NO | YES }

Specifies whether synchronization with the start of the new process is
required. If NOTIFY=NO is specified (or defaulted), no information is
returned to the user regarding whether the new process started
successfully or not. If NOTIFY=YES is specified, the &APPC START request
does not complete until the new process has been loaded and is about to
commence execution. In addition, the NCL ID and domain of the started
process is returned to &SYSMSG.

&APPC START

Chapter 2: Verbs and Built-in Functions 201

VARS={ genvars | (genvars1,genvars2,...,genvarsn) }

Specifies the set of NCL variables, MDOs, or both to pass to the started
process. In the new process, a copy of each variable or MDO is created with
the same name and value.

The data following the VARS operands is a single value, or a list of one or
more values enclosed in parentheses. Each item in the list can reference a
single variable or MDO, or multiple variables or MDOs. A single variable is
referenced by including its entire name. For example, an entry in the list of
ABC, refers to the single NCL variable &ABC, as though VARS=ABC was
coded.

A single MDO is referenced by including its entire name followed by a full
stop. For example, an entry in the list of XYZ. refers to the single MDO
named XYZ, as though MDO=XYZ was coded.

A range of variables is referenced by including a name prefix followed by an
asterisk. For example, an entry in the list of $CNM* refers to all variables
with names beginning with $CNM, as though VARS=$CNM was coded.

A specific range of variables is referenced by including a name prefix
followed by an asterisk, and the range in parentheses. For example, an entry
in the list of UVW*(1,10) refers to the range of variables &UVW1, &UVW2,
through to &UVW10as if VARS=UVW RANGE=(1,10) was coded.

A numeric range of variables is referenced by including a name prefix
followed by an asterisk. For example, an entry in the list of $CNM* refers to
all variables with names of the form $CNMn, where n is a numeric suffix. All
such variables will be located, unless a specific range is coded (for example,
$CNM*(1,20)). A generic range of variables is referenced by including a
name prefix, followed by >. For example, A> refers to all tokens beginning
with A, plus all MDOs beginning with A.

&APPC START

202 Network Control Language Reference Guide

PARMS=(parm1,parm2,...,parmn)

Specifies a list of parameters to pass to the procedure. Parentheses enclose
the parameter list, and a comma separates each pair of parameters.

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on. The list is analyzed before substitution
occurs and each parameter is isolated, by scanning for a comma or the
closing parenthesis. If another opening parenthesis is encountered, a syntax
error results. If a single or double quote is encountered as the first character
of a parameter, the entire parameter is assumed to be quoted, otherwise it
is treated as unquoted. If an unquoted parameter is encountered, the next
comma or closing parenthesis delimits it. Any other characters are
considered part of the parameter itself.

Once isolated, substitution is performed, if necessary (allowing transparent
data to be passed as parameters), and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.

For example:

PARMS=(&USER,,PROC=&0,“variable ““&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable “&FRED” in error

Return codes are as set by &RETCODE or &END in the called procedure.

If used, the PARMS operand must be the last operand on the &APPC
statement.

Example: & APPC START

&APPC START PROC=POSTMAN PARMS=(&USERID,&MAILMSG)

&APPC START

Chapter 2: Verbs and Built-in Functions 203

Return Codes:

The return codes are as follows:

■ If NOTIFY=NO was specified, or defaulted, no indication of the success or
failure of the started process is provided. In this case, the return codes and
&SYSMSG are set as follows:

0

Accepted

16

Transaction error (&SYSMSG is set)

■ If NOTIFY=YES was specified, the return codes and &SYSMSG are set as
follows:

0

OK (&SYSMSG contains N23Q01)

8

Start failed (&SYSMSG contains N23Q03)

16

Transaction error (&SYSMSG is set)

N23Q01 indicates process start. N23Q03 indicates process failure. Both
messages carry the NCL ID and domain where the process was created.

More information:

&APPC RPC (see page 177)

&APPC TEST

204 Network Control Language Reference Guide

&APPC TEST

&APPC TEST sets the default conversation in NCL, usually as a prelude to
interrogating the LU6.2 system variables.

This verb has the following format:

&APPC TEST

 [ID=id]

Operands:

TEST

Indicates this is a conversation test request.

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted the current (last referenced, or
only) conversation is assumed.

Example: &APPC TEST

&APPC TEST ID=999

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

&APPC TEST

Chapter 2: Verbs and Built-in Functions 205

Note:

The &APPC TEST request is normally only necessary where multiple
conversations are being operated concurrently by the NCL procedure. By
specifying the conversation identifier being tested on the ID operand this
conversation becomes the default operation conversation for all &APPC
requests. In addition, this ensures that all system variables associated with
&APPC processing relate to that particular conversation.

Relationship to LU6.2 Verb Set:

&APPC TEST is equivalent to the LU6.2 verbs MC_TEST and
MC_GET_ATTRIBUTES.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC TRANSFER_ACCEPT

206 Network Control Language Reference Guide

&APPC TRANSFER_ACCEPT

&APPC TRANSFER_ACCEPT accepts the transfer of ownership of an LU6.2
conversation offered by another NCL process.

This verb has the following format:

&APPC TRANSFER_ACCEPT

 [ID=id]

 [NCLID=nclid | SERVER=servername]

 [ARGS | VARS=var |

 VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start,end)]]

Operands:

TRANSFER_ACCEPT

Indicates this is a request to accept the transfer of ownership of the
conversation specified by the ID parameter. If the request completes
successfully, the conversation identified is then available to this procedure
for operation. See Notes on the &APPC TRANSFER_REQUEST verb for more
details about the transfer process.

ID=id

Specifies the conversation identifier (as provided by the N00101 notification
message) that references the particular conversation being transferred. This
parameter is required to indicate precisely which conversation is being
accepted.

ARGS | VARS=var | VARS=(var1,var2,...,varn) | VARS=prefix* [
RANGE=(start,end)]

Nominates the NCL variables into which any PIP variable data present in the
attach request, will be placed. If none is present, or a previous receive
operation has been performed against this conversation, no variable data is
set.

Example: &APPC TRANSFER_ACCEPT

&APPC TRANSFER_ACCEPT ID=999

&APPC TRANSFER_ACCEPT

Chapter 2: Verbs and Built-in Functions 207

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

None. The transferred conversation will be in send or receive state which is
determined by examining the &ZAPPCSTA system variable.

Note:

The TRANSFER_ACCEPT gains ownership of the conversation being transferred,
and logically completes the &APPC TRANSFER_REQUEST for the original owner.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC TRANSFER_CONNECT

208 Network Control Language Reference Guide

&APPC TRANSFER_CONNECT

&APPC TRANSFER_CONNECT allows an attached conversation, on which no
APPC verb has been issued, to be transferred to another NCL process.

If a RECEIVE has already been issued on the conversation, this request fails.
Otherwise, the conversation is passed to the target process as a connection
request, and is connected according to the server connection mode, if set.
Otherwise, it is placed in the pending queue.

This verb has the following format:

&APPC TRANSFER_CONNECT

 [ID=id]

 [NCLID=nclid | SERVER=servername]

 [WAIT=nn]

Operands:

TRANSFER_CONNECT

Indicates this is a request to transfer the conversation identified to the
target NCL process as a client connection request. If the conversation has
already been operated, the request fails.

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

NCLID=nclid | SERVER=servername

Nominates the target NCL process to which ownership of the LU6.2
conversation is to be transferred. The notification message (see below) is
queued to the internal environment of this process to indicate it that has
been targeted for a transfer request.

SERVER=servername is an alternative way to nominate the target NCL
process. If this operand is used, a search is performed for the server name
registered for the region, user or system, in that order.

WAIT=nn

Specifies the time, in seconds (for example, 10), or seconds and hundredths
(for example, 1.25), for which the procedure is prepared to wait for the
transfer to be accepted or rejected. If not successful before this interval
expires, the transfer request is canceled, and an unsuccessful return code
(&RETCODE is set to 4, &ZFDBK is set to 0) results.

&APPC TRANSFER_CONNECT

Chapter 2: Verbs and Built-in Functions 209

Example: &APPC TRANSFER_CONNECT

&APPC TRANSFER_CONNECT NCLID=123

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

This request is valid from send or receive state only, and no state changes occur
as a result.

Notification Message Format:

When a TRANSFER_CONNECT is issued, the following message is placed on the
request queue of the internal environment for the NCL process targeted:

N00101 NOTIFY: APPC EVENT: TRANSFER RESOURCE: id

id is the system unique conversation identifier being transferred. This value
must be supplied on any subsequent TRANSFER_CONNECT or TRANSFER_REJECT
request by the target procedure.

&APPC TRANSFER_REJECT

210 Network Control Language Reference Guide

Note:

The main use of this verb is to transfer a conversation to an active server. For
example, if an NCL process was started as a result of a remotely initiated
conversation (and the relevant TCT entry does not specify a server name), it is
possible to have two or more instances of the process started. The first one to
register becomes the server. When the process attempts to register, the &APPC
REGISTER verb fails with a duplicate server name error, and the conversation is
transferred to the active server by using the &APPC TRANSFER_CONNECT verb.
For example:

&APPC REGISTER SERVER=PRINTSERVER

&IF &RETCODE = 16 &THEN +

&DO

&APPC TRANSFER_CONNECT SERVER=PRINTSERVER . . .

More information:

&APPC REGISTER (see page 172)
&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC TRANSFER_REJECT

&APPC TRANSFER_REJECT rejects the transfer of ownership of an LU6.2
conversation offered by another NCL process.

This verb has the following format:

&APPC TRANSFER_REJECT

 [ID=id]

 [NCLID=nclid | SERVER=servername]

 [RETRY={ YES | NO }]

&APPC TRANSFER_REJECT

Chapter 2: Verbs and Built-in Functions 211

Operands:

TRANSFER_REJECT

Indicates that this is a rejection of the conversation transfer of ownership
offered by another NCL process through the &APPC TRANSFER_REQUEST
option. The original owner of the conversation maintains ownership.
Whether you can retry the condition, or not, is indicated when the
conversation is rejected.

ID=id

Specifies the conversation identifier (as provided by the N00101 notification
message) that references the particular conversation being rejected for
transfer. This parameter indicates precisely which conversation is being
rejected.

NCLID=nclid | SERVER=servername

Nominates the target NCL process to which ownership of the LU6.2
conversation is to be transferred. The notification message (see below) is
queued to the internal environment of this process to indicate it has been
targeted for a transfer request.

SERVER=servername is an alternative way to nominate the target NCL
process. If this operand is used, a search is performed for the server name
registered for the region, user or system, in that order.

RETRY={ YES | NO }

Indicates whether or not you can retry the reject condition. The default is
RETRY=YES, and this is reflected to the remote end in the APPC return code:

TRANS_PGM_NOT_AVAIL_RETRY

Otherwise the return code is set to:

TRANS_PGM_NOT_AVAIL_NO_RETRY

Example: &APPC TRANSFER_REJECT

&APPC TRANSFER_REJECT ID=999 RETRY=NO

&APPC TRANSFER_REQUEST

212 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

Note:

The TRANSFER_REJECT formally rejects ownership of the conversation being
transferred, and logically completes the &APPC TRANSFER_REQUEST for the
original owner.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPC TRANSFER_REQUEST

&APPC TRANSFER_REQUEST requests the transfer of ownership of an LU6.2
conversation from one NCL process to another. The short form is &APPC
TRANSFER.

This verb has the following format:

&APPC{ TRANSFER_REQUEST | TRANSFER }

 [NCLID=nclid | SERVER=servername]

 [ID=id]

 [WAIT=nn]

&APPC TRANSFER_REQUEST

Chapter 2: Verbs and Built-in Functions 213

Operands:

TRANSFER_REQUEST

Indicates this is a request to transfer ownership. The procedure is
suspended pending completion of the request. The NCLID parameter must
be supplied to indicate the target process to which the conversation is to be
passed. If the ID parameter is omitted, the current conversation for this
procedure is assumed. A notification is sent to the target process indicating
that a transfer request has been issued. If the request completes
successfully, the conversation is no longer available to this procedure for
operation.

NCLID=nclid | SERVER=servername

Nominates the target NCL process to which ownership of the LU6.2
conversation is to be transferred. The notification message (see below) is
queued to the internal environment of this process to indicate it has been
targeted for a transfer request.

SERVER=servername is an alternative way to nominate the target NCL
process. If this operand is used, a search is performed for the server name
registered for the region, user or system, in that order.

ID=id

Specifies the conversation identifier (as first returned by the system variable
&ZAPPCID after successful allocation) that references a particular
conversation. If this parameter is omitted, the current (last referenced, or
only) conversation is assumed.

WAIT=nn

Specifies the time, in seconds (for example, 10), or seconds and hundredths
(for example, 1.25), for which the procedure is prepared to wait for the
transfer to be accepted or rejected. If not successful before this interval
expires the transfer request is canceled, and an unsuccessful return code
(&RETCODE is set to 4, &ZFDBK is set to 0) results.

Examples: &APPC TRANSFER_REQUEST

&APPC TRANSFER_REQUEST NCLID=123

&APPC TRANSFER NCLID=123

&APPC TRANSFER_REQUEST

214 Network Control Language Reference Guide

Return Codes:

The return codes are as follows:

0

Request successful

4

Request unsuccessful

8

Remote program error

12

State check

16

Request or conversation error

&ZFDBK is also set, plus all APPC system variables.

State Transition:

This request is valid from send or receive state only, and no state changes occur
as a result.

Notification Message Format:

When a TRANSFER_REQUEST is issued the following message is placed on the
request queue of the internal environment for the NCL process targeted:

N00101 NOTIFY: APPC EVENT: TRANSFER RESOURCE: id

id is the system unique conversation identifier being transferred. This value
must be supplied on any subsequent TRANSFER_ACCEPT or TRANSFER_REJECT
request by the target procedure.

&APPC TRANSFER_REQUEST

Chapter 2: Verbs and Built-in Functions 215

Notes:

■ The &APPC TRANSFER_REQUEST is not an LU6.2 function, but an extension
offered by your product. It allows the procedure that started the
conversation to transfer control to another procedure under controlled
conditions. The targeted procedure must issue an &APPC
TRANSFER_ACCEPT or TRANSFER_REJECT to complete the transfer process.

■ This request is useful when a remote allocation attaches a procedure within
the local system, and that procedure, having made some determinations
about the conversation, decides that another process should be started and
given control of the conversation to service the transaction.

■ This request can also be used so that a single procedure can accumulate
control of more than one attached conversation if desirable.

More information:

&APPC Return Code Information (see page 86)
&RETCODE and &ZFDBK (see page 86)

&APPSTAT

216 Network Control Language Reference Guide

&APPSTAT

&APPSTAT returns the current status for a specific VTAM application.

&APPSTAT is a built-in function and must be used to the right of an assignment
statement.

This built-in function has the following format:

&APPSTAT applname

&APPSTAT lets you interrogate the current status of VTAM applications within
the network. The status is determined when the &APPSTAT function is
processed.

The status of the specified application (applname) is returned in the variable
specified as the assignment target.

The status returned is one of the following defaulted values:

ACTIVE

The application is available and accepting logons.

INACTIVE

The application is not available.

NOLOGONS

The application is available but not accepting logons.

NOTAPPL

The resource specified is not an application.

UNAVAIL

Unable to determine status.

UNKNOWN

Resource is not known to VTAM.

If the SYSPARMS APPTXTn command has been used to change these default
values, the substituted values are used.

Operand:

applname

Specifies the name for the VTAM application whose status is to be
determined.

&ASISTR

Chapter 2: Verbs and Built-in Functions 217

Examples: &APPSTAT

&1 = &APPSTAT IMS

&STATUS = &APPSTAT TSO2

Notes:

Application status is determined when the &APPSTAT statement is processed. If
the application specified resides in another processor elsewhere in the network,
it could take sometime to determine the application status. (If the other
processor in which that application resides has stopped, this period is
indeterminable.)

Important! Do not use &APPSTAT in EASINET procedures, as unacceptable
delays can occur. To avoid this, the Application Status Monitoring facilities
identify application names for which the system is to maintain current status.
This status is updated at an installation-defined frequency. These facilities
generate a global variable showing the status of the application for each
application nominated. Global variables can then be referenced from a
full-screen panel without incurring any of the delays that can occur with
&APPSTAT.

&ASISTR

&ASISTR returns the following string, yet retains leading blanks.

&ASISTR is a built-in function and must be used to the right of an assignment
statement.

&ASISTR returns the complete text, as is.

&ASISTR assumes any leading blanks are intended-assignment commences from
the second character position after the &ASISTR keyword.

This built-in function has the following format:

&ASISTR text

Operand:

text

Specifies one or more words or variables for assignment to the target
variable.

&ASSIGN

218 Network Control Language Reference Guide

Examples: &ASISTR

&SYSMSG = &ASISTR INVALID DATA ENTERED

&PRTLINE = &ASISTR NETWORK SUMMARY REPORT

Notes:

■ &ASISTR is ideal when constructing error messages where the text is to be
offset for display formats.

■ &STR and &ASISTR are useful ways of assigning multiple words into a single
string-do not use &CONCAT because it eliminates blanks between the fields
being assigned.

■ The total size of the constructed variable or constant cannot exceed the
maximum size for a variable, that is, 256 characters (if it exceeds the
maximum, it is truncated to 256 characters).

■ &ASISTR differs from the &STR function in that it assigns data as is, and
retains leading blanks (&STR scans for data starting after the &STR keyword
and starts its assignment from the first data character).

■ If &CONTROL DBCS, DBCSN, or DBCSP is in effect, &ASISTR is sensitive to the
presence of DBCS data (see page 1280).

More information:

&STR (see page 698)
&LBLSTR (see page 408)
&NBLSTR (see page 471)
&TBLSTR (see page 700)

&ASSIGN

&ASSIGN sets the data values of a list or range of variables from another list or
range, or a data constant.

&ASSIGN updates lists or ranges of variables in one operation. &ASSIGN is used
to copy data between variables, update variable attributes, and determine the
names of variables flagged as MODFLDs.

The &ASSIGN options allow the actual structure of an MDO, or its structure
according to the map, to be derived during NCL execution. All MDO query
functions must use tokens as the target for the information to be returned.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 219

&ASSIGN manipulates multiple variables in one operation. The default function,
OPT=DATA, is used to assign values to a target list or range of variable names
from the values of a string of data, or a source list, or a range of variables. If no
source data is provided or exists, then the target variable is set to nulls.

OPT=MODFLD uses the names of variables, flagged as modified fields, as the
source data and extends the use of the &ZMODFLD built-in function.

The SETERR, SETMOD, RESETERR, and RESETMOD functions provide the ability
to update the attributes of the target variables. The SETOUT and RESETOUT
functions provide the ability to set or reset the output attribute on the target
variables.

The maximum number of variables (range limit) that &ASSIGN can create in one
operation is governed by the &CONTROL RNGLIM | NORNGLIM operand. If this
is set to RNGLIM, then the range limit is 64. If very large numbers of variables
are to be processed in one operation, then use NORNGLIM (the default value of
this operand) to remove the limit of 64.

This verb has the following formats.

To set the data values of a list or range of variables from another list or range, or
a data constant:

&ASSIGN [OPT= DATA]

 { VARS={ name | (name, name, ..., name) } |

 VARS=prefix* [RANGE=(start, end)] |

 GENERIC | REPLACE | ADD | UPDATE |

 ARGS [[RANGE=(start, end)] | MDO=aaa.bbb.ccc |

 MDO=aaa.bbb.ccc.* | MDO=aaa.bbb[*].ccc |

 MDO=aaa [MAP=map]] }

 [DATA=value |

 FROM { VARS={ name | (name, name, ..., name) } |

 VARS=prefix* [RANGE=(start, end) | GENERIC] |

 ARGS [RANGE=(start, end)] |

 MDO=aaa.bbb.ccc | MDO=aaa }

 MDO=aaa.bbb.ccc.* | MDO=aaa.bbb[*].ccc]

To set a list or range of variables to the names of MODFLD variables:

&ASSIGN OPT= MODFLD [NONULLS | NORESET]

 { VARS={ name | (name, name, ..., name) } |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] }

 [FROM { VARS=[name | (name, name, ..., name)] |

 VARS=prefix* [RANGE=(start, end) | GENERIC] |

 ARGS [RANGE=(start, end)] }]

&ASSIGN

220 Network Control Language Reference Guide

To update the attributes of a list or range of variables:

&ASSIGN OPT={ SETERR | RESETERR | SETMOD | RESETMOD }

 { VARS={ name | (name, name, ..., name) } |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] }

To set or reset the output attribute on the specified target variable:

&ASSIGN OPT={ SETOUT | RESETOUT }

 { VARS={ name | (name, name, ..., name) } |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] }

The &ASSIGN syntax for querying MDO and map names:

&ASSIGN OPT={ NAMES,TAGS,TYPES,LENGTHS,#ITEMS,NAMEDVALUES }

 { VARS=(aaa, bbb, ..., ccc) |

 VARS=aaa* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] }

 [FROM | DEFINED_IN | PRESENT_IN | MANDATORY

 { MDO=aaa | MDO=aaa.bbb.ccc }]

Operands:

If specified, the OPT keyword changes the nominated attribute of the target
variables. The following options are available:

OPT=DATA

(Default option) Specifies that the &ASSIGN operation is to transfer the
contents of source variables or data constant (as supplied by the FROM
specification) to the target variables. If either a DATA= or a FROM option is
not specified, then target variables are set to null.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 221

OPT=MODFLD

Specifies that the values that the target variables are to receive are the
names of variables updated as MODFLDs by certain NCL verbs, such as
&PANEL and &NDBGET. If only one target variable is supplied, then this
function is equivalent to referencing the &ZMODFLD system variable. If
source variables are specified by using the FROM option, then only these
variables are scanned as MODFLDs. Enough names are used to exhaust the
target list or range. Remaining target variables are set to null.

Variables flagged as MODFLDs by panel operations are returned in the order
in which they appear on-screen, that is, line-by-line from top-left to
bottom-right. The order for MODFLD variables returned by &NDBGET is
unspecified.

For OPT=MODFLD the following options are supported:

NONULLS

Specifies that null variables are not used to satisfy the MODFLD option.
The target variables assigned by the MODFLD operation therefore do
not contain the names of null variables.

NORESET

Specifies that source variables are not to have the MODFLD attribute
reset once the MODFLD operation is completed. The default resets the
MODFLD attribute to prevent it being selected further by either
&ZMODFLD or &ASSIGN.

&ASSIGN

222 Network Control Language Reference Guide

OPT={ SETERR | RESETERR | SETMOD | RESETMOD }

OPT=SETERR

Specifies that target variables are to be given the ERRFLD attribute if
displayed on a panel. No source variables are associated with this
operation.

OPT=RESETERR

Specifies that target variables are to have the ERRFLD attribute reset.
No source variables are associated with this operation.

OPT=SETMOD

Specifies that target variables are to be given the MODIFIED attribute. If
displayed on a subsequent panel, these variables appear to the
procedure to have been modified even if not modified by the user. No
source variables are associated with this operation.

OPT=RESETMOD

Specifies that the MODIFIED attribute is to be reset for the target
variables. If variables are displayed on a panel, then these do not appear
as modified fields on subsequent input, unless they have been modified
on the panel. No source variables are associated with this operation.

OPT={ SETOUT | RESETOUT }

OPT=SETOUT

Specifies that the target variables are to be assigned the output
attribute. This attribute indicates that if the name appears in an input
field, it is protected and displayed as an output field.

OPT=RESETOUT

Specifies that the target variables are to have the OUTPUT attribute
reset.

The OUTPUT attribute affects panels displayed by procedures running with
the &CONTROL FLDCTL option. This attribute is reset on all variables after a
panel is displayed even if the variable did not appear on the panel.

When you switch a field from INPUT to OUTVAR using this method, the field
attributes (for example, color and extended highlighting) may not be
suitable for the output field. The ***UNDOCUMENTED*** standard input
attributes are tested against the attributes of the field being altered. If the
field has the same attributes as the standard input low intensity field, it is
given the attributes of the standard low intensity output field. Likewise for
the high intensity field attributes. If the field attributes do not match either
standard, then the field is only protected, and no other attribute is changed.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 223

OPT={ NAMES,TAGS,TYPES,LENGTHS,#ITEMS,NAMEDVALUES }

OPT=NAMES (or OPT=NAME)

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options, and
returns the component names associated with the target MDO name, as
follows:

If only an MDO stem name is specified (for example, MDO=abc), then
the name of the currently connected map is returned as the defined
component name on this query, but only if the MDO exists.

If the MDO name is a compound name (for example, MDO=a.b.c), then
the name of the last component in the name list (that is, c) is returned,
depending upon the PRESENT_IN, DEFINED_IN, or MANDATORY option.

If the MDO name is a compound generic name (for example,
MDO=a.b.c.*), then multiple names may be returned, where each name
returned is a sub-component of the nominated component (for
example, for MDO=a.b.c.*, all x where x is a component defined within
c). This is useful for determining the names of all components that are
either present in, or defined within, a given structure. It is also useful for
determining which component is within a structure that is a CHOICE
type.

Note: For SEQUENCE OF and SET OF items, it is possible to have
null-named components, as the SEQUENCE or SET OF items are
processed by index value only.

A compound variable indexed name (for example, MDO=a.b{*}.c, or
MDO=a.b.{*}) is not supported on this query.

OPT=TAGS

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and
returns the component tags used by Mapping Services associated with
the target MDO name. Component selection is as for OPT=NAMES.

OPT=TYPES

Applies to PRESENT_IN, DEFINED_IN, and MANDATORY options and
returns the component type defined within the map and associated
with the target MDO name. Component selection is as for OPT=NAMES.

OPT=LENGTHS

Applies only when PRESENT_IN is specified and returns the local form
data length within the MDO of the target components. Component
selection is as for OPT=NAMES.

&ASSIGN

224 Network Control Language Reference Guide

OPT=#ITEMS

Applies only when PRESENT_IN is specified, and returns the number of
items within a nominated component as follows:

If the MDO name is a stem name (for example, MDO=stem), or a
compound name (for example, MDO=a.b.c), then a count of 0 is
returned if the component does not exist; otherwise it is 1.

If the MDO name is a compound generic name (for example,
MDO=a.b.c.*), then a count of 0 is returned if the nominated
component a.b.c is in one of the following conditions:

■ Does not exist

■ Exists but is empty

■ Exists but is not constructed Otherwise it provides the number of
components present within the structure a.b.c.

■ If the MDO name is a compound variable indexed name (for
example, MDO=a.b{*}, or MDO=a.b.{*}), then the number of
components present in the SET OF or SEQUENCE OF structure is
returned, or 0 if the structure does not exist or is empty. The
variable index must be in the last name segment.

OPT=NAMEDVALUES

Applies to components that have named values associated with their
type. These types are limited to BIT STRING, INTEGER, and
ENUMERATED. Other types return null results. No generic indexes or
generic names are allowed on this option.

If DEFINED_IN is specified, then a list of the named values defined in the
map for the specified component is returned.

PRESENT_IN is invalid for OPT=NAMEDVALUES.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 225

OPT=VALIDVALUES

Applies to string types that can have their character set constrained to
particular characters or strings. It only works in conjunction with the
DEFINED keyword. If a string type (for example, GraphicString) has been
constrained to a particular set of characters or strings, then this option
returns the valid characters or strings in the target variable. If there are
no constraints, then no values are returned on assignment. The
&ZVARCNT system variable is set to indicate the number of target
variables set by the assignment.

Example:

If there is a component defined as follows:

datax GraphicString (“ABCD” | “xyz” | “QQQ”)

then &ASSIGN VARS=X* OPT=VALIDVALUES DEFINED MDO=... datax
returns three variables set as follows:

&X1 = ABCD

&X2 = xyz

&X3 = QQQ

Example:

If there is a component defined as follows:

datax GraphicString (FROM (“A”c | “C” | “Y”C | “X”))

then &ASSIGN VARS=X* OPT=VALIDVALUES DEFINED MDO=... datax
returns four variables set as follows:

&X1 = A

&X2 = C

&X3 = Y

&X4 = X

When updating the attributes of a list or range of variables:

VARS=

Specifies the names of the variables to be the target of the assignment
operation. If insufficient variables are provided, some data is not available
to the procedure. Excess variables are set to a null value. The formats for
operands that may be coded with VARS= are:

prefix*

Supplies leading characters terminated by an asterisk to denote either a
numeric or generic range of variables. If the RANGE= operand is
specified or allowed to default, then a numeric range is generated.
prefix* cannot be used with other variable names.

&ASSIGN

226 Network Control Language Reference Guide

RANGE=(start,end)

Specifies the generation of an ascending numeric range by
concatenating the supplied prefix with a numeric suffix that is
sequentially incremented within the supplied start and end values. The
start and end values must be in the range 0 to 32767 and the end value
must be equal to or higher than the start value.

Note: If VARS=* is specified, then the range is restricted to 1 to 32767.
Specifying a start value of 0 causes an attempt to create an &0 variable.
As &0 is a system variable name, this causes the process to fail.

Example:

&ASSIGN VARS=AB* RANGE=(1,3)

creates variable names &AB1, &AB2, and &AB3.

GENERIC

Specifies that the supplied prefix applies to all variables beginning with
that prefix. All existing variables in the target range are set to null and
target variables starting with the nominated prefix are created by using
the FROM variables suffix and data. This option is valid only with
OPT=DATA and when both source and target variables are specified as
VARS=prefix*.

The MDO operand is also valid.

Note: For more information about using the MDO operand, see the
Network Control Language Programming Guide.

REPLACE

Specify that all target variables starting with this prefix, and whose
suffix matches the FROM variable suffix, are updated with the contents
of the matching FROM variable. This option is valid only with OPT=DATA
and when both source and target variables are specified as
VARS=prefix*. No variables are created using this option-they can only
be updated.

ADD

Specifies that target variables starting with this prefix are created with
the FROM variable suffix and data, if such a named variable does not
already exist. This option is valid only with OPT=DATA and when both
source and target variables are specified as VARS=prefix*.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 227

UPDATE

Specifies that target variables starting with this prefix are updated
and/or created using the FROM variables suffix and data. This option is
valid only with OPT=DATA and when both source and target variables
are specified as VARS=prefix*.

name

Defines a variable, without the ampersand (&). A variable list is specified
by enclosing in brackets multiple names separated by commas, for
example:

VARS=(VAR1,P$USER,P$TERM)

ARGS

Denotes the assignment operation modifying or creating variables of the
form &1 to &n, depending on how many are needed to satisfy the
operation. The RANGE= operand is coded to designate a start number and
an end number to delimit the number of variables generated.

RANGE=(start,end)

Specifies the generation of an ascending numeric range by
concatenating the supplied prefix with a numeric suffix that is
sequentially incremented within the supplied start and end values. Start
and end values must be in the range 1 to 32767, and the end value must
be equal to or higher than the start value. For example, the variable
names for RANGE=(1,3) are prefix1, prefix2, prefix3.

DATA=value

(For OPT=DATA) Specifies a data constant to be assigned to all target
variables. The default is a null value if no FROM or DATA operands are
specified.

FROM

Indicate that source variables are used as the source of assignment data
(OPT=DATA), or to restrict the search for panel-modified variables
(OPT=MODFLD). ARGS, VARS=, or MDO= must be coded after FROM.

&ASSIGN

228 Network Control Language Reference Guide

DEFINED_IN | PRESENT_IN | MANDATORY

If the DEFINED_IN keyword is specified, then the information is returned for
all those components defined within the connected map, regardless of their
presence or absence in the MDO itself.

If the PRESENT_IN keyword is specified, then the information is returned
only for those components that are present within the MDO.

If the MANDATORY keyword is specified, then only those defined
components that are mandatory are selected.

VARS=

Specifies a variable list or range, as described previously.

GENERIC

Is a range modifier used to select a non-numeric range of currently
existing variables as the source. This operand is mutually exclusive if
GENERIC, REPLACE, ADD, and UPDATE are used as target variable
specifications. For OPT=MODFLD, GENERIC specifies a non-numeric
range of variables to be scanned as MODFLDs. If used with OPT=DATA,
source variables are sorted in name order on a character basis.

ARGS

Denotes that the source variables have the form &1 to &n. The RANGE=
operand is coded to designate a start number and end number to
delimit the number of variables to be used.

MDO=aaa

Specifies the entire data section of an MDO as the source or target of the
assignment. The value aaa is from 1 to 12 characters long, and is ended with
a period (a period is assumed if it is omitted).

MAP=map

Identifies the map that is to be attached to this MDO during the
assignment operation.

MDO=aaa.bbb.ccc

Specifies an MDO with 1 to 30 component name segments, each separated
by a period.

Note: For more information about using the MDO operand, see the Network
Control Language Programming Guide.

An index is specified in brackets following any but the first name segment
(for example, aaa.bbb{3}.ccc{5}). The index is used to indicate a component
within an MDO structure as the source or target of an assignment. See later
in this section, for more information on assignment to and from MDOs.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 229

Examples: & ASSIGN

&ASSIGN VARS=(NAME1,USER,PHONE) DATA= -* clear user details

&ASSIGN ARGS -* clear &1 - &64

&ASSIGN VARS=S* RANGE=(1,&MAXROWS) -* clear panel selection

&ASSIGN VARS=(&ERRLST) OPT=SETERR -* flag fields in error

 -* &ERRLST contains a name list 'n1,n2,n3' of fields in error.

ASSIGN VARS=D* RANGE=(1,&MAXROWS) + -* set display lines

 FROM VARS=DATALINES* +

 RANGE=(&TOP,&BOT)

&ASSIGN VARS=SELECT OPT=MODFLD NONULLS +

 FROM VARS=S* -* pick up next selection

 -* and ignore blanked out

 -* selections

&ASSIGN ARGS OPT=MODFLD -* pick up all modified fields

&ASSIGN VARS=SAVE* GENERIC + -* create backup copy variables

 FROM VARS=FILEA* -* from file record

 -* where &A1 = XXX, &AB = YYY, &DD2 = ZZZ, &DDB = $$$

&ASSIGN VARS=A* BYNAME FROM VARS=DD* -* &AB = &DDB

&ASSIGN VARS=A* OVERLAY FROM VARS=DD* -* &AB = &DDB

 -* &A2 = &DD2

&ASSIGN VARS=A* MERGE FROM VARS=DD* -* &A2 = &DD2

&ASSIGN VARS=A* FROM VARS=DD* GENERIC -* &A1 = &DDB

 -* &A2 = &DD2

Valid forms of MDO component reference:

MDO=CNM.ALERT.

MDO=CNM.ALERT.PSID{2}.PRODUCT

MDO=PANEL.LINE{15}

MDO=CNM.ALERT.TYPE

MDO=CNM.ALERT.PSID{2}.PRODUCT.SWNAME

MDO=PANEL.LINE{15}.RESOURCE{1}

MDO=PPO.TEXT

&ASSIGN

230 Network Control Language Reference Guide

Notes:

In all functions, the system variable &ZVARCNT is set to indicate the number of
target variables updated.

Using OPT=DATA assignment with overlapping ranges gives results as if all
assignments are performed in parallel. This lets you shift data values up and
down variable ranges. For example:

&ASSIGN VARS=A* RANGE=(2,5) FROM VARS=A* RANGE=(1,4)

gives the same results as:

&A5=&A4, &A4=&A3, &A3=&A2, &A2=&A1

Setting and resetting ERRFLD and MODIFIED attributes is independent of any
MODFLD attribute for a variable. It is therefore possible to flag variables without
affecting the MODFLD processing that an NCL procedure may have.

A variable flagged as ERRFLD or MODIFIED is not returned by a MODFLD
function until it has been displayed on a panel. A variable retains the MODFLD
attribute when a panel is redisplayed until it is reset by &ZMODFLD, by &ASSIGN
OPT=MODFLD, or by a panel display that does not contain the variable. Null
variables is flagged as ERRFLD or MODIFIED.

If a panel field is overtyped or erased so that the variable contents are
unaltered, then it is not returned by the MODFLD function. Also, &CONTROL
FLDCTL must be in effect during a panel display for the MODFLD attribute to be
updated by panel services.

More information:

&ZMODFLD (see page 1005)
&CONTROL (see page 281)

&ASSIGN Statement for MDO Assignments

The MDO options are NAMES, TAGS, TYPES, LENGTHS, #ITEMS, and
NAMEDVALUES.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 231

&ASSIGN Syntax for MDO Data Assignments

When &ASSIGN OPT=DATA is specified, the MDO operand is used to indicate
that a source or target data item is all or part of an MDO. The full syntax
allowable is as follows:

&ASSIGN [OPT=DATA]

 { VARS=aaa |

 VARS=(aaa,bbb,...,ccc) |

 VARS=aaa* [RANGE=(start, end) | GENERIC] |

 REPLACE | ADD | UPDATE |

 ARGS [RANGE=(start, end)] |

 MDO=aaa.bbb.ccc |

 MDO=aaa.bbb.ccc.* |

 MDO=aaa.bbb{*}.ccc [RANGE=(start, end)] |

 MDO=aaa [MAP=map] }

 { FROM

 { VARS=aaa |

 VARS=(aaa,bbb,...,ccc) |

 VARS=aaa* [RANGE=(start, end) | GENERIC] |

 ARGS [RANGE=(start, end)] |

 MDO=aaa.bbb.ccc |

 MDO=aaa.bbb.ccc.* |

 MDO=aaa.bbb{*}.ccc [RANGE=(start, end)] |

 MDO=aaa }|

 DATA=data }

Example: A stem name MDO with no other &ASSIGN operands

&ASSIGN MDO=aaa

When no other operands are present, this assignment statement is interpreted
as an MDO deletion operation. This is the only way to delete an MDO.

Example: A stem name MDO as the target of &ASSIGN

Using this form of assignment, the entire MDO with name aaa is created, or
updated:

&ASSIGN MDO=aaa MAP=map

This has two functions:

If the MDO does not exist, then it is created and assigned to the map name
provided, but contains no data.

If the MDO already exists, then it is assigned to the map name provided, but its
data remains unchanged.

&ASSIGN

232 Network Control Language Reference Guide

If the map name is unknown, then the MDO is unmapped, and its data can only
be referenced in entirety by the MDO stem name.

&ASSIGN MDO=aaa [MAP=map] FROM MDO=xxx

Allows the MDO named aaa to be created or updated as a copy of the entire
contents of the MDO named xxx. If the MAP operand is omitted, then the map
name of the source MDO is assumed.

&ASSIGN MDO=aaa [MAP=map] FROM MDO=xxx.yyy.zzz

Allows the MDO named aaa to be created or updated as a copy of only a section
of the source MDO named xxx.yyy.zzz. If the MAP operand is omitted, then the
map name of the source MDO is assumed.

&ASSIGN MDO=aaa [MAP=map] DATA=xxx

Allows the MDO named aaa to be created or updated to contain only the data
specified. If the MAP operand is omitted, then the MDO is unmapped, and its
data can only be referenced in entirety by the MDO stem name.

&ASSIGN MDO=aaa [MAP=map] FROM VARS=xxx

Allows the MDO named aaa to be created or updated to contain only the data
from the token xxx. If the MAP operand is omitted, then the MDO is unmapped,
and its data can only be referenced in entirety by the MDO stem name.

&ASSIGN MDO=aaa [MAP=map]

 FROM { ARGS [RANGE=(start,end)] |

 VARS=xxx* [RANGE=(start,end)] |

 VARS=(aaa,bbb,...,ccc) }

Allows the MDO named aaa to be created or updated to contain the data from
all the tokens in the range or list specified. If MAP=$NCL is specified, then
special processing occurs to encapsulate all the source tokens in an MDO such
that their individual names, attributes, and data contents are preserved. If the
MAP operand is omitted, or if a map name other than $NCL is specified, then
the source tokens are treated as a list of data items concatenated together to
form the MDO contents. If the MAP operand is omitted, then the MDO is
unmapped, and its data can only be referenced in entirety by the MDO stem
name.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 233

Example: A compound name MDO as the target of &ASSIGN

Using this form of assignment, the MDO with name aaa must exist or a null
operation takes place. If the MDO exists, then the structure named aaa.bbb.ccc
that is referenced is created, updated, or deleted. If no structure named
aaa.bbb.ccc is known to Mapping Services, then no assignment takes place. If
the structure is known, but the data source specified resolves to nulls, then a
null assignment takes place but components are not deleted.

&ASSIGN MDO=aaa.bbb.ccc

This is used to delete the MDO structure named aaa.bbb.ccc. If it is a fixed
length positional component, then it is set to nulls. If it is a variable length,
keyed component, then it is deleted, and thus removed from the MDO
completely.

&ASSIGN MDO=aaa.bbb.ccc FROM MDO=xxx

&ASSIGN MDO=aaa.bbb.ccc FROM MDO=xxx.yyy.zzz

These examples allow the MDO structure named aaa.bbb.ccc to be created or
updated from the MDO structure nominated.

&ASSIGN MDO=aaa.bbb.ccc DATA=xxx

Allows the MDO structure named aaa.bbb.ccc to be created or updated to
contain only the data specified.

&ASSIGN MDO=aaa.bbb.ccc FROM VARS=xxx

Allows the MDO structure named aaa.bbb.ccc to be created or updated to
contain only the data from the token xxx.

&ASSIGN MDO=aaa.bbb.ccc

 FROM {ARGS [RANGE=(start,end)] |

 VARS=xxx* [RANGE=(start,end)] |

 VARS=(aaa,bbb,...,ccc) }

Allows the MDO structure named aaa.bbb.ccc to be created or updated to
contain the data from all the tokens in the range or list specified. The source
tokens are treated as a list of data items concatenated together to form the
MDO structure contents.

&ASSIGN

234 Network Control Language Reference Guide

Example: A stem name MDO as the source of &ASSIGN

In these assignments the MDO stem name specified following the FROM
keyword is used to select the data for the assignment.

&ASSIGN MDO=aaa [MAP=map] FROM MDO=aaa

Allows the MDO named aaa to be created or updated as a copy of the entire
contents of the MDO named xxx. If the MAP operand is omitted, then the map
name of the source MDO is assumed.

&ASSIGN MDO=aaa.bbb.ccc FROM MDO=aaa

Allows the MDO structure named aaa.bbb.ccc to be created or updated from
the MDO structure nominated.

&ASSIGN { VARS=aaa |

 VARS=(aaa,bbb,...,ccc) |

 VARS=aaa* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] }

 FROM MDO=aaa

The variables that are the target of the assignment are assigned from
consecutive 256-byte sections of the MDO name aaa.

Example: A compound name MDO as the source of &ASSIGN

In these assignments, the MDO compound name specified following the FROM
keyword is used to select the data for the assignment.

&ASSIGN MDO=aaa [MAP=map] FROM MDO=aaa.bbb.ccc

Allows the MDO structure named aaa.bbb.ccc to be created or updated from
the MDO structure nominated.

&ASSIGN MDO=aaa.bbb.ccc FROM MDO=aaa.bbb.ccc

Allows the MDO structure named aaa.bbb.ccc to be created or updated from
the MDO structure nominated.

&ASSIGN { VARS=aaa |

 VARS=(aaa,bbb,...,ccc) |

 VARS=aaa* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] }

 FROM MDO=aaa.bbb.ccc

The variables that are the target of the assignment are assigned from
consecutive 256-byte sections of the MDO component aaa.bbb.ccc.

&ASSIGN

Chapter 2: Verbs and Built-in Functions 235

After using any verb that references an MDO, the MDO return code (&ZMDORC)
and feedback (&ZMDOFDBK) system variables are set. Therefore you should
check most verbs when using operations involving MDOs. The possible values of
the return code and feedback system variables and their meanings are shown in
the following table.

&ZMDORC &ZMDOFDBK Meaning

0 0 OK

4 0 Null: optional component present but empty,
or null data assigned to optional component

 1 Null: optional component not present

 2 Null: mandatory component present but
empty, or null data assigned to mandatory
component

 3 Null: mandatory component not present

 4 String was truncated (applies to FIX offset or
length components only)

8 0 Type check: data is invalid for type

 1 Data check: data is invalid structurally-a
common cause is data too long or too short

 2 Length check: maximum MDO length exceeded

12 0 Name check: component not defined

 1 Name check: index position invalid or value is
out of range

16 0 Map check: map not found

 1 Map check: map contains errors, load failed

 2 Map check: map/data mismatch

If &CONTROL MDOCHK is in effect, then an &ZMDORC value of 8 or more causes
the NCL procedure to abend. If &CONTROL NOMDOCHK (the default) is in effect,
you should check the values of &ZMDORC and &ZMDOFDBK after any verb
involving MDOs.

&BOOLEXPR

236 Network Control Language Reference Guide

&BOOLEXPR

The &BOOLEXPR built-in function validates and/or tests a Boolean expression.

This built-in function has the following format:

&BOOLEXPR [SUBCHAR={ & | c }]

 [EVAL={ YES | NO }]

 [FOLD={ * | YES | NO }]

 { DATA=expression | VARS=prefix* RANGE=(start,end) }

The &BOOLEXPR built-in function allows you to write a complex Boolean
expression, and supply it, either directly or indirectly, through a set of variables.
The expression is analyzed for syntactical correctness, or evaluated, and the
logical result made available.

The expression syntax is flexible and supports the full use of AND, OR, and NOT,
and unlimited complexity and use of parentheses.

The function returns one of the following values:

VALID

Indicates that the Boolean expression is valid, but the EVAL=NO operand
suppressed evaluation.

INVALID

Indicates that the Boolean expression has an error. &SYSMSG contains a
description of the error.

BAD

Indicates that the Boolean expression is valid, but a data error has been
encountered during evaluation. &SYSMSG contains a description of the
error.

0

Indicates that the Boolean expression has been evaluated and is false.

1

Indicates that the Boolean expression has been evaluated and is true.

The &BOOLEXPR function does not change the content of &SYSMSG when the
return values are VALID, 0, or 1.

&BOOLEXPR

Chapter 2: Verbs and Built-in Functions 237

Operands:

SUBCHAR={ & | c }

(Optional) Allows you to alter the variable substitution character from its
default value of an ampersand (&). This ability prevents the substitution of
variable names with their values before the parsing of the Boolean
expression, which can lead to syntax and other errors.

The only characters permitted for the substitution character are & (the
default), %, !, ?, ~, and '.

None of these characters are valid outside quoted data in the expression in
any other context.

When supplying an expression using the DATA= operand, without the
expression itself being contained in variables, this operand is probably
required. For example, the following statement would result in the &A, &B,
&C, and &D variables being replaced with their current contents before the
evaluation of the expression. This processing sequence could possibly result
in syntax errors:

&RESULT = &BOOLEXPR DATA=&A = &B AND &C = &D

Alternatively, if you specify the following statement, &BOOLEXPR itself
processes the variables:

&RESULT = &BOOLEXPR SUBCHAR=% DATA=%A = %B AND %C = %D

When supplying the expression itself in variables, any embedded
ampersand-prefixed variable names are correctly processed, unless
&CONTROL RESCAN is in effect, for example:

&BOOLEXPR DATA=&EXPRESSION

EVAL={ YES | NO }

Indicates whether the Boolean expression is to be evaluated if syntactically
correct or validated for syntactical correctness.

EVAL=YES

Evaluates the expression if no syntax errors are encountered. If the
expression is valid, evaluation is attempted, which leads to either the 0,
1, or BAD return values.

EVAL=NO

Suppresses evaluation. If the expression is valid, the function return
value is VALID.

If the expression is not valid (that is, a syntax error), the return value is
INVALID in any case.

Default: YES

&BOOLEXPR

238 Network Control Language Reference Guide

FOLD={ * | YES | NO }

Controls the default action to take, regarding the uppercasing of variable
and quoted operands, when evaluating the expression.

FOLD=*

Specifies that the setting of &CONTROL IFCASE is honored for the
standard relational operators, and the CONTAINS and LIKE operators.
The strict operators do not uppercase data in this case.

FOLD=YES

Specifies that everything is uppercased.

FOLD=NO

Specifies that nothing is uppercased.

The setting of the FOLD operand is overridden on individual tests in the
expression, using the FOLD and NOFOLD modifiers.

If variable uppercase translation is performed automatically on assignment,
the effect of the &CONTROL UCASE option can override the intended effect
of IFCASE.

Default: *

DATA=expression | VARS=prefix* RANGE=(start,end)

These operands supply the source data of the Boolean expression. Either
the DATA=expression, or the VARS=prefix* RANGE=(start,end) operands
must be supplied.

If DATA=expression is used, it must be the last operand, as all data following
it to the end of the NCL statement is regarded as the Boolean expression.

If VARS=prefix* RANGE=(start,end) is used, the Boolean expression is
contained in a set of nominated NCL variables. The data in these variables is
extracted, and concatenated together with a single blank inserted between
them, and is used as the Boolean expression. The VARS= and RANGE=
operands is in any order, and need not be the last operands. The start and
end values must be numbers in the range 0 through 32767, and end must
be greater than or equal to start.

&BOOLEXPR

Chapter 2: Verbs and Built-in Functions 239

BOOLEAN Expression Syntax

The Boolean expression, specified on the &BOOLEXPR function using the DATA=
operand, or contained within a set of NCL variables, when using the VARS= and
RANGE operands, must conform to the following syntax:

expression := term [OR term …]

term := factor [AND factor …]

factor := [NOT …] exp2

exp2 := (expression) | test

test := [IGNORE { TRUE | FALSE }]

 [ANY | ALL]

 loperand [,loperand,…]

 operator

 [ANY | ALL]

 roperand [,roperand,…]

operand := operand

operator := = ==

 ¬= ¬==

 < <<

 > >>

 <= <<=

 >= >>=

 CONTAINS

 LIKE

 IS [NOT]

roperand := (For all operators except IS [NOT]):

 operand

 [GENERIC | : operand]

 [{ CHARACTER | NUMERIC | FOLD | NOFOLD } …]

 [, …]

 (For the IS [NOT] operators):

 type-name | &variable

 [, …]

type-name := 'constant' | “constant” | &variable | number

&BOOLEXPR

240 Network Control Language Reference Guide

operand := ALPHA ALPHANUM ALPHANUMNAT

 BITLIST16 DATE1 DATE2

 DATE3 DATE4 DATE5

 DATE6 DATE7 DATE8

 DATE9 DATE10 DOMAIN

 DSN HEX MIXED

 MSGLVL N NAME

 NAME12 NAME256 NULL

 NUM REAL ROUTCDE

 SIGNNUM TIME1 TIME2

 TIME3 Y

Notes:

■ Tests can be connected using AND (&), OR (|), NOT (¬), and parentheses ().
Use of an ampersand (&) for AND might require a trailing blank if it is
followed by a word (such as NOT), if the ampersand is the current variable
substitution character (as set by the SUBCHAR operand).

■ There is no limit to the complexity of the expression or the nesting of
parentheses.

■ IGNORE allows a test to be ignored and treated as if it were true (return
code 1) or false (return code 0).

■ The ANY and ALL prefixes allow you to override the default processing of
lists of operands on the left and right of an operator.

The left hand default is ANY, meaning that if any left-operand passes the
test then the test is true (evaluation will stop once this is satisfied). ALL
means that all left-operands must pass the test for the test to be true (any
operand that fails will cause evaluation to stop).

The right hand default depends on the operator. For =, ==, CONTAINS, LIKE,
and IS, the default is ANY. For all others, the default is ALL. If ANY is
specified or defaulted, then any combination of operator and right-operand
that results in a true result for a left operand results in a true result for that
operand. If ALL is specified or defaulted, then any given left-operand must
pass all combinations of operator and right-operand to pass a test.

■ You can have constants on both sides of any operator. Although this could
mean that the expression is always true or false, the constants is there if
you use substitution prior to evaluation. However, if mixed constant types
are found, for example '123' = 123, then a syntax error is raised.

The IS and IS NOT operators do not support constants to the left of them.

&BOOLEXPR

Chapter 2: Verbs and Built-in Functions 241

■ Constant values must be quoted if they are non-numeric, or if they are
numeric but a character comparison is wanted. Numbers must always be
unquoted.

Quoted constants can use either single quotes (') or double quotes (”). An
occurrence of the quote character in the value is represented by 2 adjacent
quote characters. Alternatively, use the alternate quote character to
surround the value.

Numbers are recognized and validated based on the current &CONTROL
INTEGER/REAL setting.

■ The GENERIC modifier is only permitted with a quoted constant or variable
to the right of an operator, and only for the equal (=) and not equal (¬=)
operators. It implies a CHARACTER test.

■ The RANGE test (:) is permitted with the equal and not equal operators only.
Both sides of the range must be the same type, that is, you cannot say
constant : number, or vice versa. If one side of the range is numeric and the
other is a variable, then the variable must have a numeric value, otherwise a
BAD return results.

If the from and to range values are reversed, they are reversed before
making the test, rather than raising an error.

■ If a variable is compared to a number and the variable value is null or not
numeric, then a BAD return results.

■ The CHARACTER modifier forces a character compare. This is only required
when comparing a variable to another variable. This avoids the default
action of testing both sides for numerics and performing a compare based
on the result.

Similarly, the NUMERIC modifier forces a numeric compare. If either
variable is not numeric, a BAD return results. The NUMERIC modifier is
invalid in conjunction with the GENERIC modifier.

■ The FOLD and NOFOLD modifiers force uppercasing (FOLD) or prevent
uppercasing (NOFOLD) of character values, overriding the default for the
operator, or as set by the FOLD= operand on the &BOOLEXPR invocation, or
the default based on the &CONTROL IFCASE setting.

&BOOLEXPR

242 Network Control Language Reference Guide

■ The operators are:

= (equal)—Standard equality test

¬= (not equal)—Standard inequality test

< (less than)—Standard less than test

> (greater than)—Standard greater than test

<= (less than or equal)—Standard less than or equal test

>= (greater than or equal)—Standard greater than or equal test

The standard operators strip both leading and trailing blanks, except for
equal and not equal, when used with the GENERIC modifier. The
comparison then pads with trailing blanks if required.

When variables are on both sides of the operator, the standard
operators, by default, type check both variables, and, if both are
numeric, perform a numeric compare. Otherwise, a character compare
is performed. Specification of the GENERIC or CHARACTER modifiers
overrides this test to force a character compare. Specification of the
NUMERIC operator forces a numeric compare, in which case the
operands must be valid numbers as determined by the current
&CONTROL INTEGER or REAL setting.

For character compares, these operators honor the setting of
&CONTROL IFCASE by default. The FOLD and NOFOLD modifiers
override this, as does the FOLD=YES or NO operand. The effect of the
&CONTROL UCASE option can override the intended effect of IFCASE if
variable uppercase translation is performed automatically on
assignment.

&BOOLEXPR

Chapter 2: Verbs and Built-in Functions 243

== (strictly equal to)

¬== (strictly not equal to)

<< (strictly less than)

>> (strictly greater than)

<<= (strictly less than or equal to)

>>= (strictly greater than or equal to)

The strict operators always perform a character compare. No blank
stripping or padding is performed. Numeric constants are invalid with
these operands. If one value is physically shorter than another value,
but equal for the shortest length, then the shorter value is regarded as
logically less than the longer value. By default, values are not
uppercased, although the FOLD and NOFOLD modifiers, and the FOLD=
operand can override this. The setting of &CONTROL IFCASE is ignored
for these operators.

CONTAINS

The CONTAINS operator searches the left-hand operands for the
right-hand values. Variable values on the left will have one leading and
one trailing blank added to their value prior to the search. CONTAINS
honors &CONTROL IFCASE for folding, by default, although this is
overridden as for the standard operators.

LIKE

The LIKE operator performs a pattern-match, as per the ANSI SQL LIKE
operator. The standard wildcard characters is used. (They are: the per
cent sign (%) which matches 0 or more characters, and the underscore
character (_) which matches 1 character.) LIKE honors &CONTROL
IFCASE for folding, by default, although this is overridden as for the
standard operators.

IS and IS NOT

The IS and IS NOT operators perform a type check on the nominated
variables, that is, only variables is specified to the left of these
operators. The listed types is checked, as for &TYPECHK (see page 705).

If a variable is specified in the type list, then during expression
evaluation it must contain a list of type names, separated by blanks
and/or commas. If it is null, it is treated as if it contained types that the
left hand variables all passed. If it contains invalid data, then the
expression will return a BAD result.

Use of these operators can prevent BAD checks on non-numeric
variables.

&BOOLEXPR

244 Network Control Language Reference Guide

Examples: &BOOLEXPR

This example shows how you can use &BOOLEXPR to evaluate a complex
condition that is beyond the capabilities of the &IF or &DOWHILE/&DOUNTIL
NCL statements:

&R = &BOOLEXPR SUBCHAR=% DATA=+

%NAME = 'FRED SMITH' AND +

 %DOB < 700101 AND +

 (ANY %SKILL1, %SKILL2, %SKILL3, %SKILL4 = 'PROGRAMMER' +

OR +

 %RELATIVES CONTAINS 'Managing Director')

&IF &R = 1 &THEN &DO

:

&DOEND

This example shows how a dynamic expression is validated for syntactical
correctness. The expression is contained in the NCL variables &EXPR1 to
&EXPR10.

&R = &BOOLEXPR SUBCHAR=% EVAL=NO VARS=EXPR* +

 RANGE=(1,10)

&IF &R = INVALID &THEN &DO

:

&DOEND

This example shows how a the dynamic expression of the last example is
processed at a later time. The result needs to be checked for the BAD value in
case a non-numeric variable value or non-valid type list variable was
encountered. Otherwise, the true or otherwise is checked.

&R = &BOOLEXPR SUBCHAR=% EVAL=YES VARS=EXPR* +

 RANGE=(1,10)

&IF &R = BAD &THEN &DO

 :

&DOEND

&ELSE

&IF &R = 1 &THEN &DO

 :

 &DOEND

&BOOLEXPR

Chapter 2: Verbs and Built-in Functions 245

Return Codes:

The &BOOLEXPR function normally returns a value that is assigned to the target
variable on the assignment statement.

Syntax errors in the various operands, such as SUBCHAR or FOLD, result in the
NCL process being abnormally terminated. Syntax errors in the Boolean
expression or data validity errors never result in process termination.

The following return values are possible when using EVAL=YES (the default):

INVALID

The Boolean expression is not valid. &SYSMSG contains a descriptive
message.

BAD

The Boolean expression is valid, but a variable referred to in the expression
contained data that is not valid for the operator. This can only be
non-numeric data or null value when a numeric value is required (such as
when a test has &variable = number), or when a variable is expected to
contain a list of valid type names. &SYSMSG contains a message describing
the error.

0

The Boolean expression is valid and evaluated to false.

1

The Boolean expression is valid and evaluated to true.

The following return values are possible when using EVAL=NO:

INVALID

The Boolean expression is not valid. &SYSMSG contains a message with
additional information.

VALID

The Boolean expression is valid. Evaluation would have been attempted if
EVAL=YES had been specified.

There are no other return values.

&BOOLEXPR

246 Network Control Language Reference Guide

Notes:

&BOOLEXPR processes in the following order:

1. First, the operands of the &BOOLEXPR function itself are checked.

That is, the EVAL, FOLD, SUBCHAR, VARS, RANGE, and DATA operands.
Errors in these result in the NCL process being terminated.

2. If the VARS/RANGE operands are used, the nominated variables are
retrieved. Their values are concatenated together with blanks between
them to form the source of the Boolean expression.

3. The Boolean expression is then compiled into a parse tree. Errors during
compilation result in the INVALID return value.

4. If EVAL=NO was specified, execution is complete at this point and the return
value is VALID.

5. If EVAL=YES was specified, the parse tree is interpreted. Variables are
retrieved and tests are performed.

Invalid variable values (numeric or type lists) result in the interpretation
being terminated with a BAD return value.

Evaluation of AND and OR lists is from left to right. The first false (for AND)
or true (for OR) test will short-circuit the rest of the tests at that level.

This left-to-right order means that you can specify, for example:

%VAR IS SIGNNUM AND %VAR = 1:10

as this does not return a BAD value. Only if the value in &VAR is both
numeric and 1 to 10, is the value 1 (true) returned. In all other cases the
value 0 (false) is returned.

ANY/ALL evaluations are processed left-to-right, with the right hand list
entries being performed for each left-hand list entry in order.

Note: Use of &variables with DATA= will probably cause too-early
evaluation of variable contents. This will probably lead to syntax errors in
the expression.

More information:

&TYPECHK (see page 705)
&IF (see page 386)
&DOWHILE (see page 325)
&DOUNTIL (see page 323)

&CALL

Chapter 2: Verbs and Built-in Functions 247

&CALL

The &CALL verb invokes an NCL procedure or a user program.

This verb has the following formats:

&CALL PROC=procname

 [SHARE | SHARE=(sharvars1,sharvars2,...,shrvarsn) |

 NOSHARE=(sharvars1,sharvars2,...,shrvarsn)]

 [PARMS=(parm1, parm2,...,parmn)] }

&CALL progname

 [data1 data2 ... datan]

&CALL PGM=pgmname

 [PARMLIST={ OLD | NEW }

 [data1 data2 ... datan]]

&CALL SUBSYS=ssname

 [data1 data2 ... datan]

An NCL procedure uses &CALL to nest to another procedure or to invoke a
program developed within your installation, for performing specialized
processing.

More information:

&CALL procedure (see page 247)
&CALL program (see page 250)

&CALL procedure

This format invokes an NCL procedure to nest to another procedure.

&CALL PROC=procname

 [SHARE | SHARE=(sharvars1,sharvars2,...,shrvarsn) |

 NOSHARE=(sharvars1,sharvars2,...,shrvarsn)]

 [PARMS=(parm1, parm2,...,parmn)] }

When using &CALL to nest to another NCL procedure, the resulting call path is
equivalent to the result from an EXEC command. However, the ability to pass
parameters and variables across the call boundary is more structured using the
&CALL verb than the EXEC command.

&CALL

248 Network Control Language Reference Guide

Operands:

PROC=procname

Specifies a nested NCL procedure call to the procedure procname. The
&CALL verb does not complete until the called procedure ends.

SHARE | SHARE=(shrvars1,shrvars2,...,shrvarsn) |
NOSHARE=(shrvars1,shrvars2,...,shrvarsn)

Specifies the set of NCL variables and/or MDOs, to be shared or not shared,
with the called procedure.

If the SHARE or NOSHARE keywords are omitted, no variable sharing occurs
for this call. If the SHARE keyword is coded without parameters, the current
&CONTROL SHRVARS (or NOSHRVARS) setting is used for the call.

If the SHARE or NOSHARE keyword is used with parameters, any current
&CONTROL SHRVARS settings are ignored for this execution. When SHARE is
used, the called procedure obtains a copy of each variable and/or MDO
referenced by the SHARE operand. When NOSHARE is used, the called
procedure obtains a copy of all NCL variables and MDO data not specified by
the operand.

Note: The parameter values for SHARE and NOSHARE cannot be substituted
on the statement.

The operand can specify a single value or a list of values. Each item in the
list can reference a single variable or MDO, or multiple variables or MDOs. A
single variable is referenced by including its entire name. For example, an
entry in the list of 'ABC' refers to the single NCL variable &ABC, as though
VARS=ABC were coded. A single MDO is referenced by including its entire
name followed by a full stop. For example, an entry in the list of 'ABC.'
refers to the single MDO named ABC, as though MDO=ABC were coded.

A range of NCL variables is referenced by including a name prefix followed
by an asterisk. For example, an entry in the list of '$CNM*' refers to
$CNM1...$CNMnnn. The range is set explicitly. For example, '$CNM*(1,10)'
(or '$CNM(1,10)') refers to the variables $CNM1 to $CNM10. If not set
explicitly, all variables are assumed to be of the form $CNMnnn.

A generic list of NCL variables and MDOs is referenced by including a name
prefix followed by a > symbol. For example, an entry in the list of '$NW>'
refers to all variables, and MDOs, with names beginning with &$NW.

PARMS=(parm1,parm2,...,parmn)

Specifies a list of parameters to pass to the procedure. You enclose the
parameter list by parentheses and separate each parameter by a comma.

&CALL

Chapter 2: Verbs and Built-in Functions 249

The parameter list can contain any combination of characters, including
variables. The first parameter isolated is placed in &1 in the target
procedure, the next in &2, and so on.

The list is analyzed before substitution occurs, and each parameter is
isolated by scanning for a comma or the closing parenthesis. If another
opening parenthesis is encountered, a syntax error results.

If a single or double quote is encountered as the first character of a
parameter, the entire parameter is assumed to be quoted, otherwise it is
treated as unquoted.

If an unquoted parameter is encountered, the next comma or closing
parenthesis delimits it. Any other characters are considered part of the
parameter itself (including embedded blanks).

When a parameter does not start with a quote, but contains quotes, normal
quoting rules apply and the data is substituted. In the following example, &1
is PARM1='ABC' and &2 is PARM2=XY Z for MYPROC:

&VAL = C

&CALL PROC=MYPROC PARMS=(PARM1='AB&VAL',PARM2=XY Z)

Once isolated, substitution is performed (if necessary, allowing transparent
data to be passed as parameters) and the result placed in the next
initialization parameter in the called procedure.

A closing quote of the same type as the opening quote terminates a quoted
parameter. Only a comma delimiting the next parameter, or a closing
parenthesis terminating the entire parameter list, can immediately follow
the closing quote. The entire quoted string is passed to the target procedure
unchanged, except that the delimiting quotes are removed.

Normal quote rules apply, that is, two consecutive quotes of the same type
as the opening quote are treated as a single occurrence in the resulting
string. No substitution is performed on the contents of the quoted string.
For example:

PARMS=(&USER,,PROC=&0,”variable ””&FRED”” in error”)

would set the following variables in the called procedure (assume &USER
has the value 'ADMIN', &0 'MYPROC', and &FRED 'xyz'):

&1 ADMIN

&2

&3 PROC=MYPROC

&4 variable ”&FRED” in error

&RETCODE or &END in the called procedure sets the return codes.

Note: If used, the PARMS operand must be the last operand on the &CALL
statement.

&CALL

250 Network Control Language Reference Guide

Example: &CALL

&CALL PROC=PROC01 SHARE=(???,msg(1,10),VARS>) +

 PARMS=(&USER,,”inactive”)

&CALL program

These formats invoke a user program developed at your site for performing
specialized processing:

&CALL progname

 [data1 data2 ... datan]

&CALL PGM=pgmname

 [PARMLIST={ OLD | NEW }]

 [data1 data2 ... datan]

&CALL SUBSYS=ssname

 [data1 data2 ... datan]

While NCL can perform many functions, individual installations can have
particular processing requirements that need a unique facility for that function.
The called program receives data and the contents of variables by including
them on the &CALL statement. The called program updates this data and
returns the updated data for further NCL processing.

Data returned from a called program is always returned in variables &1, &2,
through to &n, regardless of the variable names that have been specified in the
&CALL statement itself.

The number of variables available after the &CALL statement matches the
number of data fields specified on the &CALL statement.

Variables with null values when the &CALL statement was issued always return
a variable (for example, &5) equivalent to their position on the &CALL
statement. This variable has a null value unless data is supplied from the called
program.

The called program or subsystem can set a return code (in Register 15 if written
in Assembler) in the &RETCODE system variable when processing resumes at
the statement after the &CALL statement. This return code is in the range 0
through 99. Anything outside this range is an error, and either aborts the
process or sets &SYSMSG. In this case, &RETCODE is set to 100.

The program can also return 4 bytes of information (termed a correlator) that
are saved and passed to any program called later within the NCL process.

&CALL

Chapter 2: Verbs and Built-in Functions 251

Operands:

progname

Indicates the &CALL target. If the program abends or returns a code greater
than 100, the NCL process is terminated with an error.

If pgmname is equal to the name of a subsystem, which was defined with
the CALLREPL=YES option, the call is rerouted to that subsystem.

PGM=pgmname

Causes the call to be performed as for progname except that, if the program
abends or returns an invalid return code, the NCL process is not terminated.
Instead, &RETCODE is set to 100 and &SYSMSG contains the error message
that would have been issued.

No SUBSYS replacement takes place for PGM=pgmname. A one-time attach
always occurs.

This operand must be specified if you want to use the new format
parameter list. Specifying progname causes a default to PARMLIST=OLD.

SUBSYS=ssname

Queues the call to the nominated subsystem. If it is not found, the process
is aborted. Other errors result in &RETCODE of 100 and &SYSMSG being set.
PARMLIST= is not permitted in this case. If specified, it is treated as the first
parameter to the subsystem program. The subsystem definition defines the
parameter list format.

&CALL

252 Network Control Language Reference Guide

PARMLIST={ OLD | NEW }

Indicates the format of the parameter list to use. The operand is not
recognized if specified with SUBSYS=ssname, but is treated as the first
user-program parameter.

Default: OLD

PARMLIST=OLD

Specifies to use the old-format parameter list.

Note: This format parameter list is not compatible with
high-level-language programs.

The format of this type of parameter list is:

SECURITY EXIT CORRELATOR

&CALL CORRELATOR AREA

Register 1 ----> COUNT

ADDR1 ----> xxxxdata (xxxx is length of data)

ADDR2 ----> xxxxdata (xxxx is length of data)

 .

 .

ADDRn ----> xxxxdata (xxxx is length of data)

All passed parameters are padded with blanks to 256 characters. The
program can return up to the number of passed parameters, by
resetting the values and lengths.

PARMLIST=NEW

Specifies to use the new-format parameter list. This parameter list
contains much new information.

The parameter list is as follows:

R1 ---> A(parmlist) (that is, a word that points to itself)

 A(NCPF)

 A(NCPE)

 A(NCPS)

 A(NCPU)

 A(NCPN)

 A(NCPZ)

 A(NCPC)

 A(data1)--->f'len',cl256'data'

 A(data2)--->f'len',cl256'data'

&CALL

Chapter 2: Verbs and Built-in Functions 253

Each of the parameter areas is as follows:

■ A(parmlist) points to the parameter list itself.

 This area is the key to allowing a program to determine whether the
parameter list is in the old or new formats. Recall that the old
format parameter list had as the first parameter the number of
passed parameters.

 This value is a binary fullword in the range from 0 to approximately
1000 (maximum with a 1024-byte statement buffer).

 In the new format, the first parameter points to itself. Because a
parameter list cannot start in the first 4096 bytes of storage (page
0), the following simple test allows you to determine easily whether
the PARMLIST is old or new format:

 C R1,0(,R1)

 BE NEWFORMAT

 B OLDFORMAT

■ A(NCPF) points to an area that contains function code information,
mapped as follows:

 NCPF DESECT

 NCPFFUNC DS F function code

 NCPFFCAL EQU 00 00 - &CALL

 NCPFFTRM EQU 04 04 - NCL proc terminate

 (SUBSYS only)

 NCPFFSIN EQU 08 08 - SUBSYS initialize

 NCPFFSTM EQU 12 12 - SUBSYS terminate

 NCPFFSST EQU 16 16 - system shutdown

 (SUBSYS only)

 Only defined subsystems ever receive any code other than 0.

■ A(NCPE) points to an area that contains environment information.
This information is used to find out about your product region.
Some VTAM information is also provided.

 The NCPE is mapped as follows:

 NCPE DSECT

 NCPEVERS DS CL4 version, for example, 'V5.1'

 NCPEID DS CL12 NMID

 NCPEDMN DS CL4 domain ID

 NCPEACB DS CL8 ACBNAME

 NCPESSCP DS C8 SSCP name

 NCPENETI DS CL8 NETID name

&CALL

254 Network Control Language Reference Guide

■ A(NCPS) points to an area containing subsystem environment
information. If this call is not to a defined subsystem, this area is still
provided. The code can detect that a subsystem is not defined by
testing NCPSNAME. If not a subsystem, the value CL8'*' is inserted.
The subsystem can use the correlator field to anchor
subsystem-related control blocks across calls (for example, to
preserve complete reentrancy).

 The NCPS maps as follows:

 NCPS DSECT

 NCPSNAME DS CL8 subsystem name or asterisk (*)

 if not a subsys call

 NCPSPGMN DS CL8 program name

 NCPSSCOR DS F subsystem correlator

■ A(NCPU) points to an area that maps user ID information. This
information is about the user ID that is executing the procedure that
issues the &CALL.

 The NCPU is mapped as follows:

 NCPU DSECT

 TNCPUID DS CL8 User ID

 NCPULU DS CL8 Logical unit (terminal name)

 NCPUWIND DS F Window number (0 to 1)

 NCPUSECC DS F Security correlator

 NCPUTOKN DS F Address of Security Exit User

 Token supplied by security exit.

■ A(NCPN) points to information about the NCL process that issued
this &CALL. This information includes the name of the current
procedure, and the NCL ID. Also, a shared correlator and a private
correlator (SUBSYS only) are provided.

 The NCPN maps as follows:

 NCPN DSECT

 NCPNPROC DS CL8 Procedure name (that issued

 this &CALL)

 DS CL4 Reserved

 NCPNNCLI DS F NCLID (in binary) 1-999999

 NCPNSCOR DS F Correlator shared with all

 other &CALLS for proc

 NCPNPCOR DS F SUBSYS only private correlator

 for this proc

■ A(NCPZ) points to a null area. This area is reserved for future
expansion. The pointer is set (it is not 0). In a high-level language
define it as a single binary number (S9(9) COMP in COBOL, FIXED
BIN(31) in PL/1).

&CALL

Chapter 2: Verbs and Built-in Functions 255

■ A(NCPC) points to the count area. This section contains the count of
the number of user parameters passed.

 The NCPC maps as follows:

 NCPC DSECT

 NCPCCNT DS F Number of passed user parameters

 (0 to n)

 Following the pointer to the NCPC, is a list of n pointers to user
parameters. Each points to a 4-byte (binary) length (0 through 256),
followed by the data, padded with blanks to 256 characters. As for
old-format parameter lists, these values can be updated for return
in &1, &2, &3, and so on. Only as many parameters as are passed
are returned.

A macro, $NMNCPL, is distributed with your product. This macro maps
out the new format parameter list.

data1 data2 ... datan

(Optional) Specifies other parameters to pass on the call. Each is a constant,
a simple variable name, or constant data followed by a variable name:

■ constant

■ &variable

■ constant&variable

No complex substitution is allowed. The variable can contain any
hexadecimal values. These values are passed unchanged. Similarly, the
returned data is placed, unchanged, in the returned variables &1, &2,
through to &n.

Examples: &CALL

&CALL &PROCNAME USERID &2

&CALL &DATECONV &MYDATE

Notes:

Variables passed to and from the called program can contain any hexadecimal
values, printable or non-printable. No translation is made of the data returned
by the program - it is the responsibility of the NCL procedure to determine any
meaning for data passed to and from the program.

&CALL always returns variables named &1, &2 through to &n. If the procedure
has already defined variables with these names, the contents of those variables
are replaced with the information returned from &CALL. Therefore, be careful
when using such variable names with &CALL.

&CALL

256 Network Control Language Reference Guide

In z/OS and z/VM environments, the specified program is attached to your
product region as a subtask, and can therefore issue waits or I/O requests
without affecting the rest of the system. If storage is GETMAINed for
subsequent calls to this or another program, the &CALL correlator is used to
remember its address.

However, obtain the storage in subpool 50 to avoid freeing it automatically
when the program returns to your product region. The program is responsible
for ensuring that any storage obtained in subpool 50 is freed when no longer
required.

By default, subpool zero is not shared between your product region and the
&CALL subtask. If you are using operating system functions in the subtask (for
example, native VSAM) that require sharing subpool zero, you can remove this
restriction with the SYSPARMS CALLSHR0=YES command.

If the program terminates abnormally, the invoking NCL procedure terminates
with an appropriate error message which includes the failure reason.

The specified program must be available in the standard load module libraries
available to your product region.

If many concurrent users of the program are anticipated, consider making the
program reentrant and loading it into your product region in advance. You can
use the LOAD MOD=module_name command to specify the name of a module
to load into your product region.

When the loaded module has the RENT or REUS attributes, subsequent
references to this module from &CALL use the loaded copy, avoiding further
retrieval. The LOAD commands are typically placed in the NMINIT initialization
procedure. If these modules are link edited with the reentrant attribute, they
must be reentrant. Otherwise, unpredictable results occur when they are
invoked. Use the UNLOAD MOD=module_name command to delete previously
loaded programs from storage.

Complex variables cannot be used in &CALL statements.

See also UTIL0005 in the distribution library.

&CMDLINE

Chapter 2: Verbs and Built-in Functions 257

&CMDLINE

The &CMDLINE verb writes the supplied text into your OCS command input line.

This verb has the following format:

&CMDLINE command_text

The &CMDLINE verb gives you the ability to put command text from within an
NCL procedure into the command input line of your OCS window. Any command
text is written and the cursor positioned on any location within that text.

The verb is used to prompt for operator input. A default command text is put
directly into the command line for immediate entry or modification before
entry. These features are used to simplify operator responses.

Operands:

command_text

Specifies any uppercase and lowercase text to place in the operator
command entry line. The text starts from the second position after the
&CMDLINE keyword and leading blanks are preserved. If the specified text
exceeds the length of the command entry line it is truncated. Any text
currently in the command entry line is erased when the &CMDLINE
statement is executed.

The cursor is positioned at any location within the text by the including an
underscore (_) at the point where the cursor is required. Only the first
occurrence of an underscore is interpreted. If an underscore is not specified
or lies outside the current command entry line boundary, the cursor is
positioned at the end of the text.

Examples: &CMDLINE

&CMDLINE INACT &NODE

&CMDLINE INTQ ID=&ZNCLID DATA=_CONTINUE

&CNMALERT

258 Network Control Language Reference Guide

Notes:

&CMDLINE generates a standard message.

The underscore character does not take up a character position within the
displayed text (it is deleted before display).

&CMDLINE can be used in a procedure executing under a Remote Operator
Facility region. The text returned to the OCS command line is automatically
prefixed with a ROUTE command to the remote system.

If used within a procedure that is not executing under OCS (for example, system
level NCL processes or NCL processes executed in a dependent processing
environment), the owning environment receives the message.

A procedure can use the &ZOCS system variable to determine whether it is
running under an OCS environment.

&CNMALERT

The &CNMALERT verb sends a CNM record directly to CNMPROC in a local or
remote NEWS system for processing.

This verb has the following format:

&CNMALERT [MODE={ CREATE | INSERT }]

 [LINKNAME=linkname | SSCPNAME=sscpname | DOMAIN=domain]

 [&var &var &var |

 MDO=mdoname | VARS=... |

 ARGS [RANGE=(start,end)]]

The &CNMALERT verb gives you the ability to queue a CNM record to a
CNMPROC, running in a local or remote NEWS system, for processing. Any NCL
procedure can use this verb. Using this verb, a procedure can generate alerts to
make operators aware of events in the system or network, and alerts that
simulate a network event to test NEWS processing procedures.

&CNMALERT

Chapter 2: Verbs and Built-in Functions 259

Operands:

MODE={ CREATE | INSERT }

Determines the context in which the receiving CNMPROC processes the
alert.

MODE=CREATE

Places the alert on the queue of records waiting to be processed.

MODE=INSERT

Places the alert as the first on the queue so the next &CNMREAD issued
by CNMPROC results in CNMPROC receiving this alert. This option is
used to create a record that maintains some context with the record
CNMPROC is processing.

The MODE=INSERT option is only valid when &CNMALERT is issued from
CNMPROC and procedures which are nested (executed) under
CNMPROC. Any other NCL procedure that attempts to use the
MODE=INSERT option terminates with an error message.

LINKNAME=linkname | SSCPNAME=sscpname | DOMAIN=domain

Are mutually exclusive operands used to direct the alert to the CNMPROC
running in the specified region. NEWS uses the Inter-System Routing (ISR)
feature to communicate with other product regions running on remote
hosts, and therefore can route any CNM request to a remote host for
processing. The link, SSCP, or domain ID uniquely identifies the destination
host. For remote processing to be possible, the INMC link to the remote
host must be active and the NEWS facilities in ISR must be enabled for
unsolicited flows. If the destination name is that of the local system, no ISR
delivery is necessary and the record is delivered to the local CNMPROC in
the usual manner.

&var &var &var

Specifies user variables that contain the CNM record to forward to VTAM
across the CNM interface.

Each variable contains valid hexadecimal characters that, when
concatenated, form the entire CNM RU. Where a Network Services RU (NS
RU) is sent to VTAM embedded in a Forward RU, the variables must include
the Forward RU with the target resource and PU vectors appended. In
addition, set all relevant RU byte values and length fields appropriately, with
the exception of the 12 bits in the CNM header comprising the procedure
correlator identifier (PRID). Where NEWS recognizes from the supplied RU
data that this RU is a solicitation request, it automatically generates a PRID
and inserts the value in the CNM RU. The PRID, echoed by the resource in
any reply RUs, is used to correlate reply data with the &CNMSEND request.

&CNMALERT

260 Network Control Language Reference Guide

MDO=mdoname | VARS=... | ARGS [RANGE=(start,end)]

Specifies the data to place in the alert. If the MDO= operand is used, the
data is located as formatted in the MDO.

Specifying VARS= or ARGS results in a $NCL MDO being built and delivered
in the $MSG MDO, containing the named variables or arguments.

The MDO, VARS, and ARGS operands are mutually exclusive.

RANGE=(start,end) is specified with ARGS, to denote an argument range.

Examples: &CNMALERT

&CNMALERT &var &var

&CNMALERT MODE=INSERT &var &var

&CNMALERT LINKNAME=NMP &var &var

Notes:

&CNMALERT does not solicit information. No response is received from any
&CNMALERT. The data supplied on the &CNMALERT statement is queued as is
to the appropriate NEWS system for processing.

When control is returned to the NCL procedure following a &CNMALERT
statement the &RETCODE system variable is set to one of the following:

0

The alert has been successfully delivered to the target CNMPROC.

8

The alert has not been successful. The &SYSMSG variable contains an
explanatory message.

See also the ISR command description in the online help.

More information:

&CNMSEND (see page 275)

&CNMCLEAR

Chapter 2: Verbs and Built-in Functions 261

&CNMCLEAR

The &CNMCLEAR verb clears all outstanding CNM reply data solicited by this
NCL user.

This verb has the following format:

&CNMCLEAR

The &CNMCLEAR verb is used within a procedure to clear all outstanding CNM
reply data previously solicited using an &CNMSEND request. This verb would
typically be invoked when a procedure in which &CNMSEND has been used is
about to terminate and some possibility exists that not all solicited data has
been processed. It is also useful in purging any such unprocessed data in order
that the results of a subsequent &CNMSEND is guaranteed to be the next
available for processing with an &CNMREAD statement.

&CNMCLEAR can be issued at any time to clear the CNM reply environment,
regardless of the status of &CNMSEND/&CNMREAD processing.

No useful purpose is served by issuing an &CNMCLEAR from CNMPROC.

More information:

&CNMSEND (see page 275)
&CNMREAD (see page 268)

&CNMCONT

262 Network Control Language Reference Guide

&CNMCONT

The &CNMCONT verb directs the current CNM record across a specific ISR link.

This verb has the following format:

&CNMCONT [LOCAL |

 REMOTE |

 LINKNAME=linkname |

 SSCPNAME=sscpname |

 DOMAIN=domain]

 [NVC={ YES |NO }]

The &CNMCONT verb is used only within the CNMPROC procedure to send the
current CNM record across all or specific ISR links.

Operands:

LOCAL | REMOTE | LINKNAME=linkname | SSCPNAME=sscpname |
DOMAIN=domain

(Optional) Specifies the system that the current CNM record is targeted at.
If omitted and the CNM record contains a SNAMS MDS-MU, it is repackaged
and sent to the remote SNAMS focal point, if one is active. (That is, it is
equivalent to the &SNAMS SEND CATEGORY='23F0F3F1'x operation.)
Otherwise, it is sent to all remote systems.

LOCAL

Sends the current CNM record to only the local CNMPROC. This option
is equivalent to the &CNMDELREMOTE verb, that is, the CNM record is
discarded.

REMOTE

Sends the current CNM record to all remote CNMPROCs across ISR links
known to the local system.

LINKNAME=linkname | SSCPNAME=sscpname | DOMAIN=domain

These operands are used to direct the CNM record only to the
CNMPROC running in the specified system. An asterisk (*) is used as the
operand value to direct it across all ISR links, known SSCPs, or domains
respectively.

NVC={ YES | NO }

Indicates whether the CNM record is sent across NetView Connect ISR links
(NetView Connect does not support some CNM records supported by your
product region).

&CNMDEL

Chapter 2: Verbs and Built-in Functions 263

Examples: &CNMCONT

&CNMCONT

&CNMCONT LINKNAME=NMP

&CNMCONT LOCAL

Notes:

When control is returned to the NCL procedure following a &CNMCONT
statement the &RETCODE is set to one of the following:

0

The record has been successfully delivered to the target CNMPROC or is on
its way to the remote SNAMS focal point.

8

An error has been encountered (for example, the target name specified
does not exist).

See also the ISR command description in the online help.

More information:

&CNMDEL (see page 263)

&CNMDEL

The &CNMDEL verb deletes a CNM record or stops ISR delivery of the record to
a remote region.

This verb has the following format:

&CNMDEL [LOCAL |

 REMOTE |

 LINKNAME=linkname |

 SSCPNAME=sscpname |

 DOMAIN=domain]

The &CNMDEL verb is used only within the CNMPROC to delete the current
CNM record or to stop its delivery across ISR links.

&CNMDEL

264 Network Control Language Reference Guide

Operands:

LOCAL

Specifies that the current CNM record is to be deleted from the local
CNMPROC but is to be sent to all remote CNMPROCs.

REMOTE

Stops the delivery of the current CNM record across any ISR links to remote
CNMPROCs.

LINKNAME=linkname | SSCPNAME=sscpname | DOMAIN=domain

Stops the delivery of the current CNM record to the CNMPROC running in
the specified system. These operands are mutually exclusive.

Examples: &CNMDEL

&CNMDEL LINKNAME=NMP

&CNMDEL LOCAL

Notes:

When control is returned to the NCL procedure following a &CNMDEL
statement the &RETCODE is set to one of the following.

0

The record has been successfully delivered to the target CNMPROC.

8

An error has been encountered (for example, the target name specified
does not exist).

See also the ISR command description in the online help.

More information:

&CNMCONT (see page 262)

&CNMPARSE

Chapter 2: Verbs and Built-in Functions 265

&CNMPARSE

The &CNMPARSE verb parses the MDO data supplied into user variables.

This verb has the following format:

&CNMPARSE MDO=source

 [TYPE={ RU | SV | CV }]

 [MVNUM=nn]

 [PREFIX=prefix]

This verb is typically used from an NCL procedure to format the CNM data into
user variables as in an &CNMREAD TYPE=VECTOR operation.

Operands:

MDO=source

(Mandatory) Specifies the name of the MDO that contains the data to be
formatted. The value can be a stem name or a compound MDO name.

TYPE={ RU | SV | CV }

(Optional) If omitted, the type is determined from the supplied MDO, which
is assumed to be mapped by the $CNM system map. The MDO data is then
formatted in the fashion of the &CNMREAD TYPE=VECTOR operation.

TYPE=RU

Indicates that the supplied data is an entire CNM RU and is to be
formatted in the fashion of the &CNMREAD TYPE=VECTOR operation.

TYPE=SV

Indicates that the data to be formatted contains one or more
concatenated subvectors. Each subvector comprises a 1-byte length
field (l) and a 1-byte identifier field (x), followed by l-2 bytes of data.
That is, the length field contains the length of the subvector (inclusive of
the length byte and identifier byte).

The vectorization process parses the data into its constituent
subvectors, placing each into variables prefixed by the value specified in
the PREFIX= operand and with names which reflect their contents. The
variables created are of the formats &prefixSVxxnn, &prefixSVxxnnX,
and &prefixSVLIST, as in the &CNMREAD TYPE=VECTOR function.

&CNMPARSE

266 Network Control Language Reference Guide

TYPE=CV

Partitions SNA control vectors. Each control vector comprises a 1-byte
type field (x) and a 1-byte length field (l), followed by l bytes of data.
Thus the length of the control vector is l+2, that is, the length field does
not include the type or length bytes.

The vectorization process parses the data into its constituent vectors,
placing each into variables prefixed by the value specified in the PREFIX=
operand and with names which reflect their contents. The variables
created are of the format &prefixCVxxnn, where xx is the hexadecimal
value of the control vector type, and nn is its occurrence number within
the given data.

MVNUM=nn

(NMVT records only) Specifies the number of the Major Vector within the
NMVT record to be formatted. If the specified Major Vector does not exist,
no variables are created.

PREFIX=prefix

(Optional) Specifies a prefix for the variables created during the
vectorization process.

Default: $CNM

Limits: 1 to 4 characters long and conformance to the standard NCL variable
naming conventions

Examples: &CNMPARSE

&CNMPARSE MDO=NEWSREC.NMVT.ALERT TYPE=SV PREFIX=ALRT

&ASSIGN MDO=CNM MAP=$CNM

&ASSIGN MDO=CNM.type DATA=mdsmu

&ASSIGN MDO=CNM.mdsmu FROM VARS=CNMREC*

&CNMPARSE MDO=CNM

&CNMPARSE

Chapter 2: Verbs and Built-in Functions 267

Notes:

When control is returned to the NCL procedure following an &CNMPARSE
statement, &RETCODE is set to one of the following.

0

Request is successful.

4

No data is supplied.

8

Parse failed.

For &RETCODE 8, &ZMDORC and &ZMDOFDBK may be set if a mapping error
causes the failure.

&CNMREAD

268 Network Control Language Reference Guide

&CNMREAD

The &CNMREAD verb makes the next CNM record available to an NCL
procedure.

This verb has the following format:

&CNMREAD [WAIT={ nnnn | 0 }]

 [TYPE={ SEGMENT | VECTOR | BOTH | RESP }]

 [{ ARGS [RANGE=(start,end)] |

 VARS=prefix* [RANGE=(start,end)] |

 VARS={ name | (name,name,...,name) } |

 MDO=mdoname [MAP=mapname] }]

The &CNMREAD verb is used within the CNMPROC procedure to request
delivery of the next CNM record. Such a record can arrive unsolicited, or a user
procedure can have solicited the record. If no CNM record is immediately
available, processing of the procedure is suspended and resumes when the next
CNM record arrives, unless the WAIT operand is used. Multiple &CNMREAD
statements are present within CNMPROC.

&CNMREAD can also be used from standard NCL user procedures that, having
sent CNM data, process any results returned. Having issued the &CNMSEND,
&CNMREAD is used to read back any records that were solicited or, particularly
if no data is returned, merely the response to the sent CNM request.

&CNMREAD processing always sets the &RETCODE system variable and can set
the &SYSMSG variable as described in later notes. If variables are created,
&ZVARCNT is set.

Operands:

WAIT={ nnnn | 0 }

Specifies a time-out value of nnnn seconds. If this time interval expires
before data satisfying the &CNMREAD request arrives, control is returned to
the NCL procedure at the next statement and the &RETCODE system
variable is set to 12. If a value of 0 is specified, control is returned
immediately even if no data is available.

The WAIT operand is invalid when the MDO operand is specified.

Limits: 0 through 9999

&CNMREAD

Chapter 2: Verbs and Built-in Functions 269

TYPE=SEGMENT

Specifies that the record is delivered in character format hexadecimal, with
each two characters representing one byte and is divided into 256-character
sections. Each of these sections is placed into the next variable specified on
the &CNMREAD statement. The first 256 characters (128 bytes) are placed
into the first variable, the next 256 characters into the second variable, and
so on.

TYPE=VECTOR

Specifies that vectorization is used to divide the CNM RU at strategic
boundaries and place each section into a user variable. All user variable
names commence with the prefix $CNM. When this option is used all
existing variables with names &$CNMxxxx are deleted. The CNM RU is then
examined and new variables created depending upon the RU type and
contents as follows:

&$CNMDLVR

Contains the 8-byte Deliver RU, or is null if no Deliver RU is present.

&$CNMNSRU

Contains the embedded Network Services RU (NSRU). For an NMVT RU,
it contains only the first 12 bytes, while for a RECFMS Type 0 it contains
only the first 20 bytes of the RU. The remainder of these RUs consists of
various CNM subvectors which are available in separate variables. For
all other RU types, this variable contains the entire NSRU. However, if
the NSRU exceeds 128 bytes in actual length, the variable contains only
the first 128 bytes expanded, or 256 hexadecimal characters.

&$CNMNSRUX

Contains the portion (if any) of the NSRU which exceeds 128 bytes (the
first 128 bytes being found in character-format hexadecimal in
&$CNMNSRU).

&CNMREAD

270 Network Control Language Reference Guide

&$CNMSVxxnn, &$CNMSVxxnnX, &$CNMSVLIST, and &$CNMMVLIST

Contain the CNM subvector information for the NMVT and RECFMS
Type 0 RUs. Each CNM subvector in the RU is placed in a user variable
where the name reflects the contents. Variable names are of the form
&$CNMSVxxnn, where xx is the hexadecimal subvector type, and nn is
the occurrence number of the vector type in the RU. If a subvector
length exceeds 128 bytes then the portion which exceeds 128 bytes is
placed in a variable named &$CNMSVxxnnX.

Consider the subvector X'07040000000001'. The length is X'07', the
subvector type is X'04', and the character string '07040000000001'
would be placed in the variable &$CNMSV0401. If the subvector
X'030400' followed, it would be placed in &$CNMSV0402. When all the
subvector information has been formatted, the variable &$CNMSVLIST
contains a list of the subvector types found and their order. For
example, if it contained 040491 this means that 2 type 04 subvectors
were found followed by a type 91.

&$CNMHLU, &$CNMHTPU, &$CNMHPU, &$CNMHLNK, and &$CNMHSPU

Contain hierarchy information concerning the originating device. Each
variable that is set contains the eight-character name of the resource
and one of the following four-character type codes:

■ DEV for a device

■ CTRL for a PU or control unit

■ LINE for a telecommunications line on an NCP

■ CHAN for a local channel link

■ LKST for a link station

■ NCP for an NCP PU

■ CPU for a host

If the NSRU originated from an LU, then &$CNMHLU is set; otherwise,
&$CNMHTPU contains the target PU information. &$CNMHPU contains
the name and type of the controlling PU (which may be the same as
&$CNMHTPU), &$CNMHLNK contains the PU's link information, and
&$CNMHSPU contains the PU's boundary function PU information.
These variables are only set where information is available.

&CNMREAD

Chapter 2: Verbs and Built-in Functions 271

&$CNMNVnn

Contain externally sourced data pertinent to the NSRU. Your products
set these variables under certain conditions. &$CNMNV01 is set if the
Network Tracking System (NTS) feature is installed. This vector contains
the LU name and session partner (if known) for NSRUs associated with
logical units (for example, 3274 alerts and RTM data). &$CNMNV02 can
also be set when NTS is installed and contains NTS RTM objective
response time information.

&$CNMMVTYPE

Contains the major vector type (that is, X'0080', X'0025') of the MV
currently vectored.

&$CNMMVnn

Contain the major vector type of the nth MV. nn is the number of the
MV.

&$CNMMVLEN

Contains the hexadecimal length of the MV currently vectored.

TYPE=BOTH

Segments the CNM data into the variables nominated on the &CNMREAD
statement and sets the user variables as described for a TYPE=VECTOR read.

TYPE=RESP

Specifies that only the response to the CNM data sent using a &CNMSEND
statement is returned. Any outstanding CNM RU data is still available to be
read with a subsequent &CNMREAD statement.

ARGS [RANGE=(start,end)]

Nominates the user-specified variables to hold the tokenized CNM record if
segmentation is requested. The ARGS operand indicates that the system
generates the token names automatically as &1, &2 through to &n,
according to the range specified by the RANGE operand.

Tokenization is performed from left to right of the record. If more variables
are specified than are required, the excess variables are set to null. If too
few variables are specified to contain the data, some information is lost.

&CNMREAD

272 Network Control Language Reference Guide

VARS=prefix* [RANGE=(start,end)]

Nominates the user-specified variables to hold the tokenized CNM record if
segmentation is requested. The VARS=prefix* operand specifies that the
system generates the token names automatically as &prefix1, &prefix2
through to &prefixn, according to the range specified by the RANGE
operand. The prefix is one to four characters in length and must adhere to
the standard NCL variable naming conventions. Tokenization then proceeds
as described for the ARGS operand.

VARS={ name | (name,name,...,name) }

Nominates the user-specified variables to hold the tokenized CNM record if
segmentation is requested. The VARS=name operand indicates a single
specific token name only. Alternatively, a list of specific token names is
provided, each name separated by a comma and the entire list enclosed in
parentheses. Tokenization then proceeds as described for the ARGS
operand.

MDO=mdoname [MAP=mapname]

Formats that the incoming data into an MDO with the name mdoname. If
the incoming data is mapped, then the received map name is used to
connect to Mapping Services Mapping Support. If the incoming data is not
mapped, then the requester is responsible to connect to Mapping Services
Mapping Support if necessary. MAP=mapname nominates the map name
which defines the mapping of the data object.

The distributed $CNM map defines the MDO received on an &CNMREAD
verb.

Examples: &CNMREAD

&CNMREAD TYPE=BOTH VARS=(A,B,C,D,E,F,G,H,I,J)

&CNMREAD ARGS RANGE=(1,12)

&CNMREAD TYPE=VECTOR

&CNMREAD TYPE=RESP

&CNMREAD

Chapter 2: Verbs and Built-in Functions 273

Notes:

When control is returned to the NCL procedure following an &CNMREAD
statement the &RETCODE (return code) variable is set to one of the following:

0

For an &CNMREAD request other than TYPE=RESP, this return code
indicates that data has arrived and is now placed in the variables as
described for the &CNMREAD statement.

For an &CNMREAD TYPE=RESP request, this return code indicates a positive
response was received following an &CNMSEND request.

4

Indicates that no data is outstanding. This return code is expected when an
&CNMREAD request is issued in the following circumstances:

■ Previous &CNMREAD statements have processed all reply data solicited
using &CNMSEND.

■ No reply data was returned following an &CNMSEND statement and a
previous &CNMREAD TYPE=RESP has been issued.

■ No &CNMSEND has been issued which specified that the results be
returned to the soliciting user, or no &CNMSEND has been issued since
the last &CNMCLEAR statement.

8

Indicates that some error, such as a negative response, has been
encountered. The &SYSMSG variable is set and contains text explaining the
actual error. An &CNMCLEAR is not required following such an error as an
implicit clear is performed when the &CNMREAD completes.

12

Is set when the WAIT=nnnn option is used to indicate that the time interval
specified expired before any data satisfying the particular request arrived.

An &CNMREAD request issued from CNMPROC always returns with the
&RETCODE value set to 0 unless the WAIT=nnnn option was also specified. In
this case an &RETCODE value of 12 is possible. The use of an &CNMREAD
TYPE=RESP request from CNMPROC serves no useful purpose, as control is
returned immediately with &RETCODE set to 0. While you are testing and
developing a CNMPROC procedure, you can terminate the current version and
invoke a new copy. Use the SYSPARMS CNMPROC=FLUSH command, which is
designed to force termination of CNMPROC, followed by a SYSPARMS
CNMPROC=procname command to restart CNMPROC.

&CNMREAD

274 Network Control Language Reference Guide

For a user procedure, a reply to a &CNMSEND satisfies the &CNMREAD request
for data. If multiple RUs are returned from a single solicitation, then each can be
read in sequence by subsequent &CNMREAD statements. After the last reply RU
is read a subsequent &CNMREAD returns with &RETCODE set to 4 (unless
further &CNMSEND statements have been issued). Similarly, if multiple
&CNMSEND solicitations are performed before issuing any &CNMREAD
statements, each &CNMREAD request for data is satisfied by a reply RU until all
RUs from all solicitations have been processed. All reply RUs are presented, in
the order of their arrival from VTAM, for the first such request before any are
returned for the next request. After all RUs from all requests have been
processed in this manner a subsequent &CNMREAD completes with &RETCODE
set to 4.

While reply RUs for a particular solicitation are available (that is, have not yet
been processed by an &CNMREAD request), an &CNMREAD TYPE=RESP returns
the response for that solicitation, even when subsequent &CNMSENDs are
issued (that is, further requests have queued response information). After all
reply RUs are processed for a solicitation, or where the &CNMSEND request did
not solicit and an &CNMREAD TYPE=RESP has processed the response, a
subsequent &CNMREAD TYPE=RESP returns the response from the next
&CNMSEND statement.

Where an &CNMREAD request for data follows a single &CNMSEND request
that does not solicit data, the &CNMREAD completes with an &RETCODE value
of 4. However, if any subsequent &CNMSEND statement that did solicit data
was issued before the &CNMREAD statement, data from the first such request
would satisfy the &CNMREAD. In either case, the response information to those
intervening requests which did not satisfy a &CNMREAD is lost, unless an error
is detected in any such request. Detection of an error condition always results in
&RETCODE being set to 8 and the &SYSMSG variable set, regardless of the type
of &CNMREAD issued.

You are responsible to maintain synchronization between data sent and
received across the CNM interface. The &CNMCLEAR NCL statement can assist
in this respect.

If the TYPE=VECTOR or TYPE=BOTH operands are specified, the &$CNMSV*
variables created (except for &$CNMSVLIST) have the Modified Data tag set.
This setting allows the CNM information in them to be processed using the
&ASSIGN verb or the &ZMODFLD system variable. For more information, see
the descriptions of &ASSIGN and &ZMODFLD in this reference.

See also the distributed CNMPROC, $NWCNMPR.

&CNMSEND

Chapter 2: Verbs and Built-in Functions 275

More information:

&CNMCLEAR (see page 261)
&CNMSEND (see page 275)

&CNMSEND

The &CNMSEND verb sends the data supplied across the CNM interface.

This verb has the following format:

&CNMSEND [READ={ USER | CNM | BOTH }]

 [LINKNAME=linkname | SSCPNAME=sscpname | DOMAIN=domain]

 [&var &var &var |

 MDO=mdoname |

 VARS=... |

 ARGS [RANGE=(start,end)]]

The &CNMSEND verb is used from a user procedure to request NEWS to
forward the CNM RU data supplied across the CNM interface to VTAM. The data
is supplied in one or more NCL variables that contain the entire record to send
to VTAM.

&CNMSEND processing always sets the &RETCODE system variable and may set
the &SYSMSG variable as described in the later notes.

&CNMSEND

276 Network Control Language Reference Guide

Operands:

READ={ USER | CNM | BOTH }

Specifies where to process any reply RUs solicited by this &CNMSEND
request.

READ=USER

Specifies that only the soliciting user receives the results. The
&CNMREAD statement does not need to be in the same NCL procedure
as the &CNMSEND statement. However, any data solicited becomes
unavailable after a &CNMCLEAR is issued or the user returns to the
Primary Menu. This option is useful when data is solicited for inspection
by the user only, avoiding NEWS database logging (and hence the
possible loss of existing database records).

READ=CNM

Specifies that any data solicited is not returned to the soliciting user but
undergoes standard CNM delivery, which normally involves forwarding
to CNMPROC. A subsequent &CNMREAD issued by this user completes
with a no data found condition. This option is most useful for
unattended solicitation where results are returned for normal analysis
by the NEWS system.

READ=BOTH

Enables a user to process the returned results and also provides
standard CNM delivery.

Default: BOTH

LINKNAME=linkname | SSCPNAME=sscpname | DOMAIN=domain

Directs the record to a remote system for processing. These operands are
mutually exclusive. NEWS uses the Inter-System Routing (ISR) feature to
communicate with other systems running on remote hosts, and therefore
can route any CNM request to a remote host for processing. The link, SSCP,
or domain ID uniquely identifies the destination host. For remote processing
to be possible, the INMC link to the remote host must be active and the
NEWS facilities in ISR must be enabled for solicited message flows. If the
destination name is that of the local system, the local CNM interface is used.

Note: For more information about the ISR command, see the online help.

&CNMSEND

Chapter 2: Verbs and Built-in Functions 277

&var &var &var

Are user-specified variables that contain the CNM record to forward to
VTAM across the CNM interface. Each variable contains valid hexadecimal
characters that, when concatenated, form the entire CNM RU.

Where a Network Services RU (NS RU) is sent to VTAM embedded in a
Forward RU, the variables must include the Forward RU with the target
resource and PU vectors appended. In addition, all relevant RU byte values
and length fields must be appropriately set, with the exception of the
12 bits in the CNM header comprising the procedure correlator identifier
(PRID). Where NEWS recognizes from the supplied RU data that this RU is a
solicitation request, it automatically generates a PRID and inserts the value
in the CNM RU. The PRID, echoed by the resource in any reply RUs, is used
to correlate reply data with the &CNMSEND request.

MDO=mdoname | VARS=... | ARGS [RANGE=(start,end)]

Specifies the data to place in the alert queued to CNMPROC.

If the MDO= operand is used, the data is located as formatted in the MDO.

Specifying VARS=... or ARGS results in a $NCL MDO being built and delivered
in the $MSG MDO, containing the named variables or arguments.

The MDO, VARS, and ARGS operands are mutually exclusive.

RANGE=(start,end) is specified with ARGS, to denote an argument range.

Examples: &CNMSEND

&CNMSEND &1

&CNMSEND READ=USER &REQMSRU

&CNMSEND READ=CNM &LDRU1 &LDRU2

&CNMVECTR

278 Network Control Language Reference Guide

Notes:

When control is returned to the NCL procedure following an &CNMSEND
statement the &RETCODE (return code) variable is set to one of the following
values:

0

The data supplied has been accepted without error by VTAM. However,
VTAM or the target PU can still reject the CNM RU for various reasons, and a
&CNMREAD is necessary to determine whether the request was executed
successfully.

8

An error has been encountered (for example, the NEWS ACB was closed).
The &SYSMSG variable is set and contains text explaining the actual error.
An &CNMCLEAR is not required following such an error, as an implicit clear
is performed when the &CNMSEND is complete. A subsequent &CNMREAD
completes with a no data found condition.

More information:

&CNMREAD (see page 268)
&CNMCLEAR (see page 261)

&CNMVECTR

The &CNMVECTR verb vectors the data supplied into user variables.

This verb has the following format:

&CNMVECTR [MVNUM=nn]

 [TYPE= { RU | SV | CV }]

 [VARS=prefix*] &var &var &var

The &CNMVECTR verb is used from a user procedure to format the segmented
CNM RU data into user variables as in an &CNMREAD TYPE=VECTOR operation.

&CNMVECTR

Chapter 2: Verbs and Built-in Functions 279

Operands:

MVNUM=nn

Specifies which of the major vectors is to be formatted. Some NMVT records
contain more than one embedded major vectors. If the specified major
vector does not exist, no variables are created.

TYPE= { RU | SV | CV }

Specifies the type of formatting that is required.

TYPE=RU

Specifies that the supplied data is an entire CNM RU and is to be
formatted in the fashion of the &CNMREAD TYPE=VECTOR operation.

TYPE=SV

Specifies that the data to be formatted is one or more concatenated
subvectors. These vectors have the format ln…. l is the length of the
subvector (inclusive of length byte and identifier byte), and n is the
1-byte subvector identifier. The vectorization process divides the data
into its constituent subvectors and places them in the variables
&prefixSVnnoo.

TYPE=CV

Partitions SNA control vectors. These vectors have the format nl…. n is
the control vector type, and l is the 1-byte field containing the length of
the data in the control vector (this length excludes the type byte and
length byte). The vectorization process divides the data into its
constituent vectors, and places them in the variables &prefixCVnnoo.

VARS=prefix*

Specifies a prefix other than $CNM for the variables created during the
vectorization process. The prefix is one to four characters and must adhere
to the standard NCL variable naming conventions.

&var &var &var

Specifies the variables that contain the character-format hexadecimal data
to process.

Examples: &CNMVECTR

&CNMVECTR &1 &2 &3 &4 &5 &6 &7 &8 &9

&CNMVECTR TYPE=SV VARS=VECT* +

0E91030D0D0056FE0FFE03FE0300

&CONCAT

280 Network Control Language Reference Guide

More information:

&CNMREAD (see page 268)

&CONCAT

The &CONCAT built-in function returns a string that is the concatenation of the
supplied data.

This built-in function has the following format:

&CONCAT { var | const var | const ... var | const }

&CONCAT provides a means of concatenating or joining multiple variables or
constants, to form a single variable to a maximum length of 256 characters.

&CONCAT is a built-in function and must be used to the right of an assignment
statement. Multiple variables or constants is concatenated with a single
&CONCAT statement.

Operands:

var

Specifies a system or user variable.

const

Specifies a constant value.

Examples: &CONCAT

&FLOOR = 03

&BLDG = HQ

&LOCATION = &CONCAT &BLDG &FLOOR

 -* &LOCATION is set to HQ03

&SRCHKEY = &CONCAT 55 LOCN &LOCATION

 -* &SRCHKEY is set to 55LOCNHQ03

Notes:

The total sum of the concatenated variables or constants cannot exceed the
maximum size for one variable-any data for concatenation which exceeds 256
characters is truncated.

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &CONCAT is sensitive to the
presence of DBCS data (see page 1280).

&CONTROL

Chapter 2: Verbs and Built-in Functions 281

&CONTROL

The &CONTROL verb sets NCL procedure control characteristics.

This verb has the following format:

&CONTROL [ALIGNLc | ALIGNRc | NOALIGN]

 [CMD | NOCMD]

 [CMDSEP | NOCMDSEP]

 [CONT | NOCONT]

 [DBCS | DBCSN | DBCSP | NODBCS]

 [DUPCHK | NODUPCHK]

 [ENDMSG | NOENDMSG]

 [FINDRC | NOFINDRC]

 [FLDCTL | NOFLDCTL]

 [IFCASE | NOIFCASE]

 [INTEGER | REAL]

 [INTLOG | NOINTLOG]

 [KEYXTR | NOKEYXTR]

 [LABEL | NOLABEL]

 [LOOPCHK | NOLOOPCHK]

 [MDOCHK | NOMDOCHK]

 [PAKEYS | NOPAKEYS]

 [PANELID | NOPANELID]

 [PANELRC | NOPANELRC]

 [PFKMAP | NOPFKMAP]

 [PFKSTD | PFKALL | NOPFK]

 [RECCHK | NORECCHK]

 [RESCAN | RESCAN1 | NORESCAN]

 [RNGLIM | NORNGLIM]

 [SAVE | NOSAVE]

 [SHAREW | NOSHAREW]

 [SHRVARS | SHRVARS=* | ([*,] pref,...,pref) |

 NOSHRVARS | NOSHRVARS=* | ([*,] pref,...,pref)]

 [SUB | NOSUB]

 [TRACE | NOTRACE | TRACELOG | TRACELAB | TRACEALL]

 [UCASE | NOUCASE]

 [USRCMD | NOUSRCMD]

 [VARSEG | NOVARSEG]

Specifying &CONTROL with no operands returns all CONTROL variables to their
default values (see note on SHAREW operand). The &CONTROL statement
defines all processing options available for modifying NCL execution
characteristics.

&CONTROL

282 Network Control Language Reference Guide

Each option available on the &CONTROL statement has two possible settings:
ON or OFF. The &CONTROL options are represented by keywords, which
typically have the following forms:

value or NOvalue

NOvalue represents the OFF setting for value.

Every option has a default setting which is in effect when a process is invoked.
Procedures within the NCL process can execute &CONTROL statements
anywhere in the logic to set or reset any of the &CONTROL options. The
combination of &CONTROL option settings in force at any instant for a process
are called the process's &CONTROL environment.

If &CONTROL SAVE is specified or defaulted, then whenever a procedure calls
another procedure using the EXEC command, the current &CONTROL
environment is remembered and restored when the called procedure ends and
returns control. This prevents the calling procedure from being affected if any
&CONTROL options are changed by the procedure it calls or by any lower-level
procedures.

&CONTROL does not affect the logic of a procedure or have any direct effect on
variables. The verb changes the execution characteristics of subsequent
statements in the procedure.

&CONTROL statements are processed inline, so most operands that are coded
on an &CONTROL statement is specified as variables. The value or the variable
specified is substituted according to its value at the time the statement is
executed.

By setting the value of a variable to the name of one of the &CONTROL
operands you can dynamically generate &CONTROL environments.

The &CONTROL CONT and NOCONT operands cannot be the subject of dynamic
substitution because they govern the processing of statement continuations and
are processed only when a procedure is loaded for execution.

&CONTROL

Chapter 2: Verbs and Built-in Functions 283

Operands:

ALIGNLc | ALIGNRc | NOALIGN

ALIGNLc

Specifies that substituted values are aligned on the left side of the
variable being replaced. The length of the variable name is preserved,
and, if necessary, the fill character c is used to pad the substituted value
to the right. If the fill character c is omitted, a blank is assumed.

This option lets you align tabular output. The length of the variable
name being replaced determines the point of alignment. Therefore, use
variables with similar length names if alignment is required. If
substitution data exceeds the length of the variable, alignment cannot
be performed and the option is ignored. If the variable value is null at
the time of substitution, padding occurs for the full length of the
variable name.

ALIGNRc

Specifies that substituted values are aligned to the right-hand side of
the variable being replaced. The length of the variable name is
preserved, and, if necessary, the fill character c is used to pad the
substituted value to the left. If the fill character c is omitted, a blank is
assumed. If the variable value is null at the time of substitution, padding
occurs over the full length of the variable name. This option lets you
align numeric tables.

NOALIGN

Specifies that the process of variable substitution is performed for the
entire length of the variable being substituted. If the substitution data is
shorter than the variable being replaced, characters to the right of the
variable are shifted to the left.

Default: NOALIGN

&CONTROL

284 Network Control Language Reference Guide

CMD | NOCMD

CMD

Specifies that all commands executed from within a procedure (with the
exception of the PAGE, CLEAR, and K commands) are to be echoed to
the user terminal and logged on the activity log.

NOCMD

Specifies that all commands, until the end of the procedure or until an
&CONTROL CMD statement, are not to be echoed to the user terminal.
Commands are still logged to the activity log. Alternatively, use the
suppression character (-) on each command individually. The
suppression character also suppresses logging the command to the
activity log.

Default: CMD

CMDSEP | NOCMDSEP

CMDSEP

Scans command strings executed from NCL procedures for the
command concatenation character (;) and splits the commands
accordingly.

NOCMDSEP

Specifies no scanning for the command concatenation character (;) and
treats a command string as one command, irrespective of any command
concatenation characters within the text of the command. Use this
option where the command being executed can contain a semi-colon
within the text of the command itself (for example, NSBRO issuing a
broadcast where the broadcast text may contain a semi-colon).

Default: CMDSEP

&CONTROL

Chapter 2: Verbs and Built-in Functions 285

CONT | NOCONT

CONT

Concatenates procedure statements if the last character of a statement
that is not blank is a plus sign (+). This option makes it possible for a
single statement to exceed the length of a procedure record. CONT
cannot be dynamically substituted because the CONT and NOCONT
operands are resolved during the NCL procedure load process.

NOCONT

Specifies that statements are not concatenated and treats any trailing
plus signs as part of the statement in which they occur. This option is
necessary for procedures that use commands, such as EQUATE, where a
trailing plus sign may imply a trailing blank.

The &CONTROL CONT and NOCONT operands cannot be the subject of
dynamic substitution because they govern the processing of statement
continuations and are processed only when a procedure is loaded for
execution. For example, you cannot use the following construction:

&A = CONT

&CONTROL &A

All other &CONTROL options are dynamically substituted.

Default: CONT

&CONTROL

286 Network Control Language Reference Guide

DBCS | DBCSN | DBCSP | NODBCS

Specifies the presence or absence of Double Byte Character Set (DBCS) data.
Manipulating DBCS strings requires special care to preserve its integrity. The
NCL language provides extensive support for DBCS data manipulation. This
support is available in product regions executing with the SYSPARMS DBCS
operand set to YES, IBM, or FUJITSU.

A string of data can contain a mixture of single byte (SBCS) and double byte
data. Typically, special characters known as shift characters delineate DBCS
data. A shift out character is used to mark the start of DBCS data, and a shift
in character marks the return to SBCS data.

DBCS

Specifies that NCL is to be sensitive to the presence of DBCS data. When
this operand is in effect, NCL ensures that DBCS or mixed DBCS/SBCS
strings are not corrupted during string manipulation.

The DBCS operand causes the counting of shift characters when NCL
calculates offsets and lengths in mixed strings. This option is useful
when preparing data for display on IBM terminals such as the 5550,
where shift characters display as blank one-byte fields.

DBCS adds some processing overhead to NCL. Use it only when the
presence of DBCS data is expected. This operand is ignored if your
product region is running with the SYSPARMS DBCS operand set to NO.

DBCSN

Specifies that NCL is to be sensitive to the presence of DBCS data. When
this operand is in effect, NCL ensures that DBCS or mixed DBCS/SBCS
strings are not corrupted during string manipulation.

The DBCSN operand causes shift characters not to be counted when
NCL calculates offsets and lengths in mixed strings. This option is useful
when preparing data for display on Fujitsu or Hitachi terminals, where
shift characters do not take a screen position.

DBCSN adds some processing overhead to NCL. Use it only when the
presence of DBCS data is expected. This operand is ignored if your
product region is running with the SYSPARMS DBCS operand set to NO.

&CONTROL

Chapter 2: Verbs and Built-in Functions 287

DBCSP

Specifies that NCL is to be sensitive to the presence of DBCS data. When
this operand is in effect, NCL ensures that DBCS or mixed DBCS/SBCS
strings are not corrupted during string manipulation.

When calculating offsets and lengths in mixed strings, the DBCSP
operand causes NCL to count or not count shift characters, depending
on the processing environment of the NCL procedure. If the procedure
is executing on behalf of a user logged on from a Hitachi 560/20 or
Fujitsu DBCS terminal, shift characters are not included in offset and
length calculations. If the NCL procedure is executing on behalf of a user
logged on from an IBM DBCS terminal or a terminal that does not
support DBCS data, the shift characters are included in offset and length
calculations. If the NCL procedure is executing in a background region
(for example, BSYS), shift characters are included in offset and length
calculations if your product region is executing under an IBM operating
system, but not if your product region is operating under a Fujitsu or
Hitachi operating system.

DBCSP simplifies coding where you want to execute the NCL procedure
on various operating systems or by various terminal types. The option
adds some processing overhead to NCL. Use this operand only when the
presence of DBCS data is expected. This operand is ignored if your
product region is running with the SYSPARMS DBCS operand set to NO.

NODBCS

Specifies that NCL processing does not include any special consideration
for DBCS data. If mixed DBCS/SBCS strings are present, NCL's string
manipulation functions could corrupt the data.

&CONTROL

288 Network Control Language Reference Guide

DUPCHK | NODUPCHK

DUPCHK

Specifies that a check is made for duplicate labels whenever an &GOTO
statement is executed. The occurrence of a duplicate label terminates
the procedure.

NODUPCHK

Specifies that no check for duplicate labels is performed when an
&GOTO statement is executed. Control resumes at the first occurrence
of the specified label following the &GOTO statement. If not found
before the end of the procedure, the search for the specified label
continues from the top of the procedure. If the label is missing, an error
occurs (unless NOLABEL is in effect). Specifying this option can speed up
processing of large procedures. If duplicate labels exist, unpredictable
results can occur.

NODUPCHK is typically specified only after a procedure has been
thoroughly tested.

Default: DUPCHK

ENDMSG | NOENDMSG

ENDMSG

Specifies that a completion message N03906 is issued to signal the
completion of a procedure.

NOENDMSG

Specifies the suppression of the N03906 completion message unless an
error occurs while processing the procedure, or a FLUSH or END
command terminates the procedure.

Default: ENDMSG

&CONTROL

Chapter 2: Verbs and Built-in Functions 289

FINDRC | NOFINDRC

FINDRC

Specifies that an attempt to execute a nested procedure that does not
exist in the procedure library returns a value of 100 in the &RETCODE
system variable, rather than fail the requesting procedure. This option
allows the requesting procedure to detect requests to nest to
nonexistent procedures.

NOFINDRC

Specifies that an attempt to execute a nonexistent nested procedure
fails the requesting procedure.

Default: NOFINDRC

FLDCTL | NOFLDCTL

FLDCTL

Specifies that &ZMODFLD processing is performed for panels displayed
by the current procedure. See the &ZMODFLD variable for details of this
facility. The FLDCTL control option is required before &ZMODFLD is
made available.

NOFLDCTL

Specifies that &ZMODFLD processing is not performed for panels
displayed by the current procedure.

Default: NOFLDCTL

IFCASE | NOIFCASE

IFCASE

Specifies that the operands on an &IF statement are converted to
uppercase before comparison. The conversion occurs only for the
purposes of comparison, and does not change the value of the
operands. IFCASE has no effect if the SYSPARMS DBCS=YES option is in
force.

If variable uppercase translation is performed automatically on
assignment, the effect of the &CONTROL UCASE option can override the
intended effect of IFCASE. See the UCASE operand description.

NOIFCASE

Specifies that the operands on an &IF statement are compared without
case translation.

Default: IFCASE

&CONTROL

290 Network Control Language Reference Guide

INTEGER | REAL

Specifies the precision of arithmetic functions that are used.

INTEGER specifies integer arithmetic, where integer operands in an
arithmetic expression yield only integer results.

If an arithmetic expression contains real numbers that contain a decimal
point or decimal fraction, then the expression is evaluated as if &CONTROL
REAL were in effect.

&CONTROL INTEGER also controls the manner in which variables are
compared. If &CONTROL INTEGER is in effect, the &IF statement performs a
numeric comparison of two variables if both contain integer numbers.
Otherwise, it performs a string comparison.

If &CONTROL REAL is in effect, then &IF performs a numeric comparison if
both variables contain integers, real numbers, or the results of real number
arithmetic calculations. If a real number calculation is performed and
&CONTROL REAL is not in effect when a comparison (&IF) is executed, then
a variable containing the result of a real number calculation, or a real
number, is not treated as an integer, and a string comparison occurs.

Default: INTEGER

Note: For more information about integer and real number arithmetic, see
the Network Control Language Programming Guide.

&CONTROL

Chapter 2: Verbs and Built-in Functions 291

INTLOG | NOINTLOG

INTLOG

Specifies that all commands issued by &INTCMD and all responses
resulting from those commands are logged to the activity log (but not
echoed to the user terminal). Because of the concealed way in which
&INTCMD operates, you may want to log the activity for certain
commands. Commands processed by &INTCMD and associated
responses is identified on the activity log with *nclid* in the node name
column.

NOINTLOG

Specifies that commands issued with &INTCMD, and any associated
responses to those commands, are not logged to the activity log. If the
NOINTLOG operand is specified, the lines on the log showing *nclid* in
the node name column is suppressed. Using &INTCLEAR to discard
outstanding responses associated with &INTCMD processing can disown
messages and force them to be logged. In these cases, the NOINTLOG
operand is ignored and the outstanding messages are logged. To avoid
this, structure your procedure to process all outstanding messages.

Default: INTLOG

KEYXTR | NOKEYXTR

KEYXTR

Specifies that the key portion of the record is extracted from the body
of the record when it is placed in the &FILEKEY system variable when
processing a UDB which has a key that does not start in the first position
of the record (non-RKP 0). A field separator is inserted to separate the
data that existed on either side of the extracted key.

NOKEYXTR

Specifies that when processing a UDB that has a key that does not
commence in the first position of the record (non-RKP 0), the key
portion of the record is not extracted from the main body of the record
when it is placed in the &FILEKEY system variable. This can help when
processing UDBs using alternate indices, as the relative position of
variables having data assigned into them does not change. It may
therefore be possible to use common processing for both base and
alternate index processing. In such a case, no field separator is inserted.

Default: KEYXTR

Note: For more information about using this facility, see the Network
Control Language Programming Guide.

&CONTROL

292 Network Control Language Reference Guide

LABEL | NOLABEL

LABEL

Specifies that the label which is the subject of an &GOTO or &GOSUB
must exist. If an &GOTO or &GOSUB is attempted to a label which has
not been defined, the procedure terminates with an error.

NOLABEL

Specifies that an &GOTO or &GOSUB to an undefined label does not
terminate the procedure but instead passes control to the statement
following the &GOTO or &GOSUB. Using NOLABEL can significantly
simplify procedure writing. It eliminates the use of multiple &IF
statements to determine the course of action to be taken and permits
immediate branching to the appropriate point. If the label to which the
branch is attempted is not defined, the statement following the &GOTO
or &GOSUB is executed. This can have major performance advantages
over conventional methods.

Where possible, the &CONTROL NOLABEL technique should be used
where a large number of branch conditions are possible, for example in
a procedure that is written to process VTAM messages.

In this case, each message commences with a message number (in the
format ISTnnnn) which is associated with the type of processing
required for that message. The message number can therefore be used
as the label to be the target of an &GOTO.

In the following example, the &INTREAD statement is being used to
request that the next VTAM message be presented to the procedure
following the issuing of the command via the &INTCMD statement:

&CONTROL NOLABEL NODUPCHK

&INTCMD D LU1 .READ

 &INTREAD ARGS &GOTO .&1

 -* Unexpected messages will drop past the &GOTO

 &WRITE ALARM=YES DATA=UNEXPECTED VTAM MSG &1 &2 +

 &3 &4 &5 &6

 &GOTO .READ

 -* Processing for expected messages follows

.ISTnnnI

.ISTnnnI

 :

 perform processing

 : &GOTO .READ

 -* End of output message from VTAM comes here

.IST314I

&END

Default: LABEL

&CONTROL

Chapter 2: Verbs and Built-in Functions 293

LOOPCHK | NOLOOPCHK

Determines whether an NCL procedure is terminated in error due to
excessive looping.

LOOPCHK

Specifies that the procedure is flushed if the &LOOPCTL setting is
exceeded.

NOLOOPCHK

Specifies that a procedure is not flushed.

Default: NOLOOPCHK

MDOCHK | NOMDOCHK

Determines whether an NCL procedure is terminated in error if it
encounters a Mapping Services error.

MDOCHK

Specifies that the procedure is flushed if, on an &ASSIGN statement, the
&ZMDORC is set to 8 or higher.

NOMDOCHK

Specifies that the user is responsible for handling all Mapping Services
errors.

Default: NOMDOCHK

&CONTROL

294 Network Control Language Reference Guide

PAKEYS | NOPAKEYS

PAKEYS

Specifies that the procedure intends to process terminal PA keys. If the
user presses a PA key, control is returned to the procedure following a
full-screen panel display, and the &INKEY variable is set to the value of
the PA key pressed, which may be PA1, PA2, or PA3. If IPANULL=YES is
specified on the #OPT statement on the panel definition, all input
screen variables are nulled and internal validation bypassed. If
IPANULL=NO is specified, all input variables retain their contents
unmodified, as at the time the panel was displayed. No data is entered
when using PA keys, and any data entered into input fields is lost. If two
windows are open and both are eligible to receive PA key notification, it
is indeterminate which window will receive such notification. PAKEYS
applies to full-screen processing only.

NOPAKEYS

Specifies that the procedure is not interested in processing PA keys from
the terminal. Pressing a PA key simply results in the terminal keyboard
being unlocked.

Default: NOPAKEYS

PANELID | NOPANELID

PANELID

Specifies that the name of the current panel is to be displayed in the
upper left hand corner of the panel. The panel name is displayed only if
the panel contains some data on the first line and no field characters in
the first 12 positions of the first line. The panel name overwrites any
data in these first 12 positions. PANELID applies to full-screen
processing only.

NOPANELID

Specifies that the current panel name is not to be displayed in the first
12 positions of the first line of the panel. NOPANELID applies to
full-screen processing only.

Default: NOPANELID

&CONTROL

Chapter 2: Verbs and Built-in Functions 295

PANELRC | NOPANELRC

PANELRC

Specifies that a procedure using an &PANEL statement to display a
full-screen panel is designed to accept return codes from Panel Services
that indicate specific processing conditions. The return code are
available in the &RETCODE system variable on return from the &PANEL
statement.

When processing with PANELRC, it is possible for the procedure to
obtain notification of special situations that can assist in performing
more advanced processing. For example, when using PANELRC it is
possible to obtain the name of a field that has failed internal validation
and to provide appropriate help information, or to determine that a
requested panel does not exist and to avoid termination of the
procedure. PANELRC applies to full-screen processing only.

Note: For more information about the PANELRC operand, see the
Network Control Language Programming Guide.

Possible return codes are:

– 0—One or more fields on the panel have been entered or modified.
All validation that was to be performed by Panel Services (for
example, EDIT=NUM) has been completed without errors. Used in
conjunction with return code 4 a procedure can determine if
displayed data has been modified and therefore warrants validation
and perhaps updating on a file. If an asynchronous panel operation
was being performed, return code 0 means that the display will not
be performed because input is available from the preceding display
of the same panel. The procedure should process the input received
before re-displaying the panel.

– 4—No fields on the panel have been modified since it was last
displayed. It is the responsibility of the panel designer to allow for
the situation where a panel is redisplayed, perhaps to flag a field in
error, and this return code is then used to determine if any fields
have been modified. This return code applies only to the last
iteration with the terminal operator. If an asynchronous panel
operation was being performed, return code 4 means that the panel
display will not occur because input is available from the earlier
display of the panel.

&CONTROL

296 Network Control Language Reference Guide

– 8—Panel Services field validation detected an error. The &SYSFLD
variable contains the name of the input field in error and &SYSMSG
contains the text of the error message that describes the error
condition (for example, FIELD NOT NUMERIC). The procedure can
take any appropriate action, including modifying the message text
in &SYSMSG or displaying help information. If the panel has been
designed to take advantage of #OPT statement ERRFLD processing
facilities and the ERRFLD operand is specified as ERRFLD=&SYSFLD
then a re-display of the panel will perform normal error processing
and position the cursor to the field in error. This return code is ideal
for escaping from a panel where one or more fields have been
specified as REQUIRED=YES.

– 12—For synchronous &PANEL statements, 12 indicates that the
INWAIT timer period has expired. No operator input has been
made. The &INKEY system variable will be set to null. For
asynchronous operations, 12 indicates that the panel display
request has been accepted and the panel has been scheduled for
display. If the same panel was displayed earlier and is being
refreshed or updated, this indicates that no input was received from
the earlier display.

– 16—The requested panel could not be found on the panels data set
or a syntax error occurred preventing the panel display. The
&SYSMSG system variable contains an explanation of the error.

NOPANELRC

Specifies that a procedure using an &PANEL statement to display a
full-screen panel is not designed to accept return codes from Panel
Services. Panel Services is to perform all processing. NOPANELRC applies
to full-screen processing only.

When NOPANELRC is in effect the following actions corresponding to
the return codes provided by PANELRC will occur:

– Fields changed—Must be determined by procedure.

– No fields changed—Must be determined by procedure.

– Field in error—Internal validation errors are processed by Panel
Services. Redisplay of panels for error messages is automatic.

– INWAIT expired—Must be determined by procedure. &INKEY
variable is set to null.

– Invalid panel name—NCL procedure terminates with an appropriate
error message.

Default: NOPANELRC

&CONTROL

Chapter 2: Verbs and Built-in Functions 297

PFKMAP | NOPFKMAP

PFKEYMAP

Specifies that the &INKEY variable (which is set to the value of the key
used to input from a full-screen panel, for example, F1, F13) are to be
set to a value in the range F1 to F12 when input results from the use of
F13 to F24. Keys F13 to F24 are be mapped as F1 to F12. This can
simplify the processing performed within the procedure as it need not
cater for keys F13 to F24.

NOPFKMAP

Specifies that mapping of function keys is not to be performed. Keys F13
to F24 are presented unchanged and the NCL procedure must cater for
them.

Default: NOPFKMAP

PFKSTD | PFKALL | NOPFK

PFKSTD

Specifies that non-system function keys, plus F3/4 and F15/16, are to be
passed to the procedure for processing. Function keys F2/14 and
F9/21are still processed by the system as SPLIT and SWAP keys. PFKSTD
applies to full-screen processing only.

PFKALL

Specifies that all function keys are to be passed to the procedure for
processing. Unless appropriate support is included in the NCL
procedure, this option nullifies the use of split-screen operation. PFKALL
applies to full-screen processing only.

NOPFK

Specifies that only non-system function keys are to be passed to the
procedure for processing, following input from a full-screen panel.
&INKEY is set to the value of the key pressed. System function keys are:
F3/4, F15/16, F2/14, and F9/21. The use of F3/4 or F15/16 terminates
(flushes) the procedure if this option is in effect. NOPFK applies to
full-screen processing only.

Default: NOPFK

&CONTROL

298 Network Control Language Reference Guide

RECCHK | NORECCHK

RECCHK

Specifies that NCL is to test for recursive processing when invoking new
nesting levels. NCL prevents a procedure of the same name as that
already in use at a higher level from being invoked, as it could result in a
recursive processing loop.

NORECCHK

Specifies that NCL is not to check for potential recursive processing
when invoking new NCL nesting levels. When this option is used it is the
responsibility of the procedure to ensure that recursive processing is
not possible. Failure to adhere to this requirement may adversely effect
other parts of the system.

Default: RECCHK

&CONTROL

Chapter 2: Verbs and Built-in Functions 299

RESCAN | RESCAN1 | NORESCAN

RESCAN

Specifies that if NCL encounters an ampersand (&) within the value of a
variable during substitution, then it treats it as an embedded variable
name and not as data. The embedded variable name is subject to
iterative resubstitution to a maximum of 16 times. For example, in the
construction:

&CONTROL NORESCAN

&A = &CONCAT & TIME (&A value is &TIME)

&WRITE DATA=&A

&A is displayed as having a value of the character string &TIME.

In the construction:

&CONTROL RESCAN

&A = &CONCAT & TIME (&A value is &TIME)

&WRITE DATA=&A

&A is displayed as having a value of the character string 12.00.00,
assuming the time is midday.

&CONTROL RESCAN is useful for resolving the value of variables passed
to a nested or started NCL procedure when the parameters passed
contain the names of other variables.

RESCAN1

Specifies that if, during substitution, NCL encounters an ampersand (&)
within the value of a variable, then it treats it as an embedded variable
name, not as data. There is no iterative resubstitution.

NORESCAN

Specifies that if, during substitution, NCL encounters an ampersand (&)
within the value of a variable, it is to be treated as data, not as an
embedded variable that is to be resubstituted.

Default: NORESCAN

&CONTROL

300 Network Control Language Reference Guide

RNGLIM | NORNGLIM

Specifying RNGLIM sets a limit of 64 on the operational range of the
&ASSIGN (see page 218) statement when creating or modifying groups of
variables. This is used to prevent logic errors (causing excessive numbers of
variables to be created) in procedures that use &ASSIGN. RNGLIM does not
restrict the range of variables that is deleted by &ASSIGN.

If very large numbers of variables are to be processed in one &ASSIGN
operation, then use NORNGLIM to remove the limit of 64. NORNGLIM
specifies that no range restriction is imposed on the ability of the &ASSIGN
statement to generate groups of variables.

Default: NORNGLIM

SAVE | NOSAVE

SAVE

Specifies that when a nested procedure is invoked the current
&CONTROL values are to be saved and automatically restored on return
from the nested level. This ensures that any changes made to
&CONTROL options by the nested level do not impact the current level.
Thus, changes made to &CONTROL in the lower level impact only that
level and other levels that it may invoke, and the saved values are
restored on return.

NOSAVE

Specifies that &CONTROL values are not to be saved prior to invoking a
nested level. Thus, changes to &CONTROL that are made in lower
nesting levels remain in effect on return to this level. If NOSAVE is
specified, it is the procedure's responsibility to ensure that changes to
&CONTROL do not affect subsequent processing.

Default: SAVE

&CONTROL

Chapter 2: Verbs and Built-in Functions 301

SHAREW | NOSHAREW

SHAREW

Specifies that the issuing procedure is prepared to allow other NCL
processes, executing in the same NCL region processing environment
associated with the same window, to issue &PANEL statements to take
over the window display area.

If a procedure executes a &CONTROL SHAREW statement, any other
process may obtain control of the display area. No indication is provided
if any other process does obtain control of the window display area.

For this reason, &CONTROL with no operands does not reset SHAREW.

&CONTROL SHAREW status becomes effective when the issuing process
obtains the right to ownership of the window.

If INWAIT=0 is specified on the panel definition, control does not return
to the issuing procedure until the panel has been displayed.

NOSHAREW

Specifies that the issuing procedure is not prepared to allow any other
process in the same NCL region to obtain control of the window display
area by issuing &PANEL statements. If the procedure that executes an
&CONTROL NOSHAREW statement does not actually have control of the
window, then the status has no effect until the process obtains control
of the window.

NOSHAREW is used when executing a process that needs to guarantee
that no other process overwrites its information display.

Default: SHAREW

SHRVARS | SHRVARS=* | (pref,…,pref) | (*,pref,…,pref) | NOSHRVARS |
NOSHRVARS=* | (pref,…,pref) | (*,pref,…,pref)

SHRVARS

Specifies that all user variables that exist when another nested
procedure is invoked are to be shared with the nested procedure. When
the nested procedure ends, all variables, including any new ones
created by the nested level, are returned to the higher level. Variables
deleted by the nested procedure are not reinstated on return.

The sharing of variables offers great flexibility in the design of modular
procedures, as no limits are placed on the amount of data passed
between the levels. The SHRVARS option only affects the next
immediate level. If it in turn invokes another procedure, variables are
not shared unless explicitly requested by another SHRVARS statement
at that level.

&CONTROL

302 Network Control Language Reference Guide

SHRVARS does not affect the use of variables as parameters on an EXEC
command. However, care must be taken when sharing variables such as
&1, &2, and so on, since parameter variables specified on EXEC cause
creation of variables &1, &2, and so on for the new procedure, which
override the &1 and &2 variables of the invoking procedure.

&RETURN may be used to return variables that supplement any
variables implicitly shared between procedures as a result of SHRVARS
operation. This is ideal for returning an error message from a nested
procedure, for example in the &SYSMSG variable.

SHRVARS=* | (pref,…,pref) | (*,pref,…,pref)

Specifies that sharing of variables is allowed between procedures in the
same NCL process, but specification of prefix allows sharing only of
generic ranges of variables. For example:

&CONTROL SHRVARS=(AB,DE)

allows sharing of only those variables that have names beginning with
&AB or &DE. Other variables used by the sharing procedures are
private. A maximum of 16 prefixes is specified. If multiple SHRVARS (or
NOSHRVARS) statements are processed in a procedure the most recent
takes effect and overrides any earlier specification.

SHRVARS=* means that a procedure is to share all generic prefixes that
it was passed when it was invoked with any procedure that it in turn
invokes. This allows different procedure nesting levels to share the
same range of variables without explicit knowledge of the generic
prefixes.

SHRVARS=(*,pref,…,pref) indicates that in addition to sharing all generic
prefixes that it was passed when invoked the procedure wishes to share
the further prefixes defined by pref with any procedure that it in turn
invokes.

The SHRVARS option allows sharing of variables between procedures within
the same NCL process. It does not imply any sharing of variables between a
process and any other process that it may invoke using a START command,
since the START command invokes a new NCL process.

NOSHRVARS

Specifies that variable sharing is not to be performed. In this case, data
is passed on the EXEC command and is presented to the nested
procedure in the variables &1, &2, and so on.

&CONTROL

Chapter 2: Verbs and Built-in Functions 303

NOSHRVARS=* | (pref,…,pref) | (*,pref,…,pref)

Specifies that variable sharing is to occur between the current
procedure in an NCL process and any that it executes, except for the
variables that have names starting with the nominated generic prefixes.
For example, a procedure that issues the statement:

&CONTROL NOSHRVARS=(WK,TST)

shares all variables except those beginning with &WK and &TST. This
option allows procedures to retain private groups of variables which are
not shared by (or returned by) nested procedures. A maximum of 16
prefixes is defined. If multiple NOSHRVARS statements are processed
within a procedure, the most recent takes effect.

NOSHRVARS=* means that a procedure wishes to operate with the
same exception list with any procedure it invokes as it was passed when
it was invoked. This allows nesting levels to share (or exclude) the same
range of variables without explicit knowledge of the generic prefixes
involved.

NOSHRVARS=(*,pref,…,pref) indicates that, in addition to the generic
prefix exception list that it was passed when it was invoked, a procedure
wishes not to share the additional generic prefixes as defined by pref.

Default: NOSHRVARS

SUB | NOSUB

SUB

Specifies that all procedure statements, with the exception of comment
lines that start with the suppression character (-*), are to be scanned,
and that variable substitution is to be performed.

NOSUB

Specifies that variable substitution is no longer to be performed. &IF
statements, &GOTO statements, and commands are still to be executed,
but without prior substitution of variables. Substitution resumes when
the next &CONTROL SUB statement is encountered during processing.
The substitution process scans all lines for variables that commence
with an ampersand (&). Unrecognized variables, which do not currently
have an assigned value, are regarded as nulls and are eliminated from
the command string. Thus, if comments or commands are to contain
words that include an ampersand, the NOSUB control variable must be
used to stop the substitution process from eliminating the potential
variable from the string.

Default: SUB

&CONTROL

304 Network Control Language Reference Guide

TRACE | NOTRACE | TRACELOG | TRACELAB | TRACEALL

TRACE

Specifies that statements are to be displayed after variable substitution
and prior to execution. Message N03802 is issued with the number of
the statement being executed and the substituted text of the
statement. Tracing is used during the development of procedures to
ensure their correct operation. If tracing is active when an &PANEL
statement is issued, any panel control statements in the panel definition
are traced after variable substitution has been completed. Statements
are displayed at the operator's terminal only, and not written to the
activity log. For example:

&CONTROL TRACE NOINTLOG ALIGNR

Tracing can generate a large amount of output and should be used at
selective points within the procedure. The system limits the maximum
number of trace messages that is generated by an NCL procedure. This
limit is set by the SYSPARMS NCLTRMAX command and defaults to 100.
When this limit is reached, tracing is automatically terminated. Trace
messages are not sent to the system log unless the TRACELOG operand
is used.

NOTRACE

Cancels a previous &CONTROL TRACE, TRACEALL, or TRACELOG
statement.

TRACELOG

Specifies that tracing of NCL statements is written to the system log and
that the statements are not displayed at the terminal of the operator.

TRACELAB

Specifies that only procedure labels are traced. TRACELAB requires
either TRACE or TRACELOG to start tracing. NOTRACE resets the
TRACELAB option. A label trace includes details of the statement
number, procedure name, and the NCL ID for labels only. TRACELAB is
used to provide a summary trace to analyze overall procedure flow,
perhaps across multiple procedures.

&CONTROL

Chapter 2: Verbs and Built-in Functions 305

TRACEALL

Specifies the provision of expanded trace information. Standard trace
information is restricted, to limit the amount of data displayed.
TRACEALL requests that, in addition to the standard information, the
N03802 trace message is to include the name of the processing
procedure and its NCL ID.

Default: NOTRACE

UCASE | NOUCASE

UCASE

Specifies that, during assignment processing, the lowercase characters
'a' to 'z' are converted to uppercase when they are placed in the
receiving variable. The equals symbol (=) indicates an assignment
statement and implies movement of data into the target variable to the
left of the statement.

When operating in a system in which the SYSPARMS DBCS=YES option is
set, the UCASE and NOUCASE operands are ignored.

NOUCASE

Specifies that, during assignment processing, data is not converted to
uppercase.

Default: UCASE

USRCMD | NOUSRCMD

Affect REPL equates only.

USRCMD

Specifies that REPL equates replace commands issued within the
procedure, if a matching REPL equate exists.

USRCMD specifies that EQUATE processing is enabled for commands
strings within this procedure. If a string has a corresponding EQUATEd
text value, that value is used as a replacement for the EQUATEd
command string.

NOUSRCMD

Specifies that REPL equates do not replace commands issued within the
procedure, even if a matching REPL equate exists.

NOUSRCMD specifies that EQUATE processing is disabled for command
strings within this procedure, even if a corresponding EQUATE exists.

Default: NOUSRCMD

&CONTROL

306 Network Control Language Reference Guide

VARSEG | NOVARSEG

VARSEG

Specifies that multiword variables that are passed to a nested
procedure or that are received using an &INTREAD are to be segmented
into individual variables on entry to the nested level or on completion of
the &INTREAD. Each word of a multiword variable is separated and
placed in the next sequential variable (for example, &1, &2, …, and &n).

NOVARSEG

Specifies that multiword variables that are passed to a nested
procedure or that are received using an &INTREAD are not to be
segmented. Variables remain unchanged on entry to the nested
procedure or on completion of the &INTREAD. An alternative to the
passing of data on the EXEC command is to use the SHRVARS operand to
share all variables between the two procedures.

If variables containing hexadecimal data contain embedded blanks (X'40'),
the variables are segmented regardless of the VARSEG or NOVARSEG
operand. To avoid segmentation, code the following statement:

&CONTROL NOVARSEG &A=&FILEKEY -EXEC PROCB &A

instead of:

&CONTROL NOVARSEG -EXEC PROCB &FILEKEY

Null characters (X'00') are converted to blanks (X'40') by this process.

Default: VARSEG

More information:

DBCS Support in NCL (see page 1278)

&DATECONV

Chapter 2: Verbs and Built-in Functions 307

&DATECONV

The &DATECONV built-in function does either of the following:

■ Converts one date format to another.

&DATECONV DATEx date [=] DATEy [variation]

■ Subtracts two dates.

&DATECONV DATEx date1 - DATEy date2

&DATECONV must be used to the right of an assignment statement.

You can use &DATECONV to reformat a date from one NCL date form to another
NCL date form. In addition, the date is optionally adjusted by a number of days.

You can also use &DATECONV to subtract two dates.

DATEx formats are shown in the following table:

DATEx Format DATEx Format

x = 1
2
3
4
5
6
7
8

YY.DDD
DAY DD-MON-YYYY
DD-MON-YYYY
DD/MM/YY
MM/DD/YY
YY/MM/DD
YYMMDD
YYYYMMDD

x = 9
10
11
12
13
14
16
17

nnnnnn (days since 1/1/0001)
YYYYMMDDHHMMSSpHHMM
YYYYMMDDHHMMSS.FFFFFFpHHM
M
DD/MM/YYYY
YYYY/MM/DD
MM/DD/YYYY
YYYY.DDD
YYYYDDD

For date 10, p in the format is plus (+) or minus (-).

For date 11, YYYYMMDDHHMMSS is local time, p is plus (+) where local time is
ahead of GMT; otherwise, p is minus (-) and HHMM is the offset for GMT.

&DATECONV

308 Network Control Language Reference Guide

Operands:

For reformatting a date from one NCL date form to another NCL date form, this
built-in function has the following format:

&result = &DATECONV DATEx &indate [=] DATEy [variation]

DATEx

Indicates the date format for the input date (that is, the date to be
converted) where x is a number. The format of the date is the same as the
format of the date returned by the corresponding &DATEn system variable.
See the previous table for the actual formats supported.

date1

A date string with format DATEx, specifying the input date.

DATEy

The date format required after the conversion. This must be one of the NCL
supported date formats &DATE1 to &DATE17 (excluding &DATE15).

variation

The converted date is varied by a number of days, with respect to the
original date. This variation is positive or negative, with NO space allowed
anywhere from the sign to the end of the value. The variation can also be
used to add or subtract a value, using the following format:

{ + | - }dddd.hhmmss.ffffff

This format must begin with a sign, followed by the number of days (any
integer including 0 up to 2147483647 is acceptable), then optionally a
period followed by hours, minutes and seconds, and optionally fractions of a
second to microseconds. This is useful when using DATE10 and DATE11
formats to determine the exact date and time for some future or past
interval.

&DATECONV

Chapter 2: Verbs and Built-in Functions 309

For subtracting two dates, this built-in function has the following format:

&result = &DATECONV DATEx date1 - DATEy date2

DATEx

The format of the first date, where x is a number. The format of the date is
the same as the format of the date returned by the corresponding &DATEn
system variable. This must be one of the NCL supported date formats
&DATE1 to &DATE17 (excluding &DATE15). See the previous table for the
actual formats supported.

date1

A date string with format DATEx, specifying the first date.

DATEy

The format of the second date format, where y is a number. The format of
the date is the same as the format of the date returned by the
corresponding &DATEn system variable. This must be one of the NCL
supported date formats &DATE1 to &DATE17 (excluding &DATE15). See the
previous table for the actual formats supported.

date2

A date string with format DATEx, specifying the second date.

The value returned is date1 - date2, where the sum or difference is one of
the following forms:

■ { + | - } dddd

■ { + | - } ddddhhmmss

■ { + | - } dddd.hhmmss

■ { + | - } dddd.hhmmss.ffff

■ { + | - } ddddhhmmssffffff

The form where .hhmmss is present is returned only if either input date is
DATE10, while .hhmmss.ffffff is returned only if either input date is DATE11.
dddd is an integer with a maximum absolute value of 2,147,483,647.

If you specify an invalid source date format or value, or if the resultant date
exceeds the maximum date supported (that is, 31st December 2099) the
target variable is set to nulls.

&DATECONV

310 Network Control Language Reference Guide

Examples:

&TODAY = &DATE1 &YESTERDAY = &DATECONV DATE1 &TODAY DATE2 -1

converts today's system date (format YY.DDD), to yesterday's system date
(format DAY DD-MMM-YYYY)

&UPDATED = 90.360 &UPDATED = &DATECONV DATE1 &UPDATED DATE2

converts &UPDATED to WED 26-DEC-1990

&EXPIRES = 32.360 &EXPIRES = &DATECONV DATE1 &EXPIRES DATE2

converts &EXPIRES to SAT 25-DEC-2032

&DATECONV

Chapter 2: Verbs and Built-in Functions 311

Notes:

&DATECONV lets you present date formats consistently for individual users, or
system-wide. NCL procedures may be written using a standard internal date
format-this can then be tailored for system users depending upon other
parameters such as language codes.

When converting from date formats in which the year is represented by two
digits (YY) to a format in which the year is represented by four digits, the
century is assumed as follows:

■ If the year number (YY) for the original source variable is less than 50, the
century is calculated as 20.

■ If the original year (YY) is greater than or equal to 50, the century is
calculated as 19.

When adjustment by a specific variation crosses the century boundary, the
adjustment is performed first and the century of the resultant yy value is
determined as described previously.

When the target date is DATE11, the output is normalized to be GMT with the
system zone offset.

In general, the input and output dates are assumed to be local dates and times.
If the input date is either DATE10 or DATE 11, the resultant date is calculated by
taking into account the difference between the input time zone and the local
time zone.

For example, if the local time zone is +1000:

&DATECONV DATE10 19920630143622+0000 DATE2

produces a result of WED 01-JUL-1992.

More information:

&DATEn (see page 885)

&DEC

312 Network Control Language Reference Guide

&DEC

The &DEC built-in function returns the decimal equivalent of a hexadecimal
value.

&DEC hexadecimal value

&DEC must be used to the right of an assignment statement.

Examples: &DEC

&NUM = &DEC FFFF -* &NUM is set to 65535

&NAMELEN = &DEC &HEXLEN -* &NAMELEN is set to a decimal

 -* length

 -* for example, if &HEXLEN is 10

 -* then &NAMELEN is set to 16

Notes:

■ Hexadecimal values in the range 0 to 7FFFFFFF are returned as positive
integers 0 to 2,147,483,647.

■ Hexadecimal values FFFFFFFF to 80000001 are returned as -1 to
-2,147,483,647.

■ Values outside these ranges or invalid hexadecimal characters cause an NCL
error.

More information:

&HEX (see page 383)

&DECODE

Chapter 2: Verbs and Built-in Functions 313

&DECODE

The &DECODE verb decodes all or part of an MDO, creating logical ASN.1
components from a serial byte string.

This verb has the following format:

&DECODE MDO=targetmdo

 [{ [TRANSLATE={ NO | ISO | DEC | ASCII }]

 SRC_CHARSET=name

 [TGT_CHARSET=name]

 [SINGLE_SUB=xx]

 [DOUBLE_SUB=xxxx] }]

 [TRANSFER={ NO | BER }]

 [FROM MDO=sourcemdo]

An NCL procedure can decode all or part of an MDO from a serial byte stream,
after transmission using the &DECODE verb.

Operands:

MDO=targetmdo

(Mandatory) It identifies the target component for the decode operation.
The target MDO name is:

■ A stem name (for example, MDO=ROSE) indicating that the target is an
entire MDO

■ A compound name (for example, MDO=CMIP.GETARG) indicating that
the target is a component within the MDO

In both cases, the MDO must exist and be mapped, or the request fails.

TRANSLATE={ NO | ISO | DEC | ASCII }

(Optional) Specifies the translation of character strings. If TRANSLATE=NO is
specified, or defaulted, no character set translation occurs. Otherwise,
character strings are translated using the character set specified by this
operand.

During translation, all character codes are assumed to be from the indicated
character set and are translated to their EBCDIC equivalent. Source graphic
characters that do not have an equivalent translation are translated to
blanks. Control characters are translated to nulls. When used with a transfer
syntax, translation takes place after decoding. When used without a transfer
syntax, no source MDO is specified and the target MDO is modified in place.

Specification of this operand precludes the use of SRC_CHARSET,
TGT_CHARSET, SINGLE_SUB, and DOUBLE_SUB.

&DECODE

314 Network Control Language Reference Guide

SRC_CHARSET=name

(Optional) Names the source character set. If this operand is specified, the
TRANSLATE operand cannot be specified.

Use SRC_CHARSET instead of TRANSLATE to specify translation using the
Advanced Translation Facility (ATF).

TGT_CHARSET=name

(Optional) Names the target character set. If this operand is specified, the
TRANSLATE operand cannot be specified.

TGT_CHARSET defaults to SOLVE. However, you can specify any other
character set name to indicate that you want to translate to that character
set.

SINGLE_SUB=xx

(Optional) Specifies an overriding target one-byte substitution character.
The value is in two hexadecimal characters. For example, to replace all
untranslatable characters with an EBCDIC question mark, code
SINGLE_SUB=3F (assuming TGT_CHARSET=ASCII).

DOUBLE_SUB=xxxx

(Optional) Specifies an overriding target two-byte substitution character.
The value is in four hexadecimal characters.

TRANSFER={ NO | BER }

(Optional) Specifies the use of transfer syntax when decoding. If NO is
specified, or defaulted, no decoding takes place. TRANSFER=BER indicates
the use of Basic Encoding Rules as the transfer syntax.

When a transfer syntax is specified, the FROM operand is required to
indicate the sourcemdo, which is treated as a serial byte stream. Decoding
takes place in accordance with the definition of the target MDO, and the
result is placed into the target MDO. If translation was also requested (by
specifying the TRANSLATE operand), translation of the target component
character strings occurs after decoding.

If the TRANSFER operand is omitted, or TRANSFER=NO is specified, no
decoding takes place, and the FROM keyword and source MDO cannot be
specified.

&DECODE

Chapter 2: Verbs and Built-in Functions 315

FROM MDO=sourcemdo

This operand is mandatory and identifies the source component for the
decode operation. The source MDO name is:

■ A stem name (for example, MDO=ROSE) indicating that the source is an
entire MDO

■ A compound name (for example, MDO=CMIP.GETARG) indicating that
the source is a component within the MDO

&DECODE

316 Network Control Language Reference Guide

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 All data successfully decoded

4 0 Input was empty-no data was decoded

 1 Unexpected trailing octets were ignored

 2 End-of-contents octets were assumed

8 1 Data invalid, could not be decoded

 2 Mandatory component missing

 3 Expected tag not found

 4 Invalid length encoding

 5 Invalid tag encoding

 6 Invalid contents encoding

 7 Incorrect multiple tagging

 8 Incorrect recurring tag (within a SEQUENCE OF or SET
OF type)

 9 Tag value exceeds implementation limit

 10 Length value exceeds implementation limit

 11 Data value exceeds implementation limit

12 0 Undefined MDO name referenced

For &RETCODE 4, the &SYSMSG variable contains a warning message describing
the condition.

For &RETCODE 8, the &SYSMSG variable contains an error message describing
the component in error, the position in the data stream where the error was
encountered, and the actual error condition.

&DECODE

Chapter 2: Verbs and Built-in Functions 317

Notes:

■ When communicating with other open systems, it is necessary to encode
data for transmission in a manner understood by both parties. This means
that both systems need only agree on the format of the transmitted data,
and not how that data is processed or kept locally in each system.

A transfer syntax describes the format of the transmitted data. The transfer
syntax formally defines the rules for converting an abstract data structure as
defined by the abstract syntax into a serial data stream.

Mapping Services uses Abstract Syntax Notation One (ASN.1), defined by
ISO 8824 as the abstract syntax used to describe data structures within your
product region. It also uses Basic Encoding Rules (BER) defined by ISO 8825,
as the transfer syntax used to serialize data for transmission.

Using the &ENCODE verb, an NCL procedure can encode all, or part of an
MDO, into a serial byte stream, ready for transmission. Often, this process
must take place in stages, as some ASN.1 structures require that various
substructures are already encoded elsewhere before the structure itself is
encoded. To cater for this requirement, encoding takes place from one
MDO to another. When all encoding is complete the final MDO is
transmitted as a serial byte stream.

The &DECODE verb provides the reverse process, creating the logical ASN.1
components from a serial byte stream.

In addition to the serialization of data for transmission, the &ENCODE and
&DECODE verbs provide the ability to translate between the ASN.1 defined
character sets into the local format, EBCDIC.

■ Use of some operands implies the use of Advanced Translation Facility (ATF)
for translation.

Example1:

&DECODE MDO=CMIP.GETARG TRANSLATE=DEC

&DECODE MDO=ROSE TRANSLATE=ISO TRANSFER=NO

In these examples, components present in targetmdo, and defined as ASN.1
character strings, are translated from the indicated character set to their EBCDIC
equivalent.

&DECODE

318 Network Control Language Reference Guide

Example 2:

&DECODE MDO=CMIP.GETARG TRANSFER=BER FROM +

 MDO=ROSE.RDIVAPDU

&DECODE MDO=ROSE TRANSLATE=NO TRANSFER=BER FROM +

 MDO=BYTESTR

&DECODE MDO=ROSE TRANSLATE=DEC TRANSFER=BER FROM +

 MDO=BYTESTR

These examples show decoding of a serial byte stream into targetmdo, with
character string translation from the indicated character set, if any, to EBCDIC.

Example 3:

&DECODE MDO=BUD SRC_CHARSET=UNICODE

This example translates character data in the MDO BUD from Unicode to
EBCDIC.

More information:

Code Page Selection (see page 1271)
&ENCODE (see page 328)

&DELAY

Chapter 2: Verbs and Built-in Functions 319

&DELAY

The &DELAY verb interrupts processing of a procedure for the specified number
of seconds.

This verb has the following format:

&DELAY nnnn [.nn]

The verb lets you provide a pause during procedure execution, perhaps to allow
time for another event to complete.

Operands:

nnnn.nn

The number of seconds for which processing is to be suspended. This
number can range from 0 to 9999.99 seconds (2 hours, 46 minutes 39.99
second maximum).

A delay period of 0 seconds specified for the &DELAY statement creates a
pseudo-wait where this NCL procedure allows control to be passed to other
NCL tasks. Execution will be resumed as soon as the workload allows.

Examples: &DELAY

&DELAY 15 -*Suspend the procedure for 15 seconds

&DELAY 0.5 -*Suspend the procedure for half a second

Notes:

■ You can interrupt a procedure that has suspended processing with an
&DELAY statement, by issuing a GO or FLUSH command:

■ GO causes processing to resume immediately after the &DELAY statement.

■ FLUSH causes the entire procedure to terminate.

See Also:

■ The &INTCMD (see page 392) and &INTREAD (see page 397) verb
descriptions for synchronized event processing.

■ The AT and EVERY command descriptions, in the Online Help, for
time-controlled execution.

&DO

320 Network Control Language Reference Guide

&DO

&DO groups a sequence of NCL statements together to form a logical program
function block.

The group is delimited by a &DOEND statement.

An &DO group is usually executed after an &IF or &ELSE statement, but is coded
anywhere in a procedure to help structure your code. There is no limit to the
nesting levels of &DO constructions.

The main advantage of &DO grouping is to allow the use of structured
programming techniques and thereby minimize or eliminate the use of multiple
&GOTO statements.

Examples: &DO

&IF &DAY = WED &THEN +

 &DO

 -*

 -* Other NCL statements

 -*

 &DOEND

&ELSE +

 &DO

 -*

 -* Other NCL statements

 -*

 &DOEND

&DO groups must be terminated by an &DOEND statement, that is, &DO and
&DOEND statements must be paired. Unbalanced pairs cause syntax errors at
load time.

More information:

&DOWHILE (see page 325)
&DOUNTIL (see page 323)

&DOEND

Chapter 2: Verbs and Built-in Functions 321

&DOEND

&DOEND signifies the logical end of a group of statements that starts with &DO,
&DOWHILE, or &DOUNTIL.

&DOEND

All &DO, &DOWHILE, or &DOUNTIL statements must be paired with a
corresponding &DOEND statement. Unbalanced occurrences cause syntax
errors.

Examples: &DOEND

&IF &DAY = SAT &THEN +

 &DO

 -*

 -* Other NCL statements

 -*

 &DOEND

&ELSE +

&DO &I = 1

 &DOWHILE &I LE 100

 -*

 -* Other NCL statements

 -*

 &I = &I + 1

 &DOEND

&DOEND

&DO groups must be terminated by an &DOEND statement, that is, &DO and
&DOEND statements must be paired. Unbalanced pairs cause syntax errors at
load time.

More information:

&DOWHILE (see page 325)
&DOUNTIL (see page 323)

&DOM

322 Network Control Language Reference Guide

&DOM

The &DOM verb issues an MVS DOM to erase a non-roll delete WTO.

This verb has the following format:

&DOM ID=domid

The verb lets an NCL procedure issue an MVS DOM (delete-operator-message).
Typically, this would be sometime after the procedure had issued an &WTO
verb to send an NRD message for display on system consoles. The &WTO verb
returns the DOMID in &ZDOMID. By saving this value in a user variable, the
&DOM verb can use it later.

The &DOM verb is not supported on z/VM.

Operands:

ID=domid

Specifies the DOMID of the message to delete. domid must contain eight
hexadecimal digits. The value returned in &ZDOMID after an &WTO is in the
correct format, as is the &AOMDOMID system variable value when a WTO
or WTOR message is current in an AOMPROC.

The eight hexadecimal digits consist of a two-digit system ID and a six-digit
message ID.

Examples: &DOM

&WTO DESC=1 DATA=SEVERE MESSAGE......

&SAVEID = &ZDOMID

... do something else

&DOM ID=&SAVEID

&AOMREAD SET

&IF .&AOMMSGID = .id-that-MVS-never-deletes &THEN +

 &DOM ID=&AOMDOMID -* we delete it.....

&DOUNTIL

Chapter 2: Verbs and Built-in Functions 323

Notes:

When using &DOM, consider the following recommendations:

■ Issue &DOM only with a valid DOMID. An invalid format DOMID (not eight
hexadecimal digits) terminates the NCL procedure. If the DOMID appears
valid, but the actual number is not valid, the wrong message may be
deleted.

■ Delete messages only for a good reason. Indiscriminate deletion of critical
messages can lead to severe operational problems.

■ The &DOM verb can also be used to delete NRD messages the system
issues, which are not deleted by the system itself.

More information:

&WTO (see page 761)
&AOMDOMID (see page 820)

&DOUNTIL

&DOUNTIL builds a conditional loop with a test at the bottom.

&DOUNTIL expression [AND | OR expression]

The &DOUNTIL loop is executed repetitively until the conditions specified in the
expressions become true. When the test succeeds, execution continues past the
&DOEND statement paired with the &DOUNTIL statement.

Operands:

expression

This expression acts as the test for the &DOUNTIL condition. The expression
is evaluated at the bottom of the loop:

■ If not true the &DOUNTIL loop re-executes.

■ If the expression is true, execution continues past the associated
&DOEND statement.

Compounded expressions can be used, joined with AND or OR operators,
but parentheses cannot be used.

&DOUNTIL

324 Network Control Language Reference Guide

Examples: &DOUNTIL

&DOUNTIL &A = 10 OR &B GT &A

 &B = &B + 2

 &A = &A + 1

&DOEND

This simple loop is repeated until &A reaches a value of 10, or until &B reaches a
value greater than &A, whichever comes first.

&GOSUB .GETMSGS

&MSG0 = &STR the following messages were received

&CNT = 0

&DOUNTIL &CNT GE &MSGCNT

 &WRITE DATA = &MSG&CNT

 &CNT = &CNT + 1

&DOEND

&WRITE DATA=**End of messages**

This example shows a routine for writing a stream of messages set up by the
.GETMSGS subroutine.

Note: The loop always executes once, therefore only the title and the end
messages will be written if &MSGCNT=0.

Notes:

&DOUNTIL groups must be terminated by an &DOEND statement, that is,
&DOUNTIL and &DOEND statements must be paired. Unbalanced pairs cause
syntax errors at load time.

&LOOPCTL is provided to control runaway looping. Iterations of loops during
&DOWHILE and &DOUNTIL processing are included in &LOOPCTL calculations.

More information:

&DOWHILE (see page 325)
&DO (see page 320)

&DOWHILE

Chapter 2: Verbs and Built-in Functions 325

&DOWHILE

&DOWHILE builds a conditional loop with the test at the top.

&DOWHILE expression [AND | OR expression]

The &DOWHILE loop is executed repetitively while the conditions specified in
the expressions are true.

If initially false, the loop is not executed.

When the test fails, execution continues past the &DOEND statement paired
with the &DOWHILE statement.

Operands:

expression

This expression acts as the test for the &DOWHILE condition and is
evaluated at the top of the loop:

■ If true the &DOWHILE loop executes.

■ If the expression is false, execution continues past the associated
&DOEND statement.

Compounded expressions is used, joined with AND, or OR operators, but
parentheses cannot be used.

&DOWHILE

326 Network Control Language Reference Guide

Examples: &DOWHILE

&DOWHILE &A << 10 AND &A >> &B

 &B = &B + 2

 &A = &A + 1

&DOEND

This simple loop is repeated while &A is less than 10, and while &A is greater
than &B.

&LINECNT = 1

&GOSUB .GETDATALINE

&DOWHILE &LINECNT <= 20 AND &RETCODE EQ 0

 &LINE&LINECNT = &DATALINE

 &LINECNT = &LINECNT + 1

 &GOSUB .GETDATALINE

&DOEND

&IF &LINECNT <= 20 &THEN +

 &LINE&LINECNT = &STR **END**

This example sets up the variables &LINE1 to &LINE20 to data returned from the
.GETDATALINE subroutine (which can read records from a file, for example). The
loop is terminated by either reaching the end of the data available (that is, the
routine .GETDATALINE returns a non-zero return code) or when all the variables
have been set (that is, when all the variables have been set (that is, when
&LINECNT reaches a value of 21). These variables can then be displayed on a
panel.

Notes:

&DOWHILE groups must be terminated by an &DOEND statement, that is, &DO
and &DOEND statements must be paired. Unbalanced pairs cause syntax errors
at load time.

&LOOPCTL is provided to control runaway looping. Iterations of loops during
&DOWHILE and &DOUNTIL processing are included in &LOOPCTL calculations.

More information:

&DO (see page 320)
&DOUNTIL (see page 323)

&ELSE

Chapter 2: Verbs and Built-in Functions 327

&ELSE

&ELSE provides an alternative logic path after &IF where the preceding &IF
condition is false.

&ELSE { command | statement }

The &IF statement specifies a course of action when the condition being tested
is true. By coding an &ELSE statement with an &IF statement, an explicit course
of action is specified whenever the &IF condition is false.

Where &ELSE is used to specify a false condition logic option, no &GOTO
statement is required after a true condition.

&ELSE must be coded as a statement separate from the preceding &IF
statement. If &ELSE is coded on an &IF statement, it causes a syntax error.

Operands:

command or statement

This specifies the command or statement which is to be executed when the
&IF condition is false. The command or statement must be coded in the
same statement as &ELSE.

Examples:

&IF &STATUS = ACTIVE &THEN +

 &DO

 -*

 -* True Logic

 -*

 &DOEND

&ELSE +

 &DO

 -*

 -* False Logic

 -*

 &DOEND

.CONT

In this example, true logic is executed if &STATUS = ACTIVE. On completing true
logic, processing resumes at the label .CONT. If &STATUS is not equal to ACTIVE,
the false logic after the &ELSE statement executes. When this completes,
processing also resumes at the .CONT label.

Note: No &GOTO statement is required to direct the logic flow.

&ENCODE

328 Network Control Language Reference Guide

More information:

&DO (see page 320)
&IF (see page 386)

&ENCODE

The &ENCODE verb encodes all or part of an MDO into a serial byte stream,
ready for transmission.

This verb has the following format:

&ENCODE MDO=sourcemdo

 [{ TRANSLATE={ NO | ISO | DEC | ASCII } |

 TGT_CHARSET=name SRC_CHARSET=name

 [SINGLE_SUB=xx]

 [DOUBLE_SUB=xxxx] }]

 [CHECK | TRANSFER={ NO | BER }]

 [INTO MDO=targetmdo]

An NCL procedure can encode all, or part, of an MDO into a serial byte stream,
ready for transmission using the &ENCODE verb.

Operands:

MDO=sourcemdo

(Mandatory) Identifies the source component for the encoding operation.
sourcemdo name is:

■ A stem name, for example, MDO=ROSE (indicates that the source is an
entire MDO)

■ A compound name, for example, MDO=CMIP.GETARG (indicates that
the source is a component within the MDO)

TRANSLATE={ NO | ISO | DEC | ASCII }

Specifies the translation of character strings. If TRANSLATE=NO is specified,
or defaulted, then no character set translation occurs.

During translation, all character codes are assumed to be in EBCDIC and are
translated to the indicated character set. Source graphic characters that do
not have a defined translation are translated to blanks. Control characters
are translated to nulls. When used with a transfer, syntax translation takes
place before encoding, but does not affect sourcemdo, the encoded results
being placed into targetmdo. When used without a transfer syntax and
without the CHECK keyword, the source MDO is modified in place.

&ENCODE

Chapter 2: Verbs and Built-in Functions 329

TGT_CHARSET=name

Names the target character set. If this operand is specified, the TRANSLATE
operand cannot be specified.

Use TGT_CHARSET instead of TRANSLATE to specify translation using the
Advanced Translation Facility (ATF).

SRC_CHARSET=name

Names the source character set. If this operand is specified, the TRANSLATE
operand cannot be specified.

SRC_CHARSET defaults to SOLVE. However, you can specify any other
character set name to indicate that you want to translate from that
character set.

SINGLE_SUB=xx

(Optional) Specifies an overriding target one-byte substitution character.
The value is in two hexadecimal characters. For example, to replace all
untranslatable characters with an EBCDIC question mark, code
SINGLE_SUB=3F (assuming TGT_CHARSET=ASCII).

This operand is valid only if TGT_CHARSET is specified.

DOUBLE_SUB=xxxx

(Optional) Specifies an overriding target two-byte substitution character.
The value is in four hexadecimal characters.

This operand is valid only if TGT_CHARSET is specified.

&ENCODE

330 Network Control Language Reference Guide

CHECK | TRANSFER={ NO | BER }

The CHECK operand specifies that sourcemdo is checked for syntax. No
translation or data transfer actually takes place, but the specified
component is examined to determine whether it conforms to the abstract
syntax definition. All subcomponents are examined. Missing mandatory
components or invalid data causes the process to terminate.

The TRANSFER operand specifies the use of transfer syntax when encoding.
If NO is specified (or defaulted), then no encoding takes place.
TRANSFER=BER indicates the use of Basic Encoding Rules as the transfer
syntax.

When the TRANSFER operand indicates use of a transfer syntax, the INTO
keyword is required to indicate the targetmdo. Encoding takes place in
accordance with the definition of sourcemdo, and the resultant data stream
is placed into targetmdo. If translation was also requested (by specifying the
TRANSLATE operand), translation of source component character strings
occurs before encoding, but sourcemdo is unaffected.

If the TRANSFER operand is omitted, or TRANSFER=NO is specified, no
encoding takes place, and the INTO keyword and targetmdo cannot be
specified.

■ A stem name (for example, MDO=ROSE) indicating that the target is an
entire MDO

■ A compound name (for example, MDO=CMIP.GETARG) indicating that
the target is a component within the MDO

INTO MDO=targetmdo

Specifies the target component for the encode operation. The operand is
required when the TRANSFER operand is used, but is otherwise invalid.

If a compound name is used, the MDO must exist and be mapped, or the
request fails. If only a stem name is provided, the request creates the MDO
if it does not exist. The MDO can be connected to a map on a subsequent
NCL statement.

&ENCODE

Chapter 2: Verbs and Built-in Functions 331

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 All data successfully encoded

4 0 Input was empty-no data encoded

8 1 Data invalid-could not be encoded

 2 Mandatory component missing

12 0 Undefined MDO name referenced

For &RETCODE 4, the &SYSMSG variable contains a warning message describing
the condition.

For &RETCODE 8, the &SYSMSG variable contains an error message describing
the component in error, and the actual error condition.

Notes:

■ When communicating with other open systems, it is necessary to encode
data for transmission in a manner understood by both parties. This means
that both systems need only agree on the format of the transmitted data,
and not how that data is processed or kept locally in each system.

A transfer syntax describes the format of the transmitted data. The transfer
syntax formally defines the rules for converting an abstract data structure as
defined by the abstract syntax into a serial data stream.

Mapping Services uses Abstract Syntax Notation One (ASN.1), defined by
ISO 8824 as the abstract syntax used to describe data structures within your
product region. It also uses Basic Encoding Rules (BER) defined by ISO 8825,
as the transfer syntax used to serialize data for transmission.

Using the &ENCODE verb, an NCL procedure can encode all, or part of an
MDO, into a serial byte stream, ready for transmission. Often, this process
must take place in stages, as some ASN.1 structures require that various
substructures are already encoded elsewhere before the structure itself is
encoded. To cater for this requirement, encoding takes place from one
MDO to another. When all encoding is complete the final MDO is
transmitted as a serial byte stream.

The &DECODE verb provides the reverse process, creating the logical ASN.1
components from a serial byte stream.

&ENCODE

332 Network Control Language Reference Guide

In addition to the serialization of data for transmission, the &ENCODE and
&DECODE verbs provide the ability to translate between the ASN.1 defined
character sets into the local format, EBCDIC.

■ The Advanced Translation Facility (ATF) only translates some data types.

Important differences exist between ATF and the &ENCODE/&DECODE
verbs translation facility.

ENCODE could optionally translate from EBCDIC to ASCII, ISO, or DEC.

The differences between the ENCODE TRANSLATE=ASCII operation and the
ATF translation from EBCDIC to ASCII are:

– The ENCODE substitution character is X'20', whereas the ATF
substitution character is X'1A'.

– ENCODE translates most control characters to X'20', not to their ASCII
equivalents.

– ENCODE translates X'B0' in EBCDIC to X'5E' in ASCII. This character is the
ASCII caret (^). However, B0 in EBCDIC is not assigned.

The differences between the DECODE TRANSLATE=ASCII operation and the
ATF translation from ASCII to EBCDIC are:

– The DECODE substitution character is X'40', whereas the ATF
substitution character is X'3F'.

– DECODE translates most ASCII control characters to X'00' (but other
undefined characters get translated to X'40').

– DECODE absorbs the following ASCII characters (that is, no output
character is generated): X'0F', X'8E', X'8F'.

Do not replace the use of ASCII translation in ENCODE/DECODE with ATF
directly.

Example 1:

&ENCODE MDO=ROSE CHECK

This example validates that an MDO conforms to its defined abstract syntax
definition.

Example 2:

&ENCODE MDO=CMIP.GETARG TRANSLATE=ISO

&ENCODE MDO=ROSE TRANSLATE=DEC TRANSFER=NO

In these examples, components present in sourcemdo, and defined as ASN.1
character strings, are translated from EBCDIC to the indicated character set.

&END

Chapter 2: Verbs and Built-in Functions 333

Example 3:

&ENCODE MDO=CMIP.GETARG TRANSFER=BER INTO +

 MDO=ROSE.ROIVAPDU

&ENCODE MDO=ROSE TRANSLATE=NO TRANSFER=BER INTO +

 MDO=BYTESTR

&ENCODE MDO=ROSE TRANSLATE=ASCII TRANSFER=BER INTO +

 MDO=BYTESTR

In these examples, sourcemdo is encoded into a serial byte stream, with
character string translation from EBCDIC to the indicated character set, if any.

Example 4:

&ENCODE MDO=IN TGT_CHARSET=ASCII

This example translates character data in the MDO IN into ASCII.

Example 5:

&ENCODE MDO=IN TGT_CHARSET=JIS7 TRANSFER=BER INTO MDO=OUT

This example translates character data in the MDO IN into JIS7, a standard for
single/double-byte character data, and applies ISO BER encoding too. The result
is placed into the MDO OUT.

More information:

Code Page Selection (see page 1271)
&DECODE (see page 313)

&END

&END terminates the current nesting level to resume processing at a higher
level. Optionally, a return code is passed back to the higher nesting level, and
becomes available in the &RETCODE system variable.

&END [return code]

Operands:

return code

This is a numeric value from 0 to 99. If specified, this value becomes
available in the &RETCODE system variable for testing by a higher nesting
level (if one exists).

&END

334 Network Control Language Reference Guide

Examples: &END

&WRITE ALARM=YES DATA=ENTER LU NAME

&PAUSE ARGS

&IF .&1 = . &THEN +

 &END 4

...

On return to a higher nesting level, the procedure can test the return code, for
example:

&IF &RETCODE = 4 &THEN +

 &WRITE ALARM=YES DATA=LU NAME OMITTED

Notes:

If the return code is not specified on an &END statement, then any value set
previously in another procedure level remains intact and becomes available
across multiple nesting levels.

The &RETURN statement is used to return to a higher nesting level, passing any
specified variables.

The &CONTROL SHRVARS statement is used to share variables between nested
procedure levels.

More information:

&RETCODE (see page 924)
&CONTROL (see page 281)
&RETCODE (see page 615)
&RETURN (see page 618)
&EXIT (see page 339)

&ENDAFTER

Chapter 2: Verbs and Built-in Functions 335

&ENDAFTER

&ENDAFTER terminates the current nesting level after executing the command
following &ENDAFTER.

&ENDAFTER { command | statement }

&ENDAFTER is used to simplify procedure coding. Many procedures perform
one command per operator entry, or similar. Each command might then require
an &END statement, or an &IF must issue an &GOTO to branch to a point to
perform a single function.

&ENDAFTER lets you execute a single command in conjunction with an &IF
statement (if required), followed by automatic termination of the current
nesting level.

This allows &GOTO statements to be eliminated from a procedure.

Operands:

command | statement

Specifies the text of the command or statement to be executed. Processing
of the current nesting level finishes after this command or statement is
executed.

Examples: &ENDAFTER

&IF .&OPTION = . &THEN +

 &ENDAFTER -EXEC DFLTPROF

&IF .&OPTION = .TAPE &THEN +

 &ENDAFTER -EXEC TAPEPROF

&ENDAFTER -PROFILE ENV=PRIMARY UNSOL=NO

&EVENT

336 Network Control Language Reference Guide

Notes:

If an EXEC of another procedure or nesting level is performed as the function of
an &ENDAFTER statement, the new nesting level is executed before processing
at the current nesting level is completed.

The following verbs are illegal on an &ENDAFTER statement:

&DO

&DOUNTIL

&DOWHILE

&ELSE

&ENDAFTER

&IF

&GOSUB

&GOTO

More information:

&IF (see page 386)

&EVENT

The &EVENT verb signals an event occurrence.

This verb has the following format:

&EVENT [NAME=event name]

 [TYPE={ APPLICATION | SERVICEABILITY | UTILIZATION | CONFIGURATION |

 ACCESS | PROCEDURAL }]

 [SCOPE={ SYSTEM | REGION }]

 [OBJECT=object]

 [RESOURCE=resource]

 [REFERENCE=event reference code]

 [ROUTCDE=route code]

 [DATA=data | MDO=stem | VARS=... | ARGS [RANGE=(start,end)]]

To signal listeners who are profiled for the declared event. The &EVENT
statement causes message N00102 to be queued to the response queue of any
processes that have an active event profile which matches the attributes of the
&EVENT statement operands. The event listener should retrieve the N00102
message with an &INTREAD statement.

&EVENT

Chapter 2: Verbs and Built-in Functions 337

Operands:

NAME=event name

Specifies a mandatory 1- to 32-byte event identifier used to provide
information about the event source. Names is composed of any valid NCL
variable name characters and full stop (.) or underscore (_) characters.
Names beginning with a dollar sign ($) are reserved for internal use.

TYPE=event type

Event type is a high-level event category which provides an efficient event
profile filter. Valid event types are as follows:

APPLICATION

User-defined (this is the default).

SERVICEABILITY

Faults, errors, availability, degradation, recovery.

UTILIZATION

Statistics, raw performance, and accounting data, RTM.

CONFIGURATION

Object definition, relationship notifies.

ACCESS

Security alarms.

PROCEDURAL

Scheduling, process control.

SCOPE={ SYSTEM | REGION }

The default event scope of SYSTEM means that an event is delivered to all
listeners in the Management Services domain. Scope of REGION is used to
limit event notification to processes within the user's region.

OBJECT=object

A 1- to 32-byte object classification of the event resource. For example, LU,
PU, or SESSION are SNA object categories.

RESOURCE=resource

A single resource instance, or a resource instance pair separated by
commas. A resource pair is specified when a relationship exists between
event resources (for example, a session pair). Each resource name is 1 to 64
bytes long.

&EVENT

338 Network Control Language Reference Guide

REFERENCE=event reference code

Specifies a 1- to 32-byte event code such as message number or error code.

ROUTCDE=route code

Specifies a list of numbers from 1 to 128 which represent the event route
code. Each number is represented by a bit. To qualify for event notification,
receivers must have at least one corresponding route code set in the event
profile.

DATA=data | MDO=stem | VARS=... | ARGS [RANGE=(start,end)]

Specifies optional data or mapped object to be passed to event receivers of
the N00102 message. If DATA=data is specified , the data is part of the
N00102 text. If MDO=stem is specified, the mapped object is available in the
$INT MDO received by the &INTREAD verb (or directly in the MDO specified
on the &INTREAD MDO=mdo operand).

Specifying VARS=... or ARGS results in a $NCL MDO being built and delivered
in the $MSG MDO, containing the named variables or arguments.

Note: The DATA, MDO, VARS, and ARGS operands are mutually exclusive.

RANGE=(start,end) is specified with ARGS, to denote an argument range.

Notes:

Event classification generally depends on how much subjective rule based
interpretation has been performed. For example an event containing raw
performance data should be classified as a utilization event. A rule based
application receiving this event might interpret it as a performance problem and
generate a secondary serviceability event. This might then be passed on to
another application which generates procedural events.

&EVENT resets the &RETCODE variable to zero. If at least one listener is profiled
for the event, &ZFDBK is set to 00. If no listeners were notified of this event,
&ZFDBK is set to 04.

Examples: & EVENT

&EVENT NAME=SNA_SESSION_COMPLETION +

 TYPE=CONFIGURATION +

 OBJECT=SESSION +

 REF=N01208 +

 RESOURCE=(&APPL,&LUNAME)+

 DATA=&VTAMTEXT

&EXIT

Chapter 2: Verbs and Built-in Functions 339

More information:

Sample Code (see page 1253)

&EXIT

The &EXIT verb terminates the current nesting level to resume processing at a
higher level. Optionally, a return code is passed back to the higher nesting level,
and becomes available in the &RETCODE system variable.

This verb has the following format:

&EXIT [return code]

Operands:

return code

This is a numeric value from 0 to 99. If specified, this value becomes
available in the &RETCODE system variable for testing by a higher nesting
level (if one exists).

Examples: &EXIT

&WRITE ALARM=YES DATA=ENTER LU NAME

&PAUSE ARGS

&IF .&1 = . &THEN +

 &EXIT 4

.

.

.

On return to a higher nesting level, the procedure can test the return code, for
example:

&IF &RETCODE = 4 &THEN +

 &WRITE ALARM=YES DATA=LU NAME OMITTED

&EXIT

340 Network Control Language Reference Guide

Notes:

If the return code is not specified on an &EXIT statement, then any value set
previously in another procedure level remains intact and becomes available
across multiple nesting levels.

The &RETURN statement is used to return to a higher nesting level, passing any
specified variables.

The &CONTROL SHRVARS statement is used to share variables between nested
procedure levels.

More information:

&RETCODE (see page 924)
&CONTROL (see page 281)
&RETCODE (see page 615)
&RETURN (see page 618)
&END (see page 333)

&FILE

Chapter 2: Verbs and Built-in Functions 341

&FILE

The &FILE verb connects, disconnects, switches, accesses, modifies, and deletes
file records.

This verb has the following format:

&FILE { ADD | PUT } ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [OPT={ TRUNCATE | NOTRUNCATE }]

 [{ ARGS | VARS=prefix* } [RANGE=(start,end)] |

 VARS={ var | (var1,var2,...,varn) } |

 DATA=data | MDO=mdoname]

 [PRTCNTL=opt | (opt1,opt2 [,opt3,opt4])]

&FILE CLOSE [OPT=ALL | ID=fileid]

&FILE DEL ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [GENLEN=nn]

 [OPT={ KEQALL | KGEALL }]

&FILE GET ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [OPT=type]

 [GENLEN=genlen]

 [{ ARGS | VARS=prefix* } [RANGE=(start,end)] |

 VARS={ var | (var1,var2,...,varn) } |

 MDO=mdoname [MAP=mapname]]

&FILE OPEN ID=fileid

 [FORMAT={ MAPPED | UNMAPPED | UNMAPPED-DBCS | DELIMITED }]

 [MAP={ $NCL | mapname }]

 [KEYPAD={ BLANK | NULL }]

 [KEYEXTR={ YES | NO }]

 [DATA=exitdata]

&FILE SET ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [GENLEN=nn]

 [FORMAT={MAPPED | UNMAPPED | DELIMITED }]

 [MAP={ $NCL | mapname }]

The use of the ADD/PUT, CLOSE, DEL, GET, OPEN, and SET options of the &FILE
verb is described on the following pages.

&FILE

342 Network Control Language Reference Guide

Example 1

This example reads the USERFILE and produces a listing of all users starting with
the user ID specified in variable &STARTUSER.

&FILE OPEN ID=USERFILE FORMAT=DELIMITED

&IF &FILERC GT 8 &THEN +

 &GOTO .ERRMSG

&FILE SET ID=USERFILE KEY=&STARTUSER

&WRITE DATA=POS USER ID USER NAME +

 DEPT PHONE NO

&L = &ASISTR&COUNT = 1

&DOUNTIL &FILERC GT 0

 &WRITE DATA=&L

 &FILE GET ID=USERFILE OPT=KGE VARS=(NAME,DEPT,PHONE)

 &IF &FILERC EQ 4 &THEN +

 &DO

 &L = &OVERLAY &L &COUNT 1 3 ALIGNR0

 &L = &OVERLAY &L &FILEKEY 7 8 ALIGNL

 &L = &OVERLAY &L &NAME 17 20 ALIGNL

 &L = &OVERLAY &L &DEPT 40 4 ALIGNL

 &L = &OVERLAY &L &PHONE 47 9 ALIGNL

 &COUNT = &COUNT + 1

 &DOEND

&DOEND

&WRITE DATA=** END OF LISTING **

&IF &FILERC NE 4 &THEN +

 &GOTO .ERRMSG

&FILE CLOSE ID=USERFILE

&END 0

.ERRMSG

&WRITE DATA=FILE NOT AVAILABLE OR ERROR OCCURRED +

 ACCESSING FILE +

 (FILERC=&FILERC, VSAMFDBK=&VSAMFDBK)

 &END 4

&FILE

Chapter 2: Verbs and Built-in Functions 343

Example 2

This example updates the USERFILE file. The user ID to be updated is specified in
variable &UPDUSERID. If the user details record is not found, then a new record
is added to the file. The authority of the user is checked when the file is opened.

&FILE OPEN ID=USERFILE FORMAT=DELIMITED

&IF &FILERC GT 8 &THEN +

 &GOTO .ERRMSG

&ELSE +

 &IF &FILERC LT 4 &THEN +

 &DO

 &WRITE DATA=NOT AUTHORIZED TO UPDATE FILE

 &END 4

 &DOEND

&FILE GET ID=USERFILE KEYVAR=UPDUSERI +

 VARS=(NAME,DEPT,PHONE)

&IF &FILERC EQ 0 &THEN +

 &DO

 &NAME = &NEWNAME

 &DEPT = XXXX

 &PHONE = 1234567

 &FILE ADD ID=USERFILE VARS=(NAME,DEPT,PHONE)

 &FUNC = ADDED

 &DOEND

&IF &FILERC NE 0 &THEN +

 &GOTO .ERRMSG

&WRITE DATA=USER &UPUSERID WAS SUCCESSFULLY PROCESSED +

 ACTION TAKEN WAS &FUNC

&FILE CLOSE ID=USERFILE

&END0

.ERRMSG

 &WRITE DATA=USER FILE NOT AVAILABLE OR ERROR PROCESSING +

 FILE (FILERC=&FILERC, VSAMFDBK=&VSAMFDBK)

 &END 4

&FILE

344 Network Control Language Reference Guide

Example 3

This example deletes a record from the USERFILE file. The user ID to be deleted
is specified in variable &DELUSERID. The authority of the user is checked when
the file is opened.

&FILE OPEN ID=USERFILE FORMAT=DELIMITED

&IF &FILERC GT 8 &THEN +

 &GOTO .ERRMSG

&ELSE +

 &IF &FILERC NE 8 &THEN +

 &DO

 &WRITE DATA=NOT AUTHORIZED TO DELETE RECORDS +

 FROM FILE

 &DOEND

&FILE GET ID=USERFILE KEYVAR=DELUSERID +

 VARS=(NAME,DEPT,PHONE)

&IF &FILERC EQ 0 &THEN +

 &FILE DEL ID=USERFILE &ELSE +

 &IF &FILERC EQ 4 THEN +

 &DO

 &WRITE DATA=USER &DELUSERID NOT FOUND ON FILE

 &END 4

 &DOEND

&IF &FILERC NE 0 &THEN +

 &GOTO .ERRMSG

 &WRITE DATA=USER &UPDUSERID WAS SUCCESSFULLY PROCESSED +

 ACTION TAKEN WAS DELETE

&FILE CLOSE ID=USERFILE

&END 0

.ERRMSG

 &WRITE DATA=USER FILE NOT AVAILABLE OR ERROR +

 PROCESSING +

 FILE (FILERC=&FILERC, VSAMFDBK=&VSAMFDBK)

 &END 4

&FILE ADD

Chapter 2: Verbs and Built-in Functions 345

&FILE ADD

The &FILE ADD verb adds a file record.

This verb has the following format:

&FILE ADD ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [OPT={ TRUNCATE | NOTRUNCATE }]

 [{ ARGS | VARS=prefix* } [RANGE=(start,end)] |

 VARS={ var | (var1,var2,...,varn)|

 DATA=data | MDO=mdoname]

 [PRTCNTL=opt | (opt1,opt2 [,opt3,opt4])]

Operands:

ID=fileid

Identifies the file.

&FILE ADD

346 Network Control Language Reference Guide

KEY=key

Specifies the full key value to set for the file. The key value (after
substitution) is in one of several forms:

■ An unquoted character string (no embedded blanks), for example:

01SMITH

For unquoted strings, the key consists of displayable characters only,
and the first blank delimits it.

■ A quoted character string, for example:

'01SMITH J.' “03JONES PETER A” “LU A0123BC2”C 'A. B. O''MALLEY'C

The usual quote rules apply. Either single quotes (') or double quotes (”)
are acceptable. Quotes must be paired and of the same type. A double
quote is treated as a single quotation character when included within a
string.

■ A quoted hexadecimal character string, for example:

'0012001F'X

“0123456789ABCDEF”X

If there are no characters following the closing quote, a character string is
assumed. If a single character follows the closing quote then it must be
either 'C' (designating a character string), or 'X' (designating a hexadecimal
string). For quoted hexadecimal strings, all characters must be valid
hexadecimal characters (that is, 0 through 9 and A through F).

The user is responsible to understand the file key structure and determine
which form of key designation is most appropriate.

Note: The &ZQUOTE built-in function can assist when building quoted
strings, and that the KEYVAR operand provides a suitable alternative.

KEYVAR=keyvar

Provides an alternative way to nominate the full key value. keyvar is the
name of a user or system variable, the contents of which are taken
unchanged as the key value for the file set operation. The ampersand (&) is
not required—if the & is coded, then the contents of the variable specified
are assumed to contain the name of the variable containing the key.

If both the KEY and KEYVAR operands are omitted, the current file key value
is used.

&FILE ADD

Chapter 2: Verbs and Built-in Functions 347

OPT={ TRUNCATE | NOTRUNCATE }

Specifies whether to allow truncation of data on an &FILE ADD. If
NOTRUNCATE is specified (or defaulted), the procedure ends, with an error
message, if the data exceeds the maximum record length of the file. When
TRUNCATE is specified, a file return code of 1 is set if truncation occurs.

{ ARGS | VARS=prefix* } [RANGE (start,end)]

Nominates the NCL variables for the ADD operation. NCL variables are
validly used as the source of the ADD operation when the file format is
DELIMITED or UNMAPPED, and when the format is MAPPED and
MAP=$NCL. How the variable appears on the file depends upon the current
processing mode (format). If the format is UNMAPPED, then the variables
are simply concatenated to form the record. If the format is DELIMITED, the
variables are placed on the file separated by X'FF' separators.

VARS={ var | (var1,var2,...,varn) }

Specifies the list of variables to write to the file. NCL variables are validly
used as the source of the ADD operation when the file format is DELIMITED
or UNMAPPED, and when the format is MAPPED and MAP=$NCL.

DATA=data

Data is allowed for DELIMITED or UNMAPPED format files only, and specifies
a string of data for the file record. Substitution occurs on the specified string
of data, and then the data is placed on the record as is.

MDO=mdoname

Nominates the MDO for the ADD operation. An MDO is the source of the
data record on an ADD operation only when the file format is MAPPED.

PRTCNTL=opt | (opt1,opt2 [,opt3,opt4])

If FILE ADD writes to OS/VS SYSOUT data sets, use PRTCNTL to specify
carriage control options to control print formatting. Print format categories
are as follows:

■ Paper movement—SKIP0, SKIP1, SKIP2, SKIP3, NEWPAGE, and DATA

■ Underscoring—USCORE1 and USCORE2

■ Text alignment—LEFT, RIGHT, and CENTER

■ Bold print—BOLD

One option from each of these categories is specified.

Note: Multiple options are specified, but they must be enclosed in
parentheses and separated by commas. For example:

PRTCNTL=(NEWPAGE,USCORE1,CENTER,BOLD)

&FILE ADD

348 Network Control Language Reference Guide

SKIP0

Does not advance the paper before writing the record.

SKIP1

Advances the paper one line before writing the record. When writing
records to OS/VS SYSOUT data sets, this value is the default if the
PRTCNTL operand is omitted.

SKIP2

Advances the paper two lines before writing the record.

SKIP3

Advances the paper three lines before writing the record.

NEWPAGE

Skips to a new page before writing the record.

DATA

Indicates that the first text character contains the carriage control
character for controlling the print options for printing this record. If
machine control characters are used (instead of ANSI control
characters), DATA is the only carriage control option allowed.

USCORE1

Underlines the text for this record (excluding blanks between words).

USCORE2

Underlines the text for this record including blanks between words.

LEFT

Aligns the text for this record to the left of the paper.

RIGHT

Aligns the text for this record to the right of the paper.

CENTER

Centers the text for this record. The record width, and therefore the
location of the center, is determined from the logical record length of
the file. The length is specified in the LRECL operand of the ALLOC
command (for z/OS or MSP).

BOLD

Prints the text in bold form. Bold is achieved by overprinting the same
characters.

&FILE ADD

Chapter 2: Verbs and Built-in Functions 349

Return Codes:

On completion of the operation, the &FILERC system variable is set as follows:

0

record added successfully

1

record added, truncation has occurred

4

record exists

8

error during processing of ADD request

16

NCL or Mapping Services processing error

Check &SYSMSG for details. The &VSAMFDBK system variable contains the
VSAM completion code. For &FILERC=8, the &VSAMFDBK system variable is
tested to determine the cause of the error. These error codes are explained in
detail in your VSAM documentation. The &VSAMFDBK variable is always
returned as a two-character value.

The &SYSMSG variable can also be set to contain error message details.

For mapped format files, the &ZMDORC and &ZMDOFDBK system variables are
also set.

&FILE CLOSE

350 Network Control Language Reference Guide

&FILE CLOSE

The &FILE CLOSE verb disconnects from one or more files.

This verb has the following format:

&FILE CLOSE [OPT=ALL | ID=fileid]

Operands:

OPT=ALL

Requests that all files currently open to this NCL process be closed.

ID=fileid

(Mandatory unless OPT=ALL) Identifies a single file to be closed.

Return Codes:

The &FILERC system variable is not set by this operation.

More information:

&FILE (see page 341)

&FILE DEL

The &FILE DEL verb deletes file records.

This verb has the following format:

&FILE DEL ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [GENLEN=nn]

 [OPT={ KEQALL | KGEALL }]

Operands:

ID=fileid

(Mandatory) Identifies the file being deleted and sets this file to be the
current fileid.

&FILE DEL

Chapter 2: Verbs and Built-in Functions 351

KEY=key

Nominates the full key value to be set for the file. The key value (after
substitution) is in one of several forms:

■ An unquoted character string (no imbedded blanks). For example:

01SMITH

For unquoted strings the key should consist of displayable characters
only, and is delimited by the first blank.

■ A quoted character string, for example:

'01SMITH J.' “03JONES PETER A” “LU A0123BC2”C 'A. B. O''MALLEY'C

The usual quote rules apply. Either single quotes (') or double quotes (”)
are acceptable. Quotes must be paired and of the same type. A double
quote is treated as a single quotation character when included within a
string.

■ A quoted hexadecimal character string. for example:

'0012001F'X

“0123456789ABCDEF”X

If there are no characters following the closing quote, a character string is
assumed. If a single character follows the closing quote then it must be
either 'C' (designating a character string), or 'X' (designating a hexadecimal
string). For quoted hexadecimal strings, all characters must be valid
hexadecimal characters (that is, 0-9, A-F).

It is the user's responsibility to understand the file key structure and
determine which form of key designation is most appropriate.

Note: The &ZQUOTE built-in function can assist when building quoted
strings, and that the KEYVAR operand provides a suitable alternative.

KEYVAR=keyvar

Provides an alternative way to nominate the full key value. keyvar is the
name of a user or system variable, the contents of which are taken
unchanged as the key value for the file set operation. There is no need to
code the ampersand (&)—if the ampersand is coded, then the contents of
the variable specified are assumed to contain the name of the variable
containing the key.

If both KEY and KEYVAR are omitted, the current file key value is assumed.

&FILE DEL

352 Network Control Language Reference Guide

GENLEN=nn

This operand is used to set the desired generic key length independently of
the key value. If the length of the key provided is shorter than the value of
GENLEN, then the length of the key is the effective GENLEN. This length is
used for a generic delete (KEQALL) request.

OPT={KEQALL | KGEALL}

Either one of these operands is used to specify the delete option:

KEQALL

Specifies that a series or generic set of records is to be deleted. A partial
key is specified by the &FILE DEL statement. All records that start with
this partial key are deleted. After processing, the system variable
&FILERCNT contains the number of records deleted by this statement.

KGEALL

Specifies that all records starting from the already-named partial key to
the end of the UDB, are to be deleted. After processing, the system
variable &FILERCNT contains the number of records deleted by this
statement.

Return Codes:

On completion of the operation, the &FILERC system variable is set as follows:

0

Records deleted successfully

4

Record not found

8

Error during processing of delete request

16

NCL or Mapping Services processing error. Check &SYSMSG for details.

Check &SYSMSG for details. The &VSAMFDBK system variable contains the
VSAM completion code. For &FILERC=8, the &VSAMFDBK system variable is
tested to determine the cause of the error. These error codes are explained in
detail in your VSAM documentation. The &VSAMFDBK variable is always
returned as a 2-character value.

The &SYSMSG variable can also be set to contain error message details.

&FILE GET

Chapter 2: Verbs and Built-in Functions 353

More information:

&FILE (see page 341)

&FILE GET

The &FILE GET verb accesses a file record or a sequence of file records.

This verb has the following format:

&FILE GET ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [OPT=type]

 [GENLEN=nn]

 { { ARGS | VARS=prefix* } [RANGE (start,end)] |

 VARS={ var | (var1,var2,...,varn) |

 MDO=mdoname [MAP=mapname] }

Operands:

ID=fileid

Identifies the file being accessed and sets this file to be the current fileid.
This operand is mandatory.

&FILE GET

354 Network Control Language Reference Guide

KEY=key

Nominates the full key value to be set for the file. The key value (after
substitution) is in one of several forms:

■ An unquoted character string (no imbedded blanks). For example:

■ 01SMITH

For unquoted strings the key should consist of displayable characters
only, and is delimited by the first blank.

■ A quoted character string, for example:

'01SMITH J.' “03JONES PETER A” “LU A0123BC2”C 'A. B. O''MALLEY'C

The usual quote rules apply. Either single quotes (') or double quotes (”)
are acceptable. Quotes must be paired and of the same type. A double
quote is treated as a single quotation character when included within a
string.

■ A quoted hexadecimal character string. for example:

'0012001F'X

“0123456789ABCDEF”X

If there are no characters following the closing quote, a character string is
assumed. If a single character follows the closing quote then it must be
either 'C' (designating a character string), or 'X' (designating a hexadecimal
string). For quoted hexadecimal strings, all characters must be valid
hexadecimal characters (that is, 0 to 9, A to F).

It is the user's responsibility to understand the file key structure and
determine which form of key designation is most appropriate.

Note: The &ZQUOTE built-in function can assist when building quoted
strings, and that the KEYVAR operand provides a suitable alternative.

&FILE GET

Chapter 2: Verbs and Built-in Functions 355

KEYVAR=keyvar

Provides an alternative way to nominate the full key value. keyvar is the
name of a user or system variable, the contents of which are taken
unchanged as the key value for the file set operation. There is no need to
code the ampersand (&)—if it is coded, the contents of the variable
specified are assumed to contain the name of the variable containing the
key.

Note: If both KEY and KEYVAR are omitted, the current file key value is
assumed. The KEY and KEYVAR operands are mutually exclusive. It is
possible to specify the OPT= option in conjunction with KEY or KEYVAR if it is
a generic option, for example, OPT=KEQ, OPT=KLE, and so on. The KEY
operand is only used once. Once generic position is obtained, the key
operand is ignored.

OPT=type

Specifies a retrieval option that determines the search argument for the
record to be read.

The following options are available for the OPT operand: KGE, KEQ, KGT,
KEL, KLE, KLT, FWD, BWD, SEQ, SAVE, UPD, and END.

KGE

Specifies that a record key greater than or equal to the specified partial
key is returned. Using KGE permits generic retrieval where a partial key
is supplied-any records with a key (or part key) equal to or greater than
that specified are returned.

KEQ

Specifies that a record key equal to the specified partial key is returned.
Using KEQ permits generic retrieval where a partial key is supplied. Any
records with a partial key equal to that specified are returned, starting
with the lowest full key value and continuing forwards to the highest full
key value.

After a successful retrieval by KGE or KEQ, the full key for the returned
record is determined from the &FILEKEY system variable. The first &FILE GET
that uses the KGE or KEQ operand establishes the starting point within the
file from which records are to be retrieved. Successive &FILE GET
statements specifying the KGE or KEQ operand continue returning records
with a higher key. The generic retrieval is terminated by specifying the KEY=
operand on an &FILE GET, &FILE SET, &FILE PUT or &FILE ADD statement, or
by using the &FILE GET OPT=END operand.

&FILE GET

356 Network Control Language Reference Guide

KGT

Specifies that a record key greater than the specified partial key is
returned. KGT is normally used to process a group of records where
individual records are being updated. Updating a record during a
generic retrieval process normally interrupts the generic retrieval and
using KGT can avoid this. If no generic retrieval is in progress, KGT
processing ensures that a record greater than the current &FILEKEY is
returned. If a generic retrieval is in progress, the next key is returned.
The procedure normally positions at a specific record using a KEQ call,
and then continues processing using KGT calls.

Alternatively, the procedure could set a partial key lower than required
and let the KGT call return the next highest record. Following successful
retrieval, the full key of the record returned is determined from the
&FILEKEY system variable. KGT differs from KGE processing in that a KGT
call is not impacted by other file processes that interrupt a generic
process, such as updates and deletes.

Generic retrieval must be terminated by specifying the KEY= operand on
an &FILE GET, &FILE SET, &FILE PUT, &FILE ADD statement or by using
the &FILE GET OPT=END operand.

KEL

Specifies that a record key equal to the specified partial key is returned.
Using KEL permits generic retrieval where a partial key is supplied. Any
records with a partial key equal to that specified are returned, starting
from the highest full key value and continuing backwards to the lowest
full key value.

KLE

Specifies that a record key less than or equal to the specified partial key
is returned. Using KLE permits generic retrieval where a partial key is
supplied-the highest record with a partial key equal to or less than that
specified is returned.

After a successful retrieval by KEL or KLE, the full key for the returned record
is determined from the &FILEKEY system variable. The first &FILE GET that
uses the KEL or KLE operand establishes the starting point within the file
from which records are to be retrieved. The first record returned is the one
with the highest key that matches the partial key supplied. Successive &FILE
GET statements specifying the KEL or KLE operand continue returning
records with a lower key. The generic retrieval is terminated by specifying
the KEY= operand on an &FILE GET, &FILE SET, &FILE PUT or a &FILE ADD
statement or by using the &FILE GET OPT=END operand.

&FILE GET

Chapter 2: Verbs and Built-in Functions 357

KLT

Specifies that a record key less than the specified partial key is returned.
KLE is normally used when processing a group of records in backwards
mode where individual records are being updated. Updating a record
during a generic retrieval process normally interrupts the generic
retrieval and using KLT can avoid this. If no generic retrieval is in
progress, KLT processing ensures that a record less than the current
&FILEKEY is returned. If a generic retrieval is in progress, the next lower
key is returned.

The procedure normally positions at a specific record using a KEL call,
and then continues processing using KLT calls. Alternatively, the
procedure could set a partial key higher than required and let the KLT
call return the next lowest record.

Following successful retrieval, the full key of the record returned is
determined from the &FILEKEY system variable. KLT differs from KLE
processing in that a KLT call is not impacted by other file processes that
interrupt a generic process, such as updates and deletes. Generic
retrieval must be terminated by specifying the KEY= operand on an
&FILE GET, &FILE SET, &FILE PUT, &FILE ADD statement or by using the
&FILE GET OPT=END operand.

FWD

Specifies that sequential retrieval is performed in a forward direction
(that is, ascending keys for a KSDS). If no preceding &FILE GET
statement has established a position within the file, retrieval starts with
the lowest keyed record and subsequent &FILE GET statements return
records in ascending key order until the highest keyed record has been
returned.

BWD

Specifies that sequential retrieval is performed in a backward direction
(that is, descending keys for a KSDS). If no preceding &FILE GET
statement has established a position within the file, retrieval starts with
the highest keyed record and subsequent &FILE GET statements return
records in descending key order until the lowest keyed record has been
returned.

&FILE GET

358 Network Control Language Reference Guide

To retrieve records from a specific point, first issue an &FILE GET statement
to retrieve either a specific key or partial key and follow this with a series of
&FILE GET FWD, or &FILE GET BWD statements to process the required
record range. No &FILE GET KEY statement is required to commence
sequential processing. Therefore it is not necessary to know in advance any
of the keys on the data set. An &FILE GET using the KEY= operand is
required if positioning to a specific point using a preliminary call with one of
the generic retrieval options.

An &FILE GET FWD can directly follow an &FILE GET BWD (or KEL, KLE, KLT
option) to reverse the processing direction of the file. Alternatively, an
&FILE GET BWD can directly follow an &FILE GET FWD(or KEQ, KGE, KGT
option) to reverse the processing direction of the file (see also the &FILE
GET SEQ option next).

&FILE GET can also be used to process an ESDS VSAM file.

SEQ

Specifies that sequential retrieval is performed. Sequential retrieval is
an efficient way of retrieving large numbers of records. If no preceding
&FILE GET statement has established a start position within the file, the
&FILE GET SEQ is equivalent to &FILE GET FWD. Otherwise, sequential
retrieval starts from the current file position and in the current file
direction. This means that an &FILE GET SEQ following an &FILE GET
FWD (or KEQ, KGE, KGT option) retrieves the records following, whereas
if it follows an &FILE GET BWD (or KEL, KLE, KLT option) it retrieves the
previous records.

After a successful retrieval, the full key for the returned record is
determined from the &FILEKEY system variable. Sequential retrieval is
terminated by one of the following methods:

■ Specifying the KEY= operand on an &FILE GET or &FILE SET

■ Issuing an &FILE PUT or &FILE ADD statement

■ Using the &FILE GET OPT=END operand

■ Using an &FILE GET statement with an option other than SEQ

OPT=END is used to explicitly terminate sequential processing.

&FILE GET

Chapter 2: Verbs and Built-in Functions 359

SAVE

Specifies that the current generic retrieval option is saved. This option
releases VSAM positioning in the file but remembers the last partial key
set by an &FILE GET KEY statement and the last full key read using &FILE
GET. Since generic file retrieval involves retaining various VSAM
resources, it is not good practice to hold your position in a VSAM file
when an extended delay is possible (for example, whilst waiting for
input from a terminal). By issuing an &FILE GET SAVE, the VSAM
resources required for the generic retrieval are released; when the next
generic retrieval request is received the next record is returned as
though no interruption had occurred. That is, the record returned is the
one that would have been returned anyway had the &FILE GET SAVE not
been issued.

Since the only retrieval options on ESDS files are sequential (that is,
FWD, BWD, and SEQ) and therefore hold VSAM position, the SAVE
option is used effectively when browsing such files to remember the
current position if a delay is expected.

UPD

Specifies that the record nominated by the KEY= operand from the
preceding &FILE statement is retrieved for updating.

Using this option gives you exclusive use of the specified record, if it is
not currently in use elsewhere. This ensures that no other retrieval of
the same record is permitted before the record is replaced with an
&FILE PUT statement.

Where multiple users can simultaneously perform record updating, use
this option to ensure that no overlap in update processing is possible,
and that the record is being processed uniquely by this requester.

When using this option, you are responsible for ensuring that the record
is used exclusively. If another user is already processing the same record
when you issue this request, it will fail with the appropriate return
codes and you must then retry at a later time. If exclusive use is not
obtained, the &FILERC system variable will be set to 8 and the
&VSAMFDBK system variable will contain a value of 14.

Important! Procedures using this technique must not perform
processing that results in excessive delays (such as prompting the
terminal operator for input). Remember that other users cannot use a
record while you have exclusive use of it.

&FILE GET

360 Network Control Language Reference Guide

END

Using this operand terminates a generic or sequential retrieval
operation, and resets the current file position. This option should be
used if a generic retrieval operation is to be halted and another generic
retrieval operation performed with a different key or partial key. This
operand can also be used to release exclusive control of a record
obtained by the UPD operand, without needing to actually update the
record. Using the &FILE CLOSE statement carries an implied &FILE GET
OPT=END operation.

Note: &FILE GET OPT=END forces the flushing of all deferred I/O
buffers, thereby committing any deferred update activity and ending
any generic retrieval environment.

GENLEN=nn

Used to set the desired generic key length independently of the key value.
This length is used for a generic GET request.

&FILE GET

Chapter 2: Verbs and Built-in Functions 361

{ ARGS | VARS=prefix* } [RANGE (start,end)] |
VARS={ var | (var1,var2,...,varn) } |MDO=stem |MAP=mapname

(Mandatory) One of the options must be specified.

{ ARGS | VARS=prefix* } [RANGE (start,end)]

Nominates the NCL variables for the read operation. NCL variables are
validly used as the target of the GET operation when the file format is
DELIMITED or UNMAPPED, and when the format is MAPPED and
MAP=$NCL.

VARS={ var | (var1,var2,...,varn) }

Specifies the list of variables to be read from the file. NCL variables are
validly used as the target of the GET operation when the file format is
DELIMITED or UNMAPPED, and when the format is MAPPED and
MAP=$NCL. It is possible to subscript variables in the list with a data
length, and use an asterisk (*) as a place holder. For example:

VARS=(a(10),b(5),*,c)

MDO=stem

Nominates the MDO for the read operation. An MDO is the target of the
GET operation only when the file format is MAPPED.

MAP=mapname

Valid only if FORMAT=MAPPED is specified or defaulted on the &FILE
OPEN statement for this file. It provides the default Mapping Services
map name to be used to interpret the file contents. The map name
specified should be registered within the Mapping Services Data
Dictionary or the data read from the file will be effectively unmapped.
The default name $NCL is a special case that allows NCL tokens to be
used on PUT and GET statements instead of the MDO operand. The
tokens are placed within a record structure that provides data
transparency but is not compatible with the DELIMITED format files.

&FILE OPEN

362 Network Control Language Reference Guide

Return Codes:

0

record retrieved successfully, key in &FILEKEY variable

4

record not found (or end of data)

8

error during processing of get request

16

NCL or Mapping Services processing error, check &SYSMSG for details

The &VSAMFDBK system variable contains the VSAM completion code. For
&FILERC=8, the &VSAMFDBK system variable is tested to determine the cause of
the error. These error codes are explained in detail in your VSAM
documentation. The &VSAMFDBK variable is always returned as a 2-character
value.

The &SYSMSG variable can also be set to containing error message details.

For MAPPED format files, the &ZMDORC and &ZMDOFDBK system variables are
set.

The &ZVARCNT is set by the verb to indicate how many variables were set by
the get operation.

More information:

&FILE (see page 341)

&FILE OPEN

The &FILE OPEN verb connects to a file.

This verb has the following format:

&FILE OPEN ID=fileid

 [FORMAT={ MAPPED | UNMAPPED | UMMAPPED-DBCS | DELIMITED }]

 [MAP={ $NCL | mapname }]

 [KEYPAD={ BLANK | NULL }]

 [KEYEXTR={ YES | NO }]

 [DATA=exitdata]

&FILE OPEN

Chapter 2: Verbs and Built-in Functions 363

Operands:

ID=fileid

(Mandatory) Identifies the file being opened. fileid must have previously
been made accessible to NCL by the UDBCTL statement.

FORMAT={ MAPPED | UNMAPPED | UNMAPPED-DBCS | DELIMITED }

Specifies the file format processing requirement. The default is MAPPED
which generally requires the use of Mapping Services operands on PUT and
GET statements. A file record is processed as a complete entity by reading it
into, or writing it from, an MDO. Mapping Services is used to reference, by
symbolic name, individual fields within the record. For the special case
where the map name is $NCL, the record is read into or written from
standard tokens. Mapping Services is used to format or access the MDO
containing the tokens. This provides data transparency by allowing tokens
containing any data to be placed in file records for subsequent NCL access.

By processing a file in UNMAPPED format, any file records is processed
using NCL tokens (but not Mapping Services). When reading a record the
contents are segmented and placed into the tokens specified. When writing
a record, all tokens are concatenated to form the actual record. No
examination or translation of the token data takes place in either case.

Specifying FORMAT=UNMAPPED-DBCS is the same as
FORMAT=UNMAPPED. However, if SYSPARMS DBCS=FUJITSU is in effect,
DBCS translation between IBM DBCS and FUJITSU DBCS occurs.

FORMAT=DELIMITED provides processing that is used when reading into or
writing from NCL tokens only. When reading a record, the contents are
scanned for the delimiter character (X'FF') and each delimited section of the
record placed into a separate token. However, no examination of the data
takes place on writing so the use of this format with transparent data can
cause unpredictable results.

MAP={ $NCL | mapname }

Valid only if FORMAT=MAPPED is specified or defaulted, and specifies the
name of the Mapping Services map used to interpret the file contents.

The map name specified must be registered within the Mapping Services
Data Dictionary, or the data read from the file is effectively unmapped. The
default name $NCL is a special case that allows NCL tokens to be used on
PUT and GET statements instead of the MDO operand. The tokens are
placed within a record structure that provides data transparency but is not
compatible with the DELIMITED format files.

&FILE OPEN

364 Network Control Language Reference Guide

KEYPAD={ BLANK | NULL }

Nominates the padding character for short keys as either blanks (X'40') or
nulls (X'00'). For most character-oriented or name-oriented keys, the default
BLANK is satisfactory. However, if the file keys contain characters below
X'40', then padding using NULL is recommended.

KEYEXTR={ YES | NO }

Specifies whether to extract the file key from the record as part of the data.
When the default KEYEXTR=YES is specified or defaulted, the key is removed
from ('squashed out of') the record by a GET operation, or inserted by a PUT
operation. Hence processing proceeds as though the record and the key are
separate entities.

When KEYEXTR=NO is specified, the key remains as part of the data on a
GET operation but is still separately accessible through the &FILEKEY system
variable. On a PUT operation, the key portion of the data record is assumed
to be present but is ignored, and the current contents of the &FILEKEY
variable are used to overlay the key within the data.

When processing using the &FILE verb, the &CONTROL KEYXTR setting is
ignored. Key extraction is determined on the &FILE OPEN by the KEYEXTR
operand.

DATA=exitdata

Identifies any additional data to pass to a user exit on the &FILE OPEN. If
used, this must be the last operand, and all data following the DATA=
keyword is passed to the NCL &FILE validation exit (NCLEX01) without
inspection.

Return Codes:

On completion of the operation, the &FILERC system variable is set as follows
(certain return codes only apply if set by the validation exit NCLEX01, where this
is in effect):

0

Restrict access to read only

4

Read with update ability, without delete

8

Read and update with delete ability

12

No access allowed

&FILE OPEN

Chapter 2: Verbs and Built-in Functions 365

16

Specified fileid is not available (see &SYSMSG for details)

Return codes 0, 4, and 12 apply only if the validation exit NCLEX01 is in effect.
Return codes 8 and 16 is set regardless of the exit being in effect.

Note: If no exit is in effect and the specified file ID is available for processing, no
restriction to access applies and a value of 8 is set in &FILERC.

Failure of the procedure to limit processing within the bounds set by the
processing exit, as indicated by the return code in &FILERC, results in
termination of the procedure at the point at which an unauthorized function is
attempted.

The use of a logical file identity as assigned by the &FILE OPEN statement makes
it possible to use a single command (the UDBCTL command) to control the
migration of all NCL procedures from one physical data set to another. The
UDBCTL command associates a physical file with a logical name. These logical
names are then valid for &FILE statements and provide a connection between
the physical data set and the processing NCL procedure. This approach allows an
installation to move all processing of NCL procedures onto another data set to
free the previous data set for off-line processing. The approach also isolates
procedures from any knowledge of real data set names and therefore makes JCL
changes transparent to NCL procedures.

Each new file ID specified on an &FILE OPEN statement allocates sufficient
storage to process subsequent requests associated with that file. The &FILE
CLOSE statement is used to release file processing connections and any related
storage. Termination of the NCL procedure also frees any associated storage.

The return code is tested to determine the cause of the error.

Important! Exercise great care while processing system data sets such as VFS.
This type of processing must be performed using the UNMAPPED mode and
requires an excellent understanding of the formats of the records in these data
sets. Invalid processing of these data sets can cause unpredictable results and
result in abnormal termination of the system.

Notes:

■ The open options provide default processing options for the file.

■ The old &FILEID verb was used both to open files, and to switch between
files by setting the current fileid for implied action by other verbs, such as
&FILEGET. The mandatory ID= operand on the &FILE verb enables several
files to be processed simultaneously without confusion.

&FILE PUT

366 Network Control Language Reference Guide

More information:

&FILE (see page 341)

&FILE PUT

The &FILE PUT verb puts a file record.

This verb has the following format:

&FILE PUT ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [OPT={ TRUNCATE | NOTRUNCATE }]

 [{ ARGS | VARS=prefix* }

 [RANGE=(start,end)] | VARS={ var | (var1,var2,...,varn) } |

 DATA=data | MDO=mdoname]

 [PRTCNTL=opt | (opt1,opt2 [,opt3,opt4])]

Operands:

ID=fileid

(Mandatory) Identifies the file being actioned.

&FILE PUT

Chapter 2: Verbs and Built-in Functions 367

KEY=key

Nominates the full key value to be set for the file. The key value (after
substitution) is in one of several forms:

■ An unquoted character string (no imbedded blanks). For example:

01SMITH

For unquoted strings the key should consist of displayable characters
only, and is delimited by the first blank.

■ A quoted character string, for example:

'01SMITH J.' “03JONES PETER A” “LU A0123BC2”C 'A. B. O''MALLEY'C

The usual quote rules apply. Either single quotes (') or double quotes (”)
are acceptable. Quotes must be paired and of the same type. A double
quote is treated as a single quotation character when included within a
string.

■ A quoted hexadecimal character string. for example:

'0012001F'X

“0123456789ABCDEF”X

If there are no characters following the closing quote, a character string is
assumed. If a single character follows the closing quote then it must be
either 'C' (designating a character string), or 'X' (designating a hexadecimal
string). For quoted hexadecimal strings, all characters must be valid
hexadecimal characters (that is, 0 to 9, A to F).

It is the user's responsibility to understand the file key structure and
determine which form of key designation is most appropriate.

Note: The &ZQUOTE built-in function can assist when building quoted
strings, and that the KEYVAR operand provides a suitable alternative.

KEYVAR=keyvar

Provides an alternative way to nominate the full key value. keyvar is the
name of a user or system variable, the contents of which are taken
unchanged as the key value for the file set operation. There is no need to
code the ampersand (&)—if the & is coded, then the contents of the
variable specified are assumed to contain the name of the variable
containing the key.

Note: If both the KEY and KEYVAR operands are omitted, the current file key
value is used.

&FILE PUT

368 Network Control Language Reference Guide

OPT={ TRUNCATE | NOTRUNCATE }

Indicates whether or not to allow truncation of data on an &FILE PUT. If
NOTRUNCATE is specified (or defaulted), the procedure will end with an
error message, if the data exceeds the maximum record length of the file.
When TRUNCATE is specified, a file return code of 1 is set if truncation
occurs.

{ ARGS | VARS=prefix* } [RANGE (start,end)]

Nominates the NCL variables for the PUT operation. NCL variables are
validly used as the source of the PUT operation when the file format is
DELIMITED or UNMAPPED, and when the format is MAPPED and
MAP=$NCL. How the variable appears on the file depends upon the current
processing mode (format). If the format is UNMAPPED, then the variables
are simply concatenated to form the record. If the format is DELIMITED, the
variables are placed on the file separated by X'FF' separators.

VARS={ var | (var1,var2,...,varn) }

Specifies the list of variables to be written to the file. NCL variables are
validly used as the source of the PUT operation when the file format is
DELIMITED or UNMAPPED, and when the format is MAPPED and
MAP=$NCL.

DATA=data

Data is allowed for DELIMITED or UNMAPPED format files only, and specifies
a string of data to be placed within the file record. Substitution occurs on
the specified string of data, and then the data is placed on the record as is.

MDO=mdoname

Nominates the MDO for the PUT operation. An MDO is the source of the
data record on a PUT operation only when the file format is MAPPED.

PRTCNTL=opt | (opt1,opt2 [,opt3,opt4])

If FILE PUT writes to OS/VS SYSOUT data sets, use PRTCNTL to specify
carriage control options to control print formatting. Print format categories
are as follows:

■ Paper movement-SKIP0, SKIP1, SKIP2, SKIP3, NEWPAGE, and DATA

■ Underscoring-USCORE1 and USCORE2

■ Text alignment-LEFT, RIGHT, and CENTER

■ Bold print-BOLD

One option from each of these categories is specified.

&FILE PUT

Chapter 2: Verbs and Built-in Functions 369

Multiple options is specified, but they must be enclosed in parentheses and
separated by commas. For example:

PRTCNTL=(NEWPAGE,USCORE1,CENTER,BOLD)

SKIP0

Does not advance the paper before writing the record.

SKIP1

Advances the paper one line before writing the record. When writing
records to OS/VS SYSOUT data sets this is the default value if the
PRTCNTL operand is omitted.

SKIP2

Advances the paper two lines before writing the record.

SKIP3

Advances the paper three lines before writing the record.

NEWPAGE

Skips to a new page before writing the record.

DATA

Indicates that the first text character contains the carriage control
character to be used for controlling the print options for printing this
record. If machine control characters are used (instead of ANSI control
characters), DATA is the only carriage control option allowed.

USCORE1

Underlines the text for this record (excluding blanks between words).

USCORE2

Underlines the text for this record (including blanks between words).

LEFT

Aligns the text for this record to the left of the paper.

RIGHT

Aligns the text for this record to the right of the paper.

CENTER

Centers the text for this record. The record width, and therefore the
location of the center, is determined from the logical record length of
the file, which is specified in the LRECL operand of the ALLOC command
(for z/OS or MSP).

&FILE PUT

370 Network Control Language Reference Guide

BOLD

Prints the text in bold form. This is achieved by overstriking the same
characters.

Return Codes:

On completion of the operation, the &FILERC system variable is set as follows:

0

Record added successfully

1

Record added, truncation has occurred

8

Error during processing of PUT request

16

NCL or Mapping Services processing error

Check &SYSMSG for details. The &VSAMFDBK system variable contains the
VSAM completion code. For &FILERC=8, the &VSAMFDBK system variable is
tested to determine the cause of the error. These error codes are explained in
detail in your VSAM documentation. The &VSAMFDBK variable always returned
as a 2-character value.

The &SYSMSG variable can also be set to contain error message details.

For mapped format files, the &ZMDORC and &ZMDOFDBK system variables are
also set.

More information:

&FILE (see page 341)

&FILE SET

Chapter 2: Verbs and Built-in Functions 371

&FILE SET

The &FILE SET verb specifies or switches file records.

This verb has the following format:

&FILE SET ID=fileid

 [KEY=key | KEYVAR=keyvar]

 [GENLEN=nn]

 [FORMAT={ MAPPED | UNMAPPED | DELIMITED }]

 [MAP={ $NCL | mapname }]

Operands:

ID=fileid

Identifies the file.

&FILE SET

372 Network Control Language Reference Guide

KEY=key

Specifies the full key value to set for the file. The key value (after
substitution) is in one of several forms:

■ An unquoted character string (no embedded blanks), for example:

01SMITH

For unquoted strings, the key consists of displayable characters only,
and the first blank delimits it.

■ A quoted character string, for example:

'01SMITH J.' “03JONES PETER A” “LU A0123BC2”C 'A. B. O''MALLEY'C

The usual quote rules apply. Either single quotes (') or double quotes (”)
are acceptable. Quotes must be paired and of the same type. A double
quote is treated as a single quotation character when included within a
string.

■ A quoted hexadecimal character string, for example:

'0012001F'X

“0123456789ABCDEF”X

If there are no characters following the closing quote, a character string is
assumed. If a single character follows the closing quote then it must be
either 'C' (designating a character string), or 'X' (designating a hexadecimal
string). For quoted hexadecimal strings, all characters must be valid
hexadecimal characters (that is, 0 through 9 and A through F).

The user is responsible to understand the file key structure and determine
which form of key designation is most appropriate.

Note: The &ZQUOTE built-in function can assist when building quoted
strings, and that the KEYVAR operand provides a suitable alternative.

KEYVAR=keyvar

Provides an alternative way to nominate the full key value. keyvar is the
name of a user or system variable, the contents of which are taken
unchanged as the key value for the file set operation. The ampersand (&) is
not required—if the & is coded, then the contents of the variable specified
are assumed to contain the name of the variable containing the key.

If both the KEY and KEYVAR operands are omitted, the current file key value
is used.

&FILE SET

Chapter 2: Verbs and Built-in Functions 373

GENLEN=nn

Allows the generic key length for operations such as generic read, and
generic delete, to be set independently of the actual key value. For
example, by setting the key to 01SMITH, but GENLEN=2, &FILE GET
OPT=KEQ begins reading from the key but terminates if any key
encountered does not begin with 01. If the length of the key provided is
shorter than the value of GENLEN, then the length of the key is the effective
GENLEN.

FORMAT={ MAPPED | UNMAPPED | DELIMITED }

Allows the switching of the file processing format. The options are as
described for the &FILE OPEN statement. No default applies to the &FILE
SET statement. If the FORMAT operand is omitted, there is no change to the
processing format.

MAP={ $NCL | mapname }

Valid only if FORMAT=MAPPED is specified explicitly on the &FILE SET or if
the current processing is for format MAPPED. The meaning is as described
for the &FILE OPEN statement.

Return Codes:

On completion of the operation, the &FILERC system variable is set as follows:

0

Record added successfully

16

NCL or Mapping Services processing error (see &SYSMSG for details)

More information:

&FILE (see page 341)

&FLUSH

374 Network Control Language Reference Guide

&FLUSH

Terminates all nesting levels within an NCL process.

&FLUSH

Flushes all nesting levels and terminates the process.

Examples:

&WRITE ALARM=YES DATA=ENTER STOP TO TERMINATE ALL +

 PROCESSING

&PAUSE ARGS

&IF .&1 EQ .STOP &THEN + -* TERMINATE PROCESSING

 &FLUSH

 .

 .

 .

Notes:

■ Use the &END (see page 333) statement to terminate only the current
nesting level and resume processing at a higher level.

■ Use the &QEXIT (see page 613) statement to terminate all nesting levels and
the window from which the procedures were invoked (perhaps logging a
user off if only one window is active).

&FNDSTR

Chapter 2: Verbs and Built-in Functions 375

&FNDSTR

Returns a numeric value indicating the presence of a search string within a
supplied text.

&FNDSTR string text

&FNDSTR is used to search one or more variables to determine if a specified
string exists within any of those variables.

Use &FNDSTR to search text to determine if a specified string exists within it. If
the specified string is found within the first word of the text, the offset into that
word is returned. This value can subsequently be used in an &SUBSTR statement
if required.

If the specified string is found in a word other than the first, the value 999 is
returned. If the specified string is not found, the value 0 is returned.

Operands:

string

The search string-if this string contains blanks, it must be specified in the
&FNDSTR statement as a single variable. Specifying string with multiple
variables is not valid. See example below.

text

The text string that is to be searched. If the search argument is found within
the first word of the text, the offset to the string in the word is returned. If it
is found in other than the first variable, a value of 999 is used.

Examples: &FNDSTR

&CHECK = &FNDSTR FAILED &MSGTEXT

&IF &CHECK NE 0 &THEN +

 &WRITE ALARM=YES DATA=REQUEST FAILED

&SRCH = &FNDSTR N10503 &MSG1 &MSG2 &MSG3

&GOSUB

376 Network Control Language Reference Guide

Notes:

■ If multiple variables are searched and the search argument is found in other
than the first variable, a value of 999 is returned. The procedure must then
use multiple searches if the precise offset within a variable for other than
the first position, is required.

■ If the search argument consists of a variable made up of multiple words
with imbedded blanks, it must exist entirely within a variable in the search
text. An occurrence of the string spanning multiple words does not qualify
for a found condition.

■ If &CONTROL DBCS or DBCSN or DBCSP is in effect, &FNDSTR is sensitive to
the presence of DBCS data.

More information:

&FNDSTR (see page 1281)
&SELSTR (see page 646)
&REMSTR (see page 614)

&GOSUB

Branches to a sub-routine within the procedure.

&GOSUB .label [.limlabel [EQ | NE | GT | LT | GE | LE]]

The &GOSUB verb lets you structure a procedure to take advantage of common
processing routines, called sub-routines. &GOSUB changes the current
processing location within a procedure. Control transfers to the statement
beginning with the specified target label. On completion of the sub-routine an
&RETSUB statement resumes processing at the statement following the
&GOSUB statement.

The label, after variable substitution, must begin with a period and is from 1 to
12 characters long (not including the period).

The target label can precede or follow the statement containing the &GOSUB.

&GOSUB

Chapter 2: Verbs and Built-in Functions 377

Operands:

.label

A label within the procedure.

.limlabel

A label in the procedure that delimits the extent of the search for .label. If
.limlabel is found before the required label .label is located, the search
terminates with a 'label not found' condition. Use .limlabel to improve the
performance of procedures where a large number of unexpected labels
normally discarded by the &CONTROL NOLABEL are received. When used
with the search scope (see next operand), .limlabel can assist with table
processing.

EQ | NE | GT | LT | GE | LE

An optional search scope used to qualify the selection of a target label that
satisfies the search for .label up to the range set by .limlabel. If this operand
is required, then .limlabel must be specified. In cases where .limlabel is not
required, enter it with the same value as .label.

If this operand is omitted, .limlabel must exactly equal a procedure label to
terminate the search.

EQ

Specifies that the first label generically equal to .label will satisfy the
search.

NE

Specifies that the first label generically not equal to .label will satisfy the
search.

GT

Specifies that the first label greater than .label will satisfy the search.

LT

Specifies that the first label less than .label will satisfy the search.

GE

Specifies that the first label greater than or equal to .label will satisfy
the search.

LE

Specifies that the first label less than or equal to .label will satisfy the
search.

&GOSUB

378 Network Control Language Reference Guide

Examples: &GOSUB

.MAINLINE

 &GOSUB .INITIALIZE

 &DOUNTIL &RETCODE NE 0

 &GOSUB .PROCESS

 &DOEND

 .

.INITIALIZE

 -*

 -* Initialization logic

 -*

 &RETSUB

.PROCESS

 -*

 -* Processing logic

 -*

 &IF &REQUEST = EXIT &THEN +

 &RETSUB 4

 &RETSUB 0

 &PANEL CMDENTRY

 &GOSUB .P$&COMMAND .PEND

 &RETSUB

.P$DISPLAY

 -*

 -* Display logic

 -*

 &RETSUB

.P$LIST

 -*

 -* List logic

 -*

 &RETSUB

.PEND

&GOTO

Chapter 2: Verbs and Built-in Functions 379

Notes:

■ Using the &CONTROL NODUPCHK option can improve the processing of
&GOSUB statements. This option eliminates duplicate label checking and
lets you use a faster search algorithm. It should only be used in procedures
that have been thoroughly tested, as its use in a procedure containing
duplicate labels can lead to unpredictable results.

■ The target label on an &GOSUB statement is a variable. Substitution is
performed before attempting to transfer control to the target label.

■ Missing labels result in an error unless &CONTROL NOLABEL is used. This
returns control to the statement after the &GOSUB statement, if the label
does not exist.

■ Using label variables with &CONTROL NOLABEL is an easy and efficient way
to isolate a target processing routine, instead of sifting data using multiple
&IF statements.

■ The system maintains a loop control counter to stop inadvertent runaway
loops within a procedure. This counter (&LOOPCTL) is set to 1000 for each
nesting level entered. It is decremented by 1 for each &GOTO or &GOSUB
executed. If the counter reaches 0 the procedure terminates with an error
message. (You can reset the loop control counter using the &LOOPCTL
statement if a larger value is required.)

&GOTO

Branches to another statement within the procedure.

&GOTO .label [.limlabel [EQ | NE | GT| LT| GE | LE]]

The &GOTO verb lets you change the current processing location within a
procedure-control transfers to the statement beginning with the specified
target label.

After variable substitution, the label must begin with a period and is from 1 to
12 characters long (not including the period).

The target label can precede or follow the statement containing the &GOTO.

Note: Where possible, using &DO, &DOWHILE, and &DOUNTIL to construct
do-loops is preferable to using &IF ... &GOTO logic.

&GOTO

380 Network Control Language Reference Guide

Operands:

.label

A label within the procedure.

.limlabel

A label in the procedure that delimits the extent of the search for .label. If
.limlabel is found before the required label .label is located, the search
terminates with a 'label not found' condition. Use .limlabel to improve the
performance of procedures where a large number of unexpected labels
normally discarded by the &CONTROL NOLABEL facility are received. When
used with the search scope (see next operand), .limlabel can assist with
table processing.

EQ | NE | GT | LT | GE | LE

An optional search scope used to qualify the selection of a target label that
satisfies the search for .label up to the range set by .limlabel. If this operand
is required, then .limlabel must be specified. In cases where .limlabel is not
required enter it with the same value as .label. In both cases the operator
must be separated from the value being tested with a space .

If this operand is omitted, .limlabel must exactly equal a procedure label to
terminate the search.

EQ

Specifies that the first label generically equal to .label will satisfy the
search.

NE

Specifies that the first label generically not equal to .label will satisfy the
search.

GT

Specifies that the first label greater than .label will satisfy the search.

LT

Specifies that the first label less than .label will satisfy the search.

GE

Specifies that the first label greater than or equal to .label will satisfy
the search.

LE

Specifies that the first label less than or equal to .label will satisfy the
search.

&GOTO

Chapter 2: Verbs and Built-in Functions 381

Examples: &GOTO

Notes: More examples are supplied in the system distribution library.

& CONTROL NOLABEL

&GOTO .&1 -* YES and NO are only valid options

 -* Control returns here if label .&1 is

 -* undefined.

&ENDAFTER &WRITE ALARM=YES DATA='YES' OR 'NO' MUST BE +

 ENTERED

.YES

 -*

 -* NCL statements

 -*

.NO

 -*

 -* NCL statements

 -*

.LOOP

 &INTREAD ARGS

 &GOTO .&1 .ENDTABLE -* .ENDTABLE is LIMLABEL

 &GOTO .LOOP -* Skip the message if label

 -* not found

.IST970I

.IST355I

 &GOTO .LOOP -* Process the next message

.IST346I

 -*

 -* Processing logic for IST346I

 -*

&GOTO .LOOP -* Process the next message

.ENDTABLE -* Defines end of table

&GOTO

382 Network Control Language Reference Guide

Notes:

■ The use of &GOTO is minimized by using &DO, &DOUNTIL and &DOWHILE
statements.

■ If &GOTO is used, labels must be unique within the current procedure
nesting level (unless &CONTROL NODUPCHK is active). Any attempt to
branch to a duplicated label results in an error.

■ Using the &CONTROL NODUPCHK option can improve &GOTO statement
processing. This option eliminates duplicate label checking and lets you use
a faster search algorithm. It should only be used in procedures that have
been thoroughly tested, as its use in a procedure containing duplicate labels
can lead to unpredictable results.

■ The target label on an &GOTO statement is a variable. Substitution is
performed before attempting to transfer control to the target label.

■ Missing labels will result in an error unless &CONTROL NOLABEL is used.
This returns control to the statement after the &GOTO statement, if the
label does not exist.

■ Using label variables with &CONTROL NOLABEL is an easy and efficient way
to isolate a target processing routine, instead of sifting data using multiple
&IF statements.

■ Label variables substituted into null variables are regarded as 'not found',
and processing resumes at the next statement without causing an error.
This also applies to invalid labels.

■ The system maintains a loop control counter to stop inadvertent runaway
loops within a procedure. This counter (&LOOPCTL) is set to 1000 for each
nesting level entered. It is decremented by 1 for each &GOTO or &GOSUB
executed. If the counter reaches 0 the procedure terminates with an error
message. (You can reset the loop control counter using the &LOOPCTL
statement if a larger value is required.)

More information:

&LOOPCTL (see page 430)
&CONTROL (see page 281)
&DO (see page 320)
&DOWHILE (see page 325)
&DOUNTIL (see page 323)

&HEX

Chapter 2: Verbs and Built-in Functions 383

&HEX

Returns the hexadecimal equivalent of a decimal number.

&HEX decimalnumber

&HEX provides a means of converting a decimal number to its hexadecimal
equivalent. &HEX is a built-in function and must be used to the right of an
assignment statement.

Operands:

decimalnumber

Examples: &HEX

&NUM = &HEX 66635 -* &NUM is set to FFFF

&A = &HEX &1

&NUM = &HEX 00123 -* &NUM is set to 7B

&NUM = &HEX -2088976 -* &NUM is set to FFE01FF0

Notes:

■ The maximum decimal value that is processed is 2147483647
(2,147,483,647), which returns the value 7FFFFFFF. The minimum decimal
value that is processed is -2147483648 (-2,147,483,648), which returns the
value 80000000.

■ Up to 15 digits (maximum), is accepted. That is, 000002147483647 is valid.

■ An invalid decimal value, or one too large, results in a procedure error.

More information:

&DEC (see page 312)

&HEXEXP

384 Network Control Language Reference Guide

&HEXEXP

Returns a hexadecimal string that is the expansion of the supplied text
according to EBCDIC encoding.

&HEXEXP text

&HEXEXP provides a means of converting a character string to its hexadecimal
equivalent.

&HEXEXP is a built-in function and must be used to the right of an assignment
statement.

Operands:

text

The character string for conversion, which is regarded as starting one blank
after the &HEXEXP keyword.

Examples:

&1 = &HEXEXP ABCD -* &1 will be set to C1C2C3C4

&Z = &HEXEXP 3C -* &Z will be set to F3C3

Note:

&HEXPACK (see page 385) provides the reverse facility. The maximum length of
a character string that is expanded is 128 bytes.

&HEXPACK

Chapter 2: Verbs and Built-in Functions 385

&HEXPACK

Returns a character string that is the EBCDIC encoding of the supplied
hexadecimal values.

&HEXPACK hexstring1 [hexstring2 hexstringn]

&HEXPACK is a built-in function and must be used to the right of an assignment
statement.

Operands:

hexstring1 [hexstring2 hexstringn]

A series of hexadecimal strings for conversion. Each string must contain only
valid hexadecimal characters (0 to 9, A to F). If there is an odd number of
characters within a string, that string is padded on the left with a zero
before conversion.

The converted strings are concatenated into a single value. A string can
contain hexadecimal representations of non-displayable characters for
conversion to their hexadecimal equivalent. This lets you assign true
hexadecimal values into variables.

Examples: &HEXPACK

&1 = &HEXPACK C1C2C3C4 -* &1 is set to ABCD

&Z = &HEXPACK 03FF 0D25 -* &Z is set to X'03FF0D25'

Notes:

The total sum of the concatenated variables or constants cannot exceed the
maximum size for one variable.

■ &HEXPACK is used in the following ways:

■ To allow true hexadecimal values to be passed to &CALL programs

■ On &SECCALL EXIT variables

■ For sending to LU1 devices using &WRITE

■ Invalid hexadecimal characters will result in a procedure error.

More information:

&WRITE (see page 749)
&HEXEXP (see page 384)

&IF

386 Network Control Language Reference Guide

&IF

The &IF verb conditionally executes a command, statement, or DO group.

This verb has the following format:

&IF logical expression

[{ AND | OR } logical expression] ...

 &THEN command or statement

&IF defines a logical expression and tests the truth of that expression, or defines
multiple logical expressions connected by AND or OR operators and tests the
truth of those expressions. If the result is true, the command or statement
following the &THEN is executed.

If the result is false the next statement in the procedure sequence is executed.
See the &ELSE statement description for an account of the support for the
conditional execution of a command or statement associated with the false
condition arising from &IF.

&IF supplies logical operators that are used to test the values of individual bit
settings in hexadecimal variables.

See the &DO, &DOWHILE, and &DOUNTIL statement descriptions for an
explanation of how to group commands and statements for execution in
association with both the true condition, and the &ELSE false condition.

Operands:

logical expression

An expression in the form:

value1 relational-operator value2

value1 and value2 are either variables or constants, and relational-operator
is one of the following logical operators:

■ EQ or = (equal)

■ NE or ¬= (not equal)

■ LT or < (less than)

■ LE or <= (less than or equal)

■ GT or > (greater than)

■ GE or >= (greater than or equal)

■ NG or ¬> (not greater than)

&IF

Chapter 2: Verbs and Built-in Functions 387

■ NL or ¬< (not less than)

■ BO (bits on)

■ BZ (bits off)

■ BM (bits mixed on and off)

Blanks must separate the logical operator from the values being tested.

Before the comparison, both values are translated to uppercase (by default)
and all leading and trailing blanks are stripped. If either value is a series of
blanks, it is treated as a single blank value. These changes apply only to the
comparison operation and do not change either value for subsequent
processing. (You can use the &CONTROL IFCASE option to suppress
uppercase translation before the comparison.)

If operating in a system in which SYSPARMS DBCS=YES is active, no
translation into uppercase is made.

When the logical operator indicates a bit test function, value1 and value2
are in hexadecimal format. Both values are regarded as the character
representation of a hexadecimal byte; for example, 01 is treated as
representing the hexadecimal byte X'01'. When performing bit tests, value1
must be at least two bytes long. The first two characters are combined to
represent the target hexadecimal byte, which is tested against the two-byte
value of value2.

value2 must be two bytes only, in the range 00 to FF. The bits set in value2
are tested against the byte represented by value1, according to the logical
operator specified.

The operator BO signifies that all bits tested must be set for the expression
to be true. BZ signifies that all bits tested must be set off for the expression
to be true. BM specifies that if the tested bits are a mixture of on and off,
the expression is true.

AND

Connects a series of logical expressions into a logical expression group. Each
individual expression in the group must be true for the group as a whole to
be considered true. AND takes precedence over OR.

OR

Connects a series of logical expression groups. The overall true/false
analysis of the statement is determined by the true/false status of the
individual groups, reading from left to right of the &IF statement. If any one
group is found to be true, then the statement result is true. If all groups are
found to be false then the statement result is false.

&THEN

&IF

388 Network Control Language Reference Guide

Separates the right most logical expression or logical expression group from
the command or statement that is to be executed if the statement is true.
&THEN must have at least one blank on either side. &THEN is mandatory.

command or statement

Specifies the command or statement for execution if the statement is found
to be true. The command or statement must be coded on the same
statement as &IF.

Examples: & IF

&IF &DAY EQ WED &THEN +

 -START PROC2

&IF .&1 = . &THEN +

 &WRITE DATA=ERROR, OPERAND OMITTED

&IF &HEXFLAG BO 02 &THEN +

 &GOTO .BITON

&IF &HEXFLAG BZ 03 &THEN +

 &GOTO .BITSOFF

&IF .&1 EQ .LU AND .&2 NE . &THEN +

 &GOTO .ACTLU

&ELSE +

 &GOTO .ERRORMSG

&IF

Chapter 2: Verbs and Built-in Functions 389

Notes:

Variable substitution is performed before processing the &IF statement. If a
variable has a null or undefined value when substitution is performed, it is
eliminated from the statement. For this reason, take care when testing variables
if it is possible for no value to be assigned. For example, if an operator is
required to enter a variable when a procedure is invoked, the procedure must
then test that a variable has been entered or omitted. For the following
statement:

&IF &1 EQ YES &THENand so on

&1 is expected to be set to a value entered by the operator. A syntax error
results if a value is not entered. After syntax substitution and before executing
the &IF, the statement would appear as:

&IF EQ YES &THENand so on

The variable &1 has been eliminated as it has a null value. This is easily
overcome by prefixing the same constant to either side of the expression:

&IF .&1 EQ .YES &THENand so on

In this case, if &1 is not set to a value, the resulting expression before executing
the &IF would appear as:

&IF . EQ .YES &THENand so on

No syntax error occurs, as the statement is still syntactically correct. If the &IF
test is false, the &ELSE statement is used to indicate an alternative processing
course. A subsequent &ELSE statement is optional. If the &IF test is true, the
&ELSE action is ignored and processing resumes at the statement after
completing the &ELSE process.

Note: &ELSE cannot be coded on the same statement as the associated &IF.
&THEN must be coded on the same statement as the associated &IF.

More information:

&ELSE (see page 327)
&DO (see page 320)
&DOWHILE (see page 325)
&DOUNTIL (see page 323)
&GOTO (see page 379)

&INTCLEAR

390 Network Control Language Reference Guide

&INTCLEAR

Clears messages queued to a dependent processing environment.

&INTCLEAR [TYPE=ALL | REQ | RESP | ANY]

&INTCLEAR is used to discard outstanding messages queued to a dependent
processing environment by previous &INTCMD processing, or queued by INTQ
commands issued by other NCL processes which have directed messages to this
process.

When an &INTCMD statement is executed, the associated command is executed
in the dependent processing environment for the process that executes the
&INTCMD statement. The results of the command are queued and returned
line-by-line to the procedure when each subsequent &INTREAD statement is
processed. During the analysis of the results of the command, the logic of the
procedure can determine that another &INTCMD is to be issued and that
remaining results held from the previous &INTCMD are no longer required.
&INTCLEAR is used to discard these outstanding results so that another
&INTCMD statement is issued.

If the &INTCLEAR statement were not used, the results of the second &INTCMD
would be queued in order behind the original outstanding results and would be
presented in that order.

&INTCLEAR eliminates the need to process all of the results from a command.

&INTCLEAR

Chapter 2: Verbs and Built-in Functions 391

Operands:

TYPE=ALL

(Default) This option clears the dependent processing environment of the
issuing process and any other dependent environments below it. This
means that if the process had at some stage issued &INTCMD START to
invoke an asynchronous, but dependent, NCL process, that process is
terminated by &INTCLEAR TYPE=ALL.

Unsolicited message receipt and other PROFILE command options are reset.

TYPE=REQ

This option clears all currently queued REQUEST messages such as those
generated by INTQ TYPE=REQ commands from other processes that have
sent messages to the issuing process.

TYPE=RESP

This option clears all RESPONSE messages such as those generated by INTQ
TYPE=RESP commands, commands issued by &INTCMD statements, or from
other NCL command processes executing in the issuing process's dependent
processing environment.

TYPE=ANY

This option clears all currently queued RESPONSE and REQUEST messages.
This format is equivalent to both TYPE=REQ and TYPE=RESP.

Examples: &INTCLEAR

&INTCLEAR TYPE=REQ

Discards all messages sent to us from other processes issuing INTQ or &WRITE
TYPE=REQ commands.

&INTCLEAR

Discards all messages queued to our dependent processing environment and
terminates all dependent processes and profiles.

&INTCLEAR TYPE=RESP

Discards all messages generated by dependent processes and queued to the
internal response queue for processing by &INTREAD. Does not terminate any
dependent processes.

&INTCMD

392 Network Control Language Reference Guide

Notes:

If an &INTCLEAR statement is processed after &INTCMD executes a command
which has not yet completed, the final results for that command are logged and
then discarded. To limit the volume of messages flowing to the log, use the
&INTCLEAR TYPE=RESP statement to discard unwanted messages from the
dependent response queue.

&INTCMD

Schedules a command for execution in the issuing process's dependent
processing environment.

&INTCMD command text

Executes a command in an NCL process's dependent processing environment
and returns command results to the procedure for analysis.

Every NCL process has a dependent processing environment associated with it
where it can execute commands or other NCL processes. &INTCMD is used to
execute commands and processes in this dependent environment.

When an &INTCMD statement is processed, the command statement is
executed in the issuing process's dependent processing environment. The
command is processed in the normal manner, but all responses resulting from
the command are returned to the originating process's dependent response
queue, and not the user's terminal. The issuing process can then use the
&INTREAD statement to retrieve queued responses one by one.

The result is a procedure that can correlate the results of commands it issues to
react intelligently to the results of the command.

The process &INTCMD invokes, executes independently of the initiating
procedure. If the initiating process ends before the dependent process has
completed, the dependent process is flushed automatically. It is your
responsibility to ensure that the initiating procedure synchronizes with the
&INTCMD process by using &INTREAD statements issued in the initiating
process.

Operands:

command text

Any upper and lower case command text.

&INTCMD

Chapter 2: Verbs and Built-in Functions 393

Examples: &INTCMD

&INTCMD D TERM1

&INTCMD D NCPSTOR,ID=NCP1,LEN=4,ADDR=&1

&INTCMD MAISEND IMS /DIS A

&INTCMD START MONITOR

&INTCMD PROFILE MONMSG=Y

Notes:

Certain product commands do not apply when executed within an &INTCMD
environment, and return the message:

N10104 COMMAND CANNOT BE SOURCED FROM &INTCMD STATEMENT.

These commands include the CLEAR, K, PAGE, END, FLUSH, GO, SPLIT, SWAP,
and FSPROC.

If another NCL process is invoked by an &INTCMD statement (for example,
&INTCMD START PROCNAME), the started process executes in the originating
process's dependent processing environment as a dependent process.

MAI-OC command results issued from an &INTCMD statement are returned to
your dependent response queue and is accessed by &INTREAD statements.
However, if the dependent processing environment is removed (by using
&INTCLEAR, or by terminating the procedure) from an OCS primary processing
environment, the MAI-OC session is retained and further output is delivered to
the OCS display. NCL processes invoked with &INTCMD (that is, executing in the
originating process's dependent processing environment) have their own
dependent processing environments. These procedures can therefore use
&INTCMD without restriction to execute their own commands and dependent
processes. If the highest level process terminates, all of its dependent levels
terminate.

The NCL process can use &INTCMD PROFILE commands to control the behavior
of the dependent environment, much the same way as an OCS operator. For
example, &INTCMD PROFILE MONMSG=Y is used to receive monitor class
messages on the dependent environments response queue.

Using internal command environments is not limited to standard procedures.
&INTCMD is used within reserved procedures such as PPOPROC and MSGPROC,
or from within the NMINIT and NMREADY procedures executed during system
initialization.

&INTCMD

394 Network Control Language Reference Guide

Commands executed using &INTCMD are not echoed to your terminal; nor are
the results of the commands - these are queued for processing by &INTREAD.
However, all command results processed with &INTREAD are logged (by default)
to the activity log to provide an audit trail of events. The messages appear in the
log with *nclid* in the log's node name column. (The &CONTROL NOINTLOG
statement is used to suppress logging of these messages to the activity log.)

The &INTCLEAR statement is used to flush any messages queued for &INTREAD
processing. For example, when VTAM command responses arrive much later
after the recipient's details have been removed by an &INTCLEAR statement.
The message is directed to the activity log regardless of the setting of the
&CONTROL statement. This also occurs if a procedure terminates before the
messages or responses which it initiates, return.

Note: For more information about NCL execution, processing regions, and
environments see the Network Control Language Programming Guide.

More information:

&INTREAD (see page 397)
&LOGCONT (see page 418)
&INTREPL (see page 404)
&INTCLEAR (see page 390)

&INTCONT

Chapter 2: Verbs and Built-in Functions 395

&INTCONT

Propagates a message read using &INTREAD to the next higher processing
environment.

&INTCONT [COLOR=color | COLOUR=colour]

 [HLIGHT=highlight]

 [INTENS={ HIGH | NORMAL }]

 [ALARM= { YES | NO }]

 [NRD={ NO | OPER }]

After an &INTREAD statement, a procedure can propagate the received
message to the terminal (if the executing process is not a dependent of a higher
level process), or to the dependent response queue of the next higher level
process (if the executing process is running in a dependent processing
environment).

When an &INTCMD statement is processed, the command associated with it is
executed in the issuing process's dependent processing environment. The
command is processed in the normal manner but all command responses are
returned to the originating process's dependent response queue and not the
user's terminal. The issuing process can then use the &INTREAD statement to
retrieve queued responses one by one.

&INTCONT allows the messages received by a process executing as a dependent
to be passed up the hierarchy, without having to be the subject of explicit
&WRITE statements. Optionally, some attributes of the message is altered.

Operands:

COLOR=color | COLOUR=colour

If the color attribute of the message received from &INTREAD is to be
changed, specify the new color by using this operand. The existing color
attribute of the message is tested by examination of the &ZMCOLOUR
message profile variable set after execution of &INTREAD.

HLIGHT=highlight

If the display highlighting attribute of the message received from &INTREAD
must be changed, use this operand to specify the new attribute. The existing
highlighting attribute for the message is tested by examining the
&ZMHLIGHT message profile variable set after executing &INTREAD.

&INTCONT

396 Network Control Language Reference Guide

INTENS={ HIGH | NORMAL }

If the INTENS (intensity) attribute of the message received from &INTREAD
must be changed, use this operand to specify the new attribute. The existing
INTENS attribute for the message is tested by examining the &ZMINTENS
message profile variable set after executing &INTREAD.

ALARM={ YES | NO }

If the ALARM attribute of the message received from &INTREAD must be
changed, use this operand to specify the new attribute. The existing ALARM
attribute for the message is tested by examining the &ZMALARM message
profile variable set after executing &INTREAD.

NRD={ NO | OPER }

If the non-roll delete attribute for the message received from &INTREAD
must be changed, use this operand to specify the new attribute. The existing
NRD attribute of the message is tested by examining the &ZMNRD message
profile variable set after executing &INTREAD. NRD=YES is specified but is
ignored; full non-roll delete with DOM correlation can only be set by the
message originator, for example, &WRITE.

Examples: &INTCONT

&IF &ZMALARM = YES AND &INTYPE = RESP &THEN +

 &INTCONT ALARM=NO COLOR=RED

&IF &ZMREQSRC = USER &THEN +

 &INTCONT HLIGHT=REVERSE

Notes:

&INTCONT only propagates messages that are received after executing
&INTREAD TYPE=RESP, or after &INTREAD TYPE=ANY is satisfied by a message
from the procedure's dependent response queue. Messages satisfying
&INTREAD TYPE=REQ cannot be propagated by &INTCONT. The procedure will
terminate in error if you attempt to use &INTCONT to propagate a request
message.

&INTCONT operates on the previous $INT MDO retrieved by an &INTREAD.
Values in the $INT MDO is modified before the &INTCONT is issued, and will be
reflected in the message that is propagated. Care should be taken when
modifying attributes that affect message flow control. Modification of the
$INT.SOURCE.TIME, $INT.DOMID or $INT.PREFIX can cause unpredictable
results.

The message profile variable &ZINTYPE is set to a value of RESP if &INTCONT is
used to propagate the message.

&INTREAD

Chapter 2: Verbs and Built-in Functions 397

Note: For more information, see the Network Control Language Programming
Guide.

More information:

&INTREAD (see page 397)
&INTCLEAR (see page 390)

&INTREAD

The &INTREAD verb retrieves the next message queued from the dependent
processing environment of the issuing process.

This verb has the following format:

&INTREAD { VARS=prefix* [RANGE=(start, end)] |

 VARS={ name | (name, name, ..., name) } |

 ARGS [RANGE=(start, end)] |

 STRING=(name, name, ..., name) |

 SET MDO=mdoname | SET }

 [WAIT={ YES | NO | nnnn.nn }]

 [TYPE={ ANY | REQ | RESP }]

 [PRIORITY={ REQ | RESP }]

 [INPUT={ CHAR | HEX | HEXEXP }]

The verb returns the next result line from a command executed by a previous
&INTCMD statement, a message delivered by INTQ command, unsolicited
messages, or event notifications.

Commands issued by an &INTCMD statement execute in the dependent
processing environment of the issuing process, and results return to the
dependent response queue for that dependent environment. The originating
NCL process then uses the &INTREAD statement to retrieve command results
line-by-line, from the response queue.

Other processes can send messages to your procedure using the &WRITE verb
or INTQ commands.

&INTREAD

398 Network Control Language Reference Guide

This verb lets you write powerful logical procedures which correlate command
results and react intelligently. On completing &INTREAD:

■ System variable &ZVARCNT totals the variables created or modified by the
operation.

■ System variable &ZINTYPE indicates the dependent queue type where the
message was obtained.

■ The &INTREAD Message Profile is set and the $INT mapped object is
available.

Note: For more information about the message profile variables set for
&INTREAD, see the Network Control Language Programming Guide.

■ System variable &ZFDBK is set as follows on &INTREAD completion:

0

Message has been received.

4

Wait time has expired.

8

Response queue limit reached, messages discarded (the default is 32 K).

■ &ZMDORC and &ZMDOFDBK are also set to indicate the result of MDO
assignment that took place in making the $INT MDO available or in assigning
the mdoname specified on the MDO operand.

&INTREAD

Chapter 2: Verbs and Built-in Functions 399

Operands:

VARS=

Tokenizes the message into the nominated variables before control is
returned to the procedure. Each word of the command output line is
tokenized into the nominated variables from left to right. If insufficient
variables are provided, data is lost. Excess variables are set to null. Formats
for the operands associated with VARS= are:

prefix*

Generates the variables automatically during the tokenization process
with variable names of 'prefix1 … prefix2', and so on. The RANGE=
operand is specified to indicate a starting and ending suffix number.
prefix* cannot be used with other variable names.

name

The name for a variable, excluding the ampersand (&).

name(n)

As name, but n denotes the length of the data that is put into the
variable.

*(n)

Denotes a skip operation, where n represents the number of units to
skip during the tokenization process. On VARS= statements, n denotes
'skip this number of words'. An asterisk (*) by itself is the same as *(1).

ARGS

Denotes that the line of text retrieved is tokenized and placed
word-by-word into automatically generated variables with the form &1
through &n, depending on how many are required to hold the text. The
RANGE= operand is coded to designate a start number and an end number
to delimit the number of variables generated.

&INTREAD

400 Network Control Language Reference Guide

STRING=

Specifies that no tokenization is to be performed. The entire text of the
command line is treated as a single string and returned to the procedure in
the nominated variables. Formats for the operands associated with STRING
are:

name

Specifies the name of a user-specified variable, excluding the leading &,
in which to put the string text. Text is put into each variable up to the
maximum length of each variable.

name(n)

Specifies the name of a user-specified variable, excluding the leading &,
in which to put the string text. Text is put into each variable for the
length specified by n.

*(n)

Denotes a skip operation, where n represents the number of units to
skip during the tokenization process. On STRING statements, n denotes
'skip this number of characters'. An asterisk (*) by itself is the same as
*(1).

SET

Specifies that no tokenization of the message is to be performed, but that
the &INTREAD statement is to return only the message profile of the next
message.

If SET is not specified, instructions must be coded on the &INTREAD
statement specifying the tokenization requirements for the message text by
using the other &INTREAD operands. SET is mutually exclusive with the
INPUT operand.

MDO=mdoname

Specifies that, if a user MDO is embedded in the message, it is assigned to a
local MDO with the name specified. An MDO might be present if the
message was generated by an &EVENT MDO= or &WRITE MDO= statement.
If no MDO is available, &ZVARCNT is set to zero, otherwise it is set to 1. All
message profile variables are still set.

&INTREAD

Chapter 2: Verbs and Built-in Functions 401

WAIT={ YES | NO | nnnn.nn }

WAIT=YES (the default) specifies that if no message is immediately available
on the dependent response queue when &INTREAD is issued, the procedure
waits until the next message arrives.

WAIT=NO specifies that control returns to the procedure immediately. If no
message is available, all specified variables are set to null.

WAIT=nnnn.nn specifies the procedure can wait up to nnnn.nn seconds for a
message to arrive. If no message is immediately available when the
&INTREAD is issued (maximum is 9999.99 seconds). After nnnn.nn seconds
without a message, control returns to the procedure with all specified
variables set to null and &ZFDBK set to 4. If WAIT=0 is coded, control returns
immediately. If WAIT=nnnn.nn is not used, it is your responsibility to ensure
that the procedure is structured so that an &INTREAD is not issued in the
case where messages cannot arrive. Otherwise, the NCL process waits
indefinitely.

TYPE={ ANY | REQ | RESP }

TYPE=ANY returns the next message of any type, either from the dependent
response queue or the dependent request queue. If messages are available
on both queues, the first message from the dependent response queue is
returned in preference.

TYPE=REQ indicates that &INTREAD is to return the first message from the
dependent request queue of the issuing process.

TYPE=RESP (the default) indicates that &INTREAD is to return the first
message from the dependent response queue of the issuing process.

PRIORITY={ REQ | RESP }

This operand is used with TYPE=ANY, to return the message if data is
available on both the response and request queues. The default is
PRIORITY=RESP. PRIORITY=REQ is used to select request messages in
preference to responses.

&INTREAD

402 Network Control Language Reference Guide

INPUT={ CHAR | HEX | HEXEXP }

Specifies the format for the data returned in the variables created by the
&INTREAD operation. The default is standard character data.

INPUT=HEX indicates that data in the variables is pure hexadecimal (and
therefore not directly processable by NCL).

INPUT=HEXEXP indicates that data in the variables is hexadecimal data
represented as expanded hexadecimal. For example, a hexadecimal byte
with a value of 0A appears in a variable as two characters 0A.

HEX and HEXEXP support provide data transparency across &INTREAD
operations.

Examples: &INTREAD

&INTREAD WAIT=5 ARGS RANGE=(20,80)

This requests the first message from the dependent response queue. The
message is tokenized into variables &20 up to a maximum of &80 (&ZVARCNT is
set to total how many variables were created). If no message is immediately
available, control returns after 5 seconds.

&INTREAD VARS=(*(3),A(2),B(3),C,D,E,F)

This example reads the next message from the dependent response queue and
tokenizes it into individual words:

■ *(3) indicates that the first three words are ignored

■ Two characters of the next word are placed in the variable &A.

■ Three characters of the next word are placed in the variable &B

■ The next four words are placed in variables &C, &D, &E and &F respectively.

&INTREAD

Chapter 2: Verbs and Built-in Functions 403

Notes:

If a procedure is suspended waiting for an &INTREAD, use END or FLUSH
commands to force termination.

When a message is received as a result of &INTREAD processing, a mapped data
object, containing all attributes associated with the message, is made available
to the NCL procedure in an object named $INT. The $INT object is an envelope
for a user-defined, mapped data object, which is reassigned from the
$INT.USERMDO component or assigned automatically if the MDO= operand was
specified. The map name for the user MDO is available in the $INT.MAPNAME
component or the &ZMAPNAME profile variable. If no user MDO is present
when the MDO= operand is specified, a null unmapped MDO is assigned.
Message profile variables and the $INT MDO will always be available after a
successful &INTREAD, whether an embedded MDO is available or not. The $INT
MDO is mapped by $MSG.

&INTCLEAR is used to clear outstanding messages queued to the dependent
processing environment.

If &ZFDBK is set to 8 on &INTREAD completion, it means that the response
queue was congested at some time with unprocessed messages that exceeded
32 KB. One or more messages might have been lost. This condition is unlikely to
occur and represents a surge of messages being queued by dependent
processing region activity faster than the &INTREAD process can process them.
If this condition occurs, establish the cause of the large number of messages.

&INTREAD is sensitive to the current setting of the &CONTROL VARSEG option
at the time the &INTREAD statement is issued. This option determines the
processing method for the data delivered to the &INTREAD through INTQ
commands.

For example (where a procedure using INTQ passes data to another procedure):

&A = &STR SHOW SESSINTQ ID=&NCLID &A

&INTREAD TYPE=REQ ARGS

If &CONTROL VARSEG (default) is in effect when the second procedure issues
the &INTREAD, it receives two variables. &1 contains the word SHOW, and &2
the word SESS, even though the words were originally contained within one
variable. However, if &CONTROL NOVARSEG is in effect, the second procedure
receives a single variable containing SHOW SESS.

A response message is propagated to the current processes owning
environment, using either the &INTCONT or &INTREPL statement.

&INTREPL

404 Network Control Language Reference Guide

Note: For more information about NCL processing environments and dependent
processing environments, see the Network Control Language Programming
Guide. See also the INTQ command description in the Online Help.

More information:

Sample Code (see page 1253)
&INTCMD (see page 392)
&INTCONT (see page 395)
&INTREPL (see page 404)
&INTCLEAR (see page 390)

&INTREPL

Propagates a message read via &INTREAD to the next higher processing
environment, and optionally changes its message text.

&INTREPL [COLOR=color | COLOUR=colour]

 [HLIGHT=highlight | HLITE=highlight]

 [INTENS={ HIGH | NORMAL }]

 [ALARM={ YES | NO }]

 [SCAN={ YES | NO }

 [NRD={ NO | OPER }]

 [DATA=replacement text]

After an &INTREAD statement, a procedure might choose to propagate the
entire received message to the terminal (provided the executing process is not
the dependent of a higher level process), or to the dependent response queue
of the next higher level process (if the executing process is running in a
dependent processing environment).

When an &INTCMD statement is processed, the command associated with the
statement is executed in the issuing process's dependent processing
environment. The command is processed in the normal manner but all
command responses are returned to the originating process's dependent
response queue, and not to the user's terminal. The issuing process can then
use the &INTREAD statement to retrieve queued responses one-by-one.

&INTREPL allows messages received by a process executing as a dependent, to
be passed up the hierarchy without having to use explicit &WRITE
statements—the message text is changed before propagation occurs.

&INTREPL

Chapter 2: Verbs and Built-in Functions 405

Operands:

COLOR=color | COLOUR=colour

If the color attribute of the message received from &INTREAD must be
changed, use this operand to specify the new color. The existing color
attribute of the message is tested by examining the &ZMCOLOUR message
profile variable set after executing &INTREAD.

HLIGHT=highlight | HLITE=highlight

If the display highlighting attribute of the message received from &INTREAD
must be changed, use this operand to specify the new attribute. The existing
highlighting attribute for the message is tested by examining the
&ZMHLIGHT message profile variable set after executing &INTREAD.

INTENS={ HIGH | NORMAL }

If the INTENS (intensity) attribute of the message received from &INTREAD
must be changed, use this operand to specify the new attribute. The existing
INTENS attribute of the message is tested by examining the &ZMINTENS
message profile variable set after executing &INTREAD.

ALARM={ YES | NO }

If the ALARM attribute of the message received from &INTREAD must be
changed, use this operand to specify the new attribute. The existing ALARM
attribute of the message is tested by examining the &ZMALARM message
profile variable set after executing &INTREAD.

SCAN={ YES | NO }

Indicates that the text of the message does or does not include the
highlighting character, (@). Specify SCAN=YES if your replacement text
includes this character to highlight individual words in the message.

NRD={ NO | OPER }

If the non-roll delete attribute of the message received from &INTREAD
must be changed, use this operand to specify the new attribute. The existing
NRD attribute of the message is tested by examining the &ZMNRD message
profile variable set after executing &INTREAD. NRD=YES is specified but is
ignored; full non-roll delete with DOM correlation can only be set by the
message originator, for example &WRITE.

DATA=replacement text

Specifies the text for the message that is to replace the text received after
the &INTREAD operation. The entire text must be coded. DATA can only be
specified as the last keyword on the statement, because the data string is
regarded as being everything right of the DATA= keyword, to the end of the
statement.

&INTREPL

406 Network Control Language Reference Guide

Examples: &INTREPL

&IF &ZMALARM = YES &THEN +

 &INTREPL COLOR=RED INTENS=HIGH +

 DATA=*IMPORTANT* &ZMTEXT

Notes:

&INTREPL only propagates messages received by executing &INTREAD
TYPE=RESP, or after &INTREAD TYPE=ANY is satisfied by a message from the
procedure's dependent response queue. Messages that satisfy &INTREAD
TYPE=REQ cannot be propagated by &INTREPL. The procedure terminates in
error if you attempt to use &INTREPL to propagate a request message. The
message profile variable &ZINTYPE is set to a value of RESP if &INTREPL is used
to propagate the message.

Attributes of the message can also be changed by modifying the $INT by
modifying the $INT MDO before issuing the &INTREPL or &INTCONT. Some care
should be taken when modifying message attributes in this way, as some
attributes affect processing control. Also, some attributes will be reset by the
system during message re-delivery.

Note: For more information, see the Network Control Language Programming
Guide.

&INVSTR

Chapter 2: Verbs and Built-in Functions 407

&INVSTR

Returns a string that is the inverted form of the supplied text.

&INVSTR text

&INVSTR is a built-in function and must be used to the right of an assignment
statement.

&INVSTR is used in an assignment statement to reverse the data order. For
example, inverting the data 123456 assigns the nominated variable the data
654321.

Operands:

text

The data to be inverted and placed in the nominated variable. A maximum
of data that is specified is the maximum length of the variable. The data is
reversed and placed into the target variable of the assignment statement.

Examples: &INVSTR

&A = &INVSTR ABCDEF -* &A will be set to FEDCBA

&1 = &INVSTR &1 &2

Notes:

&INVSTR is a simple way of stripping a number of characters from the end of a
variable length string: use &INVSTR to invert the string, then &SUBSTR to strip
the required number of characters from the front of the string. A second
&INVSTR statement then returns the string to its original order.

&INVSTR is useful when constructing keys for file processing from data entered
from a full-screen panel if the data entered must be reordered to construct a
suitable key.

&LBLSTR

408 Network Control Language Reference Guide

&LBLSTR

Returns a string with leading blanks deleted.

&LBLSTR text

&LBLSTR is a built-in function and must be used to the right of an assignment
statement.

User variables can contain leading blanks, whether entered by an operator
during full-screen processing or created by other built-in functions such as
&SUBSTR and &ASISTR.

&LBLSTR removes any leading blanks from the data and assigns the data
remaining into the target variable of the assignment statement.

If the data consists entirely of blanks, then the target variable is set to null.

Operands:

text

Data or a variable with data from which leading blanks are to be removed.

Examples: &LBLSTR

&1 = &LBLSTR &INPUT -* If &INPUT = ' ABC', then

 -* &1 is set to 'ABC'

Note:

The &NBLSTR function is used to remove both leading and trailing blanks. The
&TBLSTR function removes only trailing blanks.

&LENGTH

Chapter 2: Verbs and Built-in Functions 409

&LENGTH

Returns a number indicating the length of the supplied variable or constant.

&LENGTH { variable | constant }

&LENGTH is a built-in function and must be used to the right of an assignment
statement. The character length value of the target variable is returned in the
variable to the left of the assignment statement.

Operands:

variable | constant

A variable or constant.

Examples: &LENGTH

&A = ABCDEF -* assigns a value to &A

&LEN = &LENGTH &A -* &LEN is assigned a value of 6

Notes:

&LENGTH is used to determine the length of a string before attempting to use
&SUBSTR to extract the right hand part of that string. The &SETLENG statement
is used to set a variable to a specific length.

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &LENGTH is sensitive to the
presence of DBCS data.

More information:

&LENGTH (see page 1283)

&LOCK

410 Network Control Language Reference Guide

&LOCK

Obtains or releases access to a logical resource.

&LOCK PNAME=resource name

 [TYPE={ EXCL | SHR | TEST | FREE }]

 [ALTER={ YES | NO }]

 [MNAME=resource name]

 [WAIT={ NO | YES | nnnn }]

 [TEXT={ text | var | userid procedure-name time }]

&LOCK controls concurrent access to a particular logical resource by different
NCL processes. &LOCK lets a process nominate a resource by name (for
example, a file ID) for either exclusive or shared access to that resource. This
status is altered during processing when ALTER =YES is specified. A procedure
that needs to access the resource can use &LOCK to find out whether it is
entitled to use it, or whether the current process or another process already has
exclusive use.

&LOCK is used to synchronize the activities of different procedures that access,
update, or reference common information.

On completion, &RETCODE is set to indicate the result of the operation.

Operands:

PNAME=resource name

(mandatory) Specifies the primary name for the resource targeted by this
&LOCK action. The name is any string of 1 to 16 characters.

TYPE={ EXCL | SHR | TEST | FREE }

TYPE=EXCL indicates a request for exclusive control of the resource, as
identified by the PNAME (primary name) and optional MNAME (secondary
name) operands.

TYPE=SHR indicates a request for shared access to the nominated resource.

TYPE=TEST indicates a request to find out whether the nominated resource
is already the subject of an &LOCK operation by this or another process.

TYPE=FREE indicates a request to release the shared or exclusive access to
the nominated resource by this process.

&LOCK

Chapter 2: Verbs and Built-in Functions 411

ALTER={ YES | NO }

Specifies whether or not an NCL procedure can request that the lock type
and/or lock text be changed during processing. ALTER=YES allows the type
and text to be changed, and ALTER=NO, the default, specifies that no
change is allowed.

For the rules that apply when changing the lock type and text, see Altering
the Lock Type During Processing.

MNAME=resource name

Specifies the minor name for the resource. This operand is optional. The
name is any string of 1 to 256 characters.

WAIT={ NO | YES | nnnn }

WAIT=NO indicates that the request for shared or exclusive control is to
lapse immediately if access to the nominated resource cannot be obtained.

When WAIT=YES is specified for TYPE=SHR or EXCL, it indicates that if the
request for access to the resource cannot be granted immediately, the
&LOCK function will wait indefinitely until the request is granted, or the
request fails. For TYPE=TEST, if the resource is not currently held by any
user, the request will wait indefinitely until the next request of any type is
made by another process.

WAIT=nnnn indicates that if the request for exclusive or shared control of
the resource cannot be granted immediately, then the &LOCK function will
wait until the request is granted, for up to nnnn seconds maximum (the
time value can range from 1 to 9999 seconds). For TYPE=TEST, if the
resource is not currently held by any user, the request will wait for the
specified period or until the next request of any type is made by another
process.

TEXT=text | var | userid procedure-name time

Specifies a maximum of 24 characters of free form text to be associated
with this access request. The value of the text is returned in the variable &1
for certain &LOCK operations. If no text is supplied on the &LOCK
statement, the default is the current user ID, suffixed by the name of the
base NCL procedure, suffixed by the time. The text assigned to the request
is composed of text, or variables, or a mixture of both, but cannot contain
blanks. If blanks are required in the text, assign the required value to a
variable using the &STR function, then use the variable on the TEXT=
operand.

&LOCK

412 Network Control Language Reference Guide

Return Codes:

TYPE=EXCL and TYPE=SHR requests complete with &RETCODE set as follows:

0

Access to the resource is granted. For an EXCL request no other processes
can gain access to the resource until it is explicitly FREEd, or the process
terminates.

4

The request has been ignored because this process has control of the
resource already. &1 is set to the text of the existing lock. &ZFDBK is set as
follows:

0

Lock is already held shared

4

Lock is already held exclusively

8

A lock conflict has been detected

8

Access to the resource is denied. Another process has control of the
resource. The variable &1 contains the text of the oldest request that
obtained control of the resource. &ZFDBK is set as follows:

0

Lock is held shared (TYPE=EXCL requests only)

4

Lock is held exclusively

&LOCK

Chapter 2: Verbs and Built-in Functions 413

When WAIT=YES or WAIT=nnnn is specified:

12

The request is denied. Access to the resource is not possible. A PURGE
command has been issued for the waiting lock request or the time limit has
expired. The variable &1 contains the text of the oldest request that
obtained control of the resource. &ZFDBK is set as follows:

0

Lock is held shared (TYPE=EXCL requests only)

4

Lock is held exclusively

16

The request is rejected. &SYSMSG is set to the text describing the error
condition.

TYPE=TEST requests complete with &RETCODE set as follows:

0

No other procedure has shared or exclusive control of the resource, or is
testing the resource.

4

The request will fail because this process already has control of the
resource. &1 is set to the text of the existing lock. &ZFDBK is set as follows:

0

Lock is already held shared

4

Lock is already held exclusively

8

Lock conflict has been detected

&LOCK

414 Network Control Language Reference Guide

8

Another process controls the resource. Variable &1 contains the text of the
oldest request that obtained control of the resource. &ZFDBK is set as
follows:

0

Lock is held shared

4

Lock is held exclusively

8

A TEST request has been made against the resource

TYPE=FREE requests complete with &RETCODE set as follows:

0

Shared or exclusive control of the resource has been released by this
process. Variable &1 contains the text of the request just released. &ZFDBK
is set as follows:

0

Lock is held shared

4

Lock is held exclusively

4

The request is ignored. This procedure has no &LOCK control, either shared
or exclusive, of the nominated resource.

&LOCK

Chapter 2: Verbs and Built-in Functions 415

When ALTER=YES is specified, requests complete with &RETCODE set as follows:

0

Shared or exclusive control of the resource has been granted. Variable &1
contains the text of the request just released. &ZFDBK is set as follows:

0

Lock is held shared

4

Lock is held exclusively

8

The request is denied. &ZFDBK is set as follows:

0

Lock is held shared

4

Lock is held exclusively &1 is set to the text of the lock that prevented
the request from succeeding. The text of the requesting NCL
procedure's original lock request remains unchanged, and there is no
alteration to the original lock ownership (that is, the NCL procedure still
owns the lock in shared status as if the &LOCK ALTER=YES was not
issued).

Examples: &LOCK

&TODAY = MONDAY

&DTIME = NIGHT

&LOCK TYPE=EXCL PNAME=&TODAY MNAME=&DTIME

 .

 . -* process

 .

&LOCK TYPE=FREE PNAME=&TODAY MNAME=&DTIME

&LOCK TYPE=SHR PNAME=CUSTFILEMNAME=CUSTREC

&LOCKTEXT = &STR &0 write custfile

&LOCK TYPE=EXCL ALTER=YES PNAME=CUSTFILE MNAME=CUSTREC WAIT=20 +

 TEXT=LOCKTEXT

&LOCK

416 Network Control Language Reference Guide

Notes:

The resource referred to in connection with the &LOCK statement is not a real
entity such as a file or a variable. A resource in this context is a name to which
one or more NCL procedures refer. The name is made up of a primary name
(PNAME), and optionally a minor name (MNAME), for example, CONFIG.ABC
and CONFIG.XYZ (where CONFIG is the primary name and ABC and XYZ are
minor names).

If two procedures agree to use the resource CONFIG.ABC to control their access
to a UDB, each would request exclusive use of the resource CONFIG.ABC. While
one was granted access, the other would fail to obtain access and could not use
the UDB. It must be noted that &LOCK resources provide protection only if all
procedures that need to synchronize access to a resource are written using
&LOCK against a mutually-agreed resource.

Termination of the process releases all locks that are still held.

The &LOCK TYPE=TEST WAIT=YES construction is used to create a semaphore
for signalling between procedures.

Note: For more information, see the Network Control Language Programming
Guide. See also the PURGE and SHOW NCLLOCKS commands in the Online Help.

&LOCK

Chapter 2: Verbs and Built-in Functions 417

Altering the Lock Type During Processing

A process can alter the status of its resource lock during processing, if required,
by using the ALTER=YES operand on the &LOCK verb. Altering the status from
exclusive to shared is always possible, but altering the lock status from shared
to exclusive is more complicated.

When the status is altered from exclusive to shared during processing, any other
lock requests that are waiting for shared access to the resource become valid
for shared ownership. They are granted shared access to the resource
immediately, causing the requesting procedures to resume execution. The text
of the lock is replaced by the text specified on the &LOCK verb.

When altering the status from shared to exclusive, the request can only be
satisfied if there are no other procedures that have shared ownership of the
resource. Also, if the resource is the primary resource, the upgrade request can
only be satisfied if there are no other minor resources (with shared or exclusive
status) with the same primary name. If any other shared requests for the lock
arrive before the status is altered to exclusive, these new shared requests are
given precedence over the change to exclusive, and are granted shared
ownership of the lock. If the request is successful, the procedure will own the
lock exclusively, and the text of the lock will be replaced by the text specified on
the &LOCK verb.

As with normal shared and exclusive requests, the WAIT operand plays an
important part in determining the success or failure of a lock status alteration
request. However, the waiting period is only significant for a request to change
from shared to exclusive, as the request to change from exclusive to shared is
always satisfied immediately.

When WAIT=NO is specified, the request must be satisfied immediately or it will
fail.

When WAIT=nnnn or WAIT=YES is specified, the requesting process can wait for
the specified period of time for the change to be successful. This can happen
when other procedures release locks.

When the status type on the &LOCK request is unchanged from the current
status (that is, the procedure holds a shared lock then issues a shared lock
request with the ALTER=YES operand) the request is treated as a request to
alter the lock text only. This request is always successful.

&LOGCONT

418 Network Control Language Reference Guide

&LOGCONT

Resumes normal processing of a message delivered to LOGPROC.

&LOGCONT [USER=userid]

 [NODE=luname]

Used within the LOGPROC procedure to request that a message previously
delivered for processing by &LOGREAD be returned for standard log processing.

Operands:

USER=userid

If specified, indicates the new user ID to which this log message is to be
attributed.

NODE=luname

If specified, indicates the new terminal name to which this log message is to
be attributed.

Examples: &LOGCONT

&LOGCONT USER=CHIEFOP

Notes:

■ &LOGCONTs issued when no message is currently being processed by
LOGPROC are ignored.

■ An &LOGCONT need not be issued if another &LOGREAD is to be issued. If a
message is being processed and another &LOGREAD is issued without an
intervening &LOGDEL or &LOGREPL, an implied &LOGCONT is performed
and the message returned for standard processing before the next
&LOGREAD is satisfied.

■ &LOGCONT is used to free a message for delivery even though the
LOGPROC procedure continues processing before issuing another
&LOGREAD.

More information:

&LOGREAD (see page 422)
&LOGDEL (see page 419)
&LOGREPL (see page 429)

&LOGDEL

Chapter 2: Verbs and Built-in Functions 419

&LOGDEL

Requests deletion of the log record currently being processed by LOGPROC.

&LOGDEL

Used with the LOGPROC procedure to delete the log message. An &LOGDEL
statement must only be used after an earlier &LOGREAD statement—the record
it returns is the record that will be deleted by the &LOGDEL statement.

Examples: &LOGDEL

&LOGREAD ARGS

&IF &4 EQ N13505 &THEN +

 &LOGDEL

Any attempt to use &LOGDEL in other than the designated LOGPROC procedure
results in an error.

More information:

&LOGREAD (see page 422)

&LOGON

Passes control of this terminal to another application.

&LOGON [LOGMODE=logmode]

 [APPL= { applname | * }]

 { panelname | * }

 [string]

An NCL procedure operating under EASINET control can request that control of
a terminal be passed to another application. The &LOGON statement initiates
passing the terminal to another application.

&LOGON

420 Network Control Language Reference Guide

Operands:

LOGMODE=logmode

This operand is optional but must be coded as the first operand if used. It is
the name of an VTAM logmode entry used when processing this request. If
not specified, the logmode used is the default from either the APPL
definition specified by the APPL= operand, or from the nominated
DEFLOGON entry. If logmode is specified and the target application is this
product region, the terminal is disconnected and reacquired using the
specified logmode table entry.

APPL={ applname | * }

The name for the required application. This operand is optional, and (if
used) designates a specific target application. When this operand is coded,
it must be coded after the LOGMODE operand (if present), and before any
other operands. If APPL= is used to designate a specific application, the
string operand is optional. If APPL=* is coded it indicates that the target
application is this product region, in which case the terminal is disconnected
and immediately reacquired.

panelname | *

(Mandatory) The name for a panel for display before passing control to the
target application. This panel normally informs the terminal operator that
the logon request has been accepted and is being processed.

This operand is ignored for LU1 terminals, but must still be supplied. For LU1
terminals, any text assigned to the &SYSMSG variable before the &LOGON is
executed is written to the terminal if the logon request is accepted.

If you specify *, no panel is displayed before passing the terminal to the
target application.

string

The meaning of this operand depends on the presence of the APPL operand.

If APPL is coded on the &LOGON statement, the string operand is optional
and treated as user data text (maximum length 168 bytes) to be passed to
the target application specified by the APPL= operand within the logon data.
If user data is supplied in variables, the contents of the variables could be
hexadecimal data, which is passed without change to the target application.

If APPL is not coded, string is mandatory and represents text that is
compared against the logon paths defined in the DEFLOGON command. This
lets the &LOGON statement select target applications indirectly, through
the DEFLOGON mechanism, rather than explicitly by the APPL= definition.

&LOGON

Chapter 2: Verbs and Built-in Functions 421

Examples: &LOGON

&LOGON REQACCEPT IMS

&LOGON LOGONOK &INKEY USERID1/PASSWORD

&LOGON APPL=&SELECTION OKPANEL &USERDATA

&LOGON LOGMODE=MODEL4 OKPANEL TSO

Notes:

After issuing an &LOGON statement, the NCL procedure will not regain control
unless the terminal cannot be passed to the target application. In this case,
processing resumes with the next statement after the &LOGON statement. The
&SYSMSG variable will contain an error message describing the reason for the
failure.

Any attempt to use the &LOGON statement from other than an EASINET
procedure results in an error.

Note: See also the $EASINET procedure in the distribution library.

&LOGREAD

422 Network Control Language Reference Guide

&LOGREAD

Requests that the next log message be made available to LOGPROC.

&LOGREAD { VARS= prefix* [RANGE=(start,end)]|

 VARS={ name | (name,name, ..., name) } |

 STRING=(name, name, ..., name) } |

 ARGS [RANGE=(start,end)] |

 MDO=mdoname | SET }

The system-level LOGPROC procedure can intercept and process messages
directed to the activity log.

The &LOGREAD statement is reserved for use by the LOGPROC NCL procedure
and requests that processing of the LOGPROC procedure be suspended until the
next log message is available.

After the &LOGREAD statement, the LOGPROC procedure can analyze the log
message and initiate any special processing required.

Optionally, the LOGPROC procedure can delete messages from the log using the
&LOGDEL statement. The &LOGREAD statement is designed to tokenize the
incoming log messages into variables in a variety of forms to simplify analysis
and interpretation of the messages by the LOGPROC logic.

On completion of &LOGREAD the system variable &ZVARCNT is set to the
number of variables created or modified by the operation.

The profile of the message received by &LOGREAD is set in a suite of reserved
system variables. The message profile (which includes attributes such as color,
highlighting, and source information) provides a complete description of all log
message attributes, in addition to the message text. The message attributes can
also be accessed using the $LOG MDO, which is always available after a
successful &LOGREAD. The $LOG MDO is mapped by the $MSG map.

Note: For more information about the &LOGREAD message profile, see the
Network Control Language Programming Guide.

Operands:

SET

Specifies that no tokenization of the log message is to be performed, but
that the &LOGREAD statement is to return only the message profile for the
next log message.

&LOGREAD

Chapter 2: Verbs and Built-in Functions 423

If SET is not specified, operands must be coded on the &LOGREAD
statement specifying the tokenization requirements for the message text
using other &LOGREAD operands.

&LOGREAD

424 Network Control Language Reference Guide

VARS=

Specifies that the message is to be tokenized into the nominated variables
before control returns to the procedure. Each word of the log record line is
tokenized into the nominated variables from left to right. If insufficient
variables are provided, some data will be lost. Excess variables are set to
null. The formats of the operands that is coded with VARS= are described
below:

prefix*

Denotes that variables are generated automatically during the
tokenization process, and that variable names will be prefix1 … prefix2
and so on. (The RANGE= operand is specified to indicate a starting and
ending suffix number). prefix* cannot be used with other variable
names.

name

The name of a variable, excluding the ampersand (&).

name(n)

As name, but n denotes the length of the data to be placed in the
variable.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements, n
denotes 'skip this number of words'. An asterisk (*) by itself is the same
as *(1).

STRING=

Specifies that no tokenization is to be performed. The entire text of the
command line is treated as a single string and returned to the procedure in
the nominated variables. The formats of the operands associated with
STRING are:

name

User-specified variables, excluding the leading &, into which the string
text is put. Text is placed into each variable up to the maximum length
of that variable.

name(n)

User-specified variables, excluding the leading ampersand (&), into which
the string text is put. Text is placed into each variable for the length n.

*(n)

&LOGREAD

Chapter 2: Verbs and Built-in Functions 425

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On STRING statements, n
denotes 'skip n characters'. An asterisk (*) by itself is the same as *(1).

ARGS

Denotes that the line of text retrieved is tokenized and placed
word-by-word into automatically generated variables of the form &1
through &n, depending on how many are required to hold the text.

The RANGE= operand is coded to designate start and end values to delimit
the number of variables generated.

MDO=mdoname

Specifies the object name to which an MDO is to be assigned if an MDO is
present in the log message.

MDOs are user data structures, which is passed to NCL processes with
&EVENT or &WRITE statements. They will be propagated to the system log if
they are present in an eligible log message.

Examples: &LOGREAD

&LOGREAD ARGS RANGE=(20,80)

The next log message to arrive is tokenized into variables from &20 up to &80
maximum. &ZVARCNT is set to indicate how many variables were created.

&LOGREAD VARS=(*(3),A(2),B(3),C,D,E,F)

The next log message is tokenized into individual words. *(3) indicates that the
first 3 words are ignored, 2 characters of the next word are placed in the
variable &A, three characters of the next word are placed in the variable &B and
the next 4 words are placed into variables &C, &D, &E, and &F respectively.

&LOGREAD VARS=ABC* RANGE=(1,50)

The next log message is tokenized and placed word-by-word into a series of
automatically generated variables with the form ABC1, ABC2, ..., ABC50, and so
on. Variables are generated, up to the limit specified by the RANGE operand.

&LOGREAD STRING=(A,B(2),*(5),C(3))

Reads the next log message as a single text string. The first 256 bytes are placed
in &A, the next 2 characters are placed in &B, the next 5 characters are ignored,
and the next 3 characters are placed in &C.

Notes:

&LOGREAD

426 Network Control Language Reference Guide

Log records always include the time the record was generated (in format
HH.MM.SS.TH), with the user ID for the user who generated the record, and the
TERMINAL where that user is logged on.

&LOGREAD

Chapter 2: Verbs and Built-in Functions 427

If STRING is not specified, these fields are tokenized as follows:

■ First variable is assigned the time.

■ Second variable is assigned the user ID.

■ Third variable is assigned the terminal.

These three fields are always present.

If no USERID or TERMINAL is associated with a particular message (such as for
commands executed during system initialization), either or both of these fields
are set to a single minus (-) character. Therefore, the NCL procedure can assume
that the fourth variable will contain the first word of the actual text of the log
message.

For commands executed from an NCL process's dependent processing
environment (via &INTCMD), the terminal field appears as *nclid*, where nclid
is the NCL process identifier.

After a successful &LOGREAD, a $LOG MDO will always be available to
LOGPROC. $LOG is mapped by $MSG and contains all attributes associated with
a message. In addition, if the message was an envelope for a user MDO, the
user MDO is referenced directly from $LOG.USERMDO or automatically assigned
from the MDO= operand on the &LOGREAD. The mapname for the user MDO is
available in $LOG.MAPNAME or the &ZMAPNAME profile variable.

&ZMDORC and &ZMDOFDBK are set.

In the activity log certain characters are used to highlight specific classes of
messages. For example, the plus sign (+) prefixes commands, and an equal sign
(=) prefixes VTAM PPO messages. These special indicators appear in the physical
printed log only, and are not returned in the tokens that result from an
&LOGREAD statement.

An example of using LOGPROC to intercept particular messages arises with File
Transmission Services (FTS). A LOGPROC procedure is written to monitor when
transmissions finish. On detecting the completion of certain transmissions
(determined by their request name or data set name), LOGPROC can
dynamically generate job control language (JCL) to process a newly-arrived data
set and automatically submit it to the internal reader.

An example of a utility to perform this is supplied with the system as UTIL0005.

&LOGREAD

428 Network Control Language Reference Guide

&LOGREAD can also be used to split the activity log into different categories and
write records to data sets where they are available for on-line browsing. An
example of a LOGPROC to perform this, and a supplementary procedure to
perform on-line log browsing is supplied with the system.

Any attempt to use &LOGREAD in other than the designated LOGPROC
procedure results in an error.

Note: For more information about the LOGPROC procedure, see the Reference
Guide. See also LOGPROC message profile variables.

More information:

&LOGDEL (see page 419)
&LOGCONT (see page 418)
&LOGREPL (see page 429)

&LOGREPL

Chapter 2: Verbs and Built-in Functions 429

&LOGREPL

Replaces the text of the last log message delivered to LOGPROC.

&LOGREPL [USER=userid]

 [NODE=luname]

 DATA=message text

Used within the LOGPROC procedure to change the text for a message delivered
for processing by &LOGREAD, and returns the message for standard log
processing.

Operands:

USER=userid

If specified, indicates the new user ID to which this log message is to be
attributed.

NODE=luname

If specified, indicates the new terminal name to which this log message is to
be attributed.

DATA=message text

The new message text to be assigned to the message. DATA can only be
specified as the last keyword on the statement since the data string is
regarded as being everything following the DATA= keyword, to the end of
the statement.

Examples: &LOGREPL

&LOGREPL USER=CHIEFOP DATA=**MESSAGE TEXT SUPPRESSED** &TIME

Note:

&LOGREPLs issued when no message is currently being processed by LOGPROC
are ignored.

More information:

&LOGREAD (see page 422)
&LOGDEL (see page 419)
&LOGCONT (see page 418)

&LOOPCTL

430 Network Control Language Reference Guide

&LOOPCTL

The &LOOPCTL verb sets a new runaway loop control limit when &CONTROL
LOOPCHK is in effect. If the default, &CONTROL NOLOOPCHK, is in effect, the
&LOOPCTL is ignored.

When a new procedure nesting level begins, &LOOPCTL is initialized to 1000.
This value decrements by 1 for each &GOTO, &GOSUB, or &DOEND processed
for a &DOWHILE, or &DOUNTIL statement. If the &LOOPCTL reaches 0, the
procedure is terminated for being a potential runaway loop. &LOOPCTL is set to
a new value, avoiding premature termination of a procedure.

This verb has the following format:

&LOOPCTL number

Operands:

number

Specifies a numeric value in the range 1 through 10,000.

Examples: &LOOPCTL

&LOOPCTL 2000

&IF &LOOPCTL < 200 &THEN +

 &LOOPCTL 700

Notes:

&LOOPCTL (see page 898) is also a system variable that returns the current loop
control counter value.

Certain system functions imply a reset of the current loop counter. For example,
the successful displaying of a panel using the &PANEL statement. In such a case
where a panel is displayed awaiting operator input, the current loop counter is
reset to 1000. This feature eliminates the need to reset the counter using
&LOOPCTL in procedures that perform long processing runs, but which are not
looping.

Resetting &LOOPCTL within PPOPROC, MSGPROC, CNMPROC, and LOGPROC
should not be necessary. Although these are decremented as is usual,
&LOOPCTL is automatically reset when each &PPOREAD, &MSGREAD,
&CNMREAD, &LOGREAD, and &INTREAD is issued. Thus, it is only necessary to
reset it within a procedure where an abnormally high amount of processing is
being performed for a single message.

&MAICMD

Chapter 2: Verbs and Built-in Functions 431

More information:

&GOTO (see page 379)
&GOSUB (see page 376)
&DOEND (see page 321)
&CONTROL (see page 281)

&MAICMD

Specifies an MAI primary command.

&MAICMD command-string

Operands:

command-string

The following values is specified in this field:

END

Requests termination of MAI as the primary environment processor.
When the MAI menu process terminates then control will be passed to
a new primary environment-either the primary menu or OCS.

JF, JR, or J

Specifies that a jump is to be performed when the MAI Primary menu
terminates.

&MAICONT

Sends the current data stream to the terminal and/or the application.

&MAICONT [CONT | PLU | SLU | BOTH]

 [VIEW={ WAIT | OPT }]

Requests that the current data streams be sent on to one or other or both of
the PLU (application) or SLU (terminal).

&MAICONT

432 Network Control Language Reference Guide

Operands:

CONT

Indicates that the data stream should flow in the current direction.

If the last data stream received via &MAIREAD was received from the PLU,
that data stream is forwarded to the SLU. If the last data stream was
received from the SLU, that data stream (or one built up using &MAIPUT or
modified using &MAIINKEY) is forwarded to the PLU.

PLU

Indicates that the data stream should be sent to the PLU. If the last data
stream received via &MAIREAD was received from the SLU, that data stream
(or one built up using &MAIPUT or modified using &MAIINKEY) is forwarded
to the PLU. If the last data stream was received from the PLU, one or more
&MAIPUT statements must have been issued to build up a data stream,
which is then sent back to the PLU, otherwise the statement is ignored.

SLU

Indicates that the data stream should be sent to the SLU (terminal). The last
data stream received via &MAIREAD must have been received from the PLU
(application); otherwise the statement is ignored.

BOTH

Applies if the last data stream received via &MAIREAD was from the PLU,
and indicates that the data stream should be sent to the SLU, and that a
data stream built up using one or more &MAIPUT statements is to be sent
to the PLU.

If no &MAIPUTs have been issued, &MAICONT BOTH functions like
&MAICONT SLU. If the last data stream received was from the SLU,
&MAICONT BOTH functions like &MAICONT PLU.

VIEW=WAIT

Indicates that data sent to the SLU must be displayed before the procedure
resumes. The session cannot have screen ownership at the time the
&MAICONT is issued-the user could be viewing another MAI session.
VIEW=WAIT suspends execution of the procedure until the user jumps back
to this session.

VIEW=OPT

Indicates that data sent to the SLU (terminal) is to be displayed.

&MAICONT

Chapter 2: Verbs and Built-in Functions 433

At the time when the &MAICONT is issued, the session cannot have screen
ownership, as the user might be viewing another MAI session. In this case,
VIEW=OPT results in the data stream being discarded, and never being
displayed at the terminal. However, if the session does own the screen at
the time &MAICONT is issued, the data is displayed normally.

&MAICONT

434 Network Control Language Reference Guide

Examples: &MAICONT

&MAICONT BOTH VIEW=OPT

&MAICONT

&MAICONT SLU VIEW=WAIT

Notes:

If no &MAICONT is issued between two successive &MAIREAD statements, an
&MAICONT CONT VIEW=OPT is implied.

An &MAICONT issued when there is no data outstanding is normally ignored.
Data is outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL or another &MAIREAD is issued. However, in the case of a script
procedure started using a .S session skip command or session cleanup, an
&MAICONT PLU is allowed before the first &MAIREAD. An &MAICONT PLU is
also allowed after the time interval specified on an &MAIREAD WAIT= verb
expires.

An &MAICONT that requests data to be sent to the PLU is ignored if the current
session state does not allow input. For example, if the keyboard of an SNA
terminal is locked. Such an &MAICONT should not be issued unless the
procedure knows the &MAICONT will be successful. The &MAIUNLCK system
variable is provided so that the procedure can wait for a data stream that
unlocks the keyboard if necessary.

An &MAICONT PLU is often used to automatically reply to the application. For
example, if the application prompts for a user ID, the script procedure can set
up a reply data stream using &MAIPUTs, and then send that reply using
&MAICONT PLU. Alternatively, an &MAICONT BOTH could be used. This would
send the reply just as &MAICONT PLU does, but also send the prompt from the
application on to the terminal. In this way, the terminal user sees the output
from the application as it occurs. The VIEW operand governs whether the
procedure proceeds even if the user is viewing a different session.

With certain applications some care must be taken to ensure screen image
integrity. Take the ISPF product as an example. ISPF usually only sends data to
the terminal that has changed since the last send. If a script procedure does not
send each output from ISPF on to the terminal, an eventual send could result in
only a partial screen image. This problem is solved by using the VIEW=WAIT
option to ensure that each data stream is sent to the terminal. Alternatively, if
output is not to be sent to the terminal, the procedure can request to show the
complete screen image again. Using ISPF, this would be accomplished by
pressing the PA2 key (using &MAIINKEY and &MAIPUT), and then sending the
resulting complete screen image on to the terminal.

&MAICONT

Chapter 2: Verbs and Built-in Functions 435

If the script procedure has issued an &PANEL statement without a subsequent
&PANELEND, then either an explicit or implicit &MAICONT SLU will result in an
&PANELEND to allow the data to be sent to the terminal. This does not apply if
VIEW=OPT is coded.

More information:

&MAIPUT (see page 445)
&MAIINKEY (see page 443)
&MAIREAD (see page 447)

&MAICURSA

436 Network Control Language Reference Guide

&MAICURSA

Sets up the cursor address when building a data stream to be sent to the
application.

&MAICURSA [ROW=n] [COL=n]

Sets the cursor address to be present in a data stream to be sent to the PLU
(application). The data stream is built up using one or more &MAIPUT
statements.

Operands:

ROW=n

Indicates the cursor screen row position. If the ROW operand is not present,
row 1 is assumed.

COL=n

Indicates the cursor screen column position. If the COL operand is not
present, column 1 is assumed.

Examples: &MAICURSA

&MAICURSA ROW=2 COL=34

Notes:

The supplied row and column values must be within the dimensions of the
current screen, otherwise an error results.

The &MAICURSA statement only has effect when a data stream built using
&MAIPUT(s) is sent to the application. If no &MAICURSA statement is issued,
row 1, column 1 is assumed.

It is often not necessary to set a cursor address when building a data stream.
Under most circumstances, the application is not sensitive to cursor position at
time of input. However, &MAICURSA is provided for those times when you wish
to set a specific cursor position.

More information:

&MAIPUT (see page 445)

&MAIDEL

Chapter 2: Verbs and Built-in Functions 437

&MAIDEL

Signifies that a data stream is not to be delivered.

&MAIDEL

Requests that the current data stream be deleted, that is, not delivered to
either the PLU (application) or the SLU (terminal).

Notes:

&MAIDEL is most often used when an automatic reply is generated to the
application, but the last data stream received from it is not to be sent to the
terminal. For example, a script can perform automatic logon to an application,
and place the user in an initial transaction, but not let the user see anything
displayed on the terminal while this takes place.

An &MAIDEL issued when there is no data outstanding is ignored. Data is
outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL, or another &MAIREAD is issued.

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)

&MAIDSFMT

Places the entire current data stream into variables.

&MAIDSFMT { VARS=prefix* [RANGE=(start,end)] |

 VARS={ name | (name, name, ..., name) } |

 STRING &name &name ... &name |

 ARGS [RANGE=(start,end)] }

Requests that the current data stream be made available to the procedure by
placing it into the variables specified. The data stream is placed into the
variables in character format hexadecimal, with each two characters
representing one hexadecimal byte. For instance, if a single byte of the data
stream contains X'1D', it will be represented in a variable as two characters: 1D.

On completion of &MAIDSFMT the system variable &ZVARCNT is set to the
count of variables created or modified by the operation.

&MAIDSFMT

438 Network Control Language Reference Guide

Operands:

VARS=

Specifies that the data stream is to be tokenized into the nominated
variables before control is returned to the procedure. Tokenization is
performed from left to right of the data stream. If necessary, the data
stream is broken into sections whose length is the maximum allowed for a
single variable or the amount specified. If insufficient variables are provided,
some data will not be available to the procedure. The format of the
operands associated with VARS= is as follows:

prefix*

Denotes that variables are to be generated automatically during the
tokenization process, and that the variable names will be prefix1 prefix2
... and so on. The RANGE= operand is specified to indicate a starting and
ending suffix number. Default is RANGE=(1,64). prefix* cannot be used
in conjunction with other variable names.

name

The name of a variable, excluding the &.

name(n)

The same as name, but n denotes the number of bytes of the data
stream that are to be placed in the variable.

*(n)

Denotes a skip operation, where n represents the number of bytes of
the data stream to be skipped during the tokenization process.
Specifying an asterisk by itself is the same as *(1).

&MAIDSFMT

Chapter 2: Verbs and Built-in Functions 439

STRING

STRING on an &MAIDSFMT statement functions in a similar way to VARS.
The data stream is tokenized into the nominated variables before control is
returned to the procedure. Tokenization is performed from left to right of
the data stream. If necessary, the data stream is broken into sections whose
length is the maximum allowed for a single variable, or the amount
specified. If insufficient variables are provided, some data will not be
available to the procedure. Excess variables will be set to a null value. The
formats of the operands associated with STRING are as follows:

&name

The name of a variable including the leading &.

&name(n)

As name, but n denotes the number of bytes of the data stream that are
to be placed in the variable.

*(n)

Denotes a skip operation, where n represents the number of bytes of
the data stream to be skipped during the tokenization process.
Specifying an asterisk by itself is the same as *(1).

ARGS

Denotes that the data stream is to be placed into automatically generated
variables of the form &1 through &n, depending on how many are required
to hold the text. The RANGE= operand is coded to designate a start number
and, optionally, an end number, which delimits the number of variables to
be generated. The default is RANGE=(1,64).

Examples: &MAIDSFMT

&MAIDSFMT ARGS RAN GE=(20,30)

Requests that the data stream be placed into the variables &20 through &50.
&ZVARCNT will be set to indicate how many variables were created.

&MAIDSFMT VARS=(*(3),A(2),B(3),C,D,E,F)

*(3) indicates that the first 3 bytes of the data stream are ignored, the next 2
bytes are then to be placed in the variable &A, the next three are placed in the
variable &B and the rest of the data stream is placed into the variables &C, &D,
&F and &F respectively, with each of these variables containing the maximum
possible number of characters.

&MAIDSFMT VARS=ABC* RANGE=(1,20)

&MAIFIND

440 Network Control Language Reference Guide

The data stream is placed into variables &ABC1, &ABC2, and so on, up to
&ABC20.

Notes:

&MAIDSFMT is useful to interrogate a data stream more fully than would be
possible using &MAIFIND. Data streams could also be archived, for example, for
future investigation.

The data stream obtained from the PLU by &MAIDSFMT is used after some
modification on an &MAIREPL verb. &MAIREPL totally replaces a data stream
received from the PLU.

If there is no data outstanding when an &MAIDSFMT is issued, the current
screen image is returned. This allows a script started part way through a session
to determine the format and content of the current screen image. The current
screen image is also returned if &MAIDSFMT is used in the MAI help procedure.
Data is outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL, or another &MAIREAD is issued.

More information:

&MAIFIND (see page 440)
&MAIREAD (see page 447)
&MAICONT (see page 431)
&MAIREPL (see page 449)
&MAIDEL (see page 437)

&MAIFIND

Determines whether a data stream contains a given string.

&MAIFIND [CHAR | HEX] string

Determines whether the data stream currently being processed (from either the
application or the terminal) contains the specified string of data.

&MAIFIND

Chapter 2: Verbs and Built-in Functions 441

Operands:

CHAR

Specifies that the string is provided in character format.

HEX

Specifies that the string is provided in character-format hexadecimal. The
string must only contain valid hexadecimal characters (0 to 9, A to Z), and
must contain an even number of characters.

string

The string for which to search. The string starts at the first non-blank
character after any operand, and ends at the last non-blank character on
the statement. A variable or variables is specified as the string. For
hexadecimal specification, embedded blanks in the string are eliminated.

Examples: &MAIFIND

&MAIFIND ENTER LOGON

&MAIFIND CHAR ENTER PASSWORD

&MAIFIND HEX D9C5C1C4E8401D

Return Codes:

On completion the &RETCODE system variable is set as follows:

0

The string is found

4

The data stream does not contain the specified string

Notes:

An &MAIFIND issued when there is no data outstanding is ignored. Data is
outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL, or another &MAIREAD is issued.

The data stream searched for the string is the one last received by an
&MAIREAD.

The data stream search is not case sensitive. The string and the data stream are
always converted to uppercase before the search is performed.

&MAIFIND

442 Network Control Language Reference Guide

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)
&MAIDEL (see page 437)

&MAIINKEY

Chapter 2: Verbs and Built-in Functions 443

&MAIINKEY

Sets the attention key that is to be simulated in a generated data stream.

&MAIINKEY key

Sets the value of the attention key to be simulated when generating a data
stream to be sent to the PLU (application).

Operands:

key

Substitute one of the following values to represent the key to be simulated:

ATTN

ATTN key

CLEAR

CLEAR key

ENTER

Enter key

PA1 to PA3

Program Attention Key 1 to 3

PF1 to PF24

Function key 1 to 24

Leading zeroes on function key values need not be specified.

Examples: &MAIINKEY

&MAIINKEY PF3

Notes:

&MAIINKEY is used to change the value of the key used to enter data at the
terminal. If the script procedure receives data from the SLU and issues an
&MAIINKEY before issuing &MAICONT PLU (or equivalent), the key used is
changed in the data stream sent to the application.

&MAIINKEY defaults to ENTER when data from the PLU is received.

&MAIINKEY

444 Network Control Language Reference Guide

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)
&MAIDEL (see page 437)

&MAIPUT

Chapter 2: Verbs and Built-in Functions 445

&MAIPUT

The &MAIPUT verb builds a data stream for the PLU (application), either as an
automatic reply to data received from the PLU or to replace a data stream
received from the SLU (terminal) before sending it on to the PLU.

&MAIPUT fills in the input fields on the panel that is the current logical screen
image. Multiple &MAIPUT statements are issued to build up the data stream.
Each one supplies the contents of one input field. &MAIPUT statements are
used to reply to PLU data, or to change the input from the terminal (SLU) before
sending it on to the application using &MAICONT.

This verb has the following format:

&MAIPUT [ROW=n]

 [COL=n]

 data

Operands:

ROW=n

Indicates the screen row position of the input field. If ROW is not specified
but COL is, ROW=1 is assumed.

COL=n

Indicates the screen column position of the input field. If COL is not
specified but ROW is, COL=1 is assumed.

data

Specifies the data to be contained in the input field. The data starts at the
first non-blank character after any operand, and ends at the last non-blank
character on the statement. A variable or variables is specified as the data.
If no data is specified, but ROW=, COL=, or both are specified, a null input
field is generated, the equivalent of pressing the EOF key in an input field.

If data is specified, but both ROW= and COL= are not specified, an
unformatted field is generated, consisting of only data with no Set Buffer
Address sequence. This form of input results from a screen with no set input
fields defined, where the whole screen is available for input.

If data, and ROW=, COL=, or both are specified, a field with a Set Buffer
Address sequence followed by the data is generated.

&MAIPUT

446 Network Control Language Reference Guide

Examples: &MAIPUT

&MAIPUT ROW=24 COL=6 SHOW USERS

&MAIPUT TRN1

&MAIPUT ROW=2 COL=1

&MAIPUT ROW=1 COL=1 SPF 2

&MAICONT PLU

Notes:

The supplied row and column values must be within the dimensions of the
current screen, otherwise an error results.

An &MAICONT PLU statement (or equivalent) is used to send the generated
data stream to the application. The &MAIINKEY and &MAICURSA statements
are used to provide a value for the attention key to be generated and a cursor
address at time of input.

&MAIPUT with no operands is used to prepare a data stream with no modified
fields. In this case, you can use &MAIINKEY to specify the key to press and
&MAICURSA to specify the cursor address.

An &MAIPUT issued when there is no data outstanding is normally ignored. Data
is outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL or another &MAIREAD is issued. However, in the case of a script
procedure started using a .S session skip command or session cleanup, an
&MAIPUT is allowed before the first &MAIREAD. An &MAIPUT PLU is also
allowed after the time interval specified on an &MAIREAD WAIT= verb expires.

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)
&MAIDEL (see page 437)
&MAICURSA (see page 436)
&MAIINKEY (see page 443)

&MAIREAD

Chapter 2: Verbs and Built-in Functions 447

&MAIREAD

Waits for the next data stream.

&MAIREAD [ANY | PLU | SLU] [WAIT=nnnn]

Waits for the arrival of the next data stream from the PLU (application), SLU
(terminal) or either, or for a specified time interval to expire.

&MAIREAD

448 Network Control Language Reference Guide

Operands:

ANY

Suspends execution of the NCL procedure until the next data stream arrives
from either the PLU or the SLU.

PLU

Suspends execution of the NCL procedure until the next data stream arrives
from the PLU (application).

SLU

Suspends execution of the NCL procedure until the next data stream arrives
from the SLU (terminal).

nnnn

Specifies a time interval in seconds after which the procedure will regain
control if no data stream of the requested type arrives. Range is 1 to 9999.

Examples: &MAIREAD

&MAIREAD

&MAIREAD ANY

&MAIREAD PLU

&MAIREAD SLU WAIT=60

Notes:

Following the receipt of a data stream, it is searched for a particular string using
&MAIFIND, sent onward using &MAICONT, or deleted using &MAIDEL.

If two &MAIREAD statements are issued without an intervening &MAICONT or
&MAIDEL, an implied &MAICONT CONT VIEW=OPT is performed.

If an &MAIREAD statement specifies the PLU operand only, terminal input will
bypass the procedure and be sent on to the application. Conversely, if an
&MAIREAD statement specifies the SLU operand only, output from the
application will bypass the procedure and be sent on to the terminal.

If any specified time interval expires before the requested data stream arrives,
&MAIFRLU will be a null value; otherwise, it contains either PLU or SLU
according to the source of the data stream.

&MAIREPL

Chapter 2: Verbs and Built-in Functions 449

More information:

&MAICONT (see page 431)
&MAIFIND (see page 440)
&MAIDEL (see page 437)
&MAIFRLU (see page 906)

&MAIREPL

Replaces a data stream destined for the terminal.

&MAIREPL hexadecimal data

Allows the script NCL procedure to provide a replacement data stream to be
sent to the terminal.

Operands:

hexadecimal data

The complete data stream to be sent to the terminal, expressed in character
format hexadecimal, with each two characters representing one
hexadecimal byte. For instance, if a single byte of the data stream is to
contain X'1D', two characters must be specified on the &MAIREPL
statement, 1D. Blanks contained on the statement are eliminated, allowing
the data stream to be provided from multiple variables.

Examples: &MAIREPL

&MAIREPL F1C21140401D60C140

&MAIREPL &1 &2 &3 &4 &5

Notes:

An &MAIREPL can only be used to replace a data stream received from the PLU
(application). It is ignored if no PLU data stream is currently being processed.

An &MAICONT statement or another &MAIREAD statement is required to
actually send the data stream on to the terminal.

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)

&MAISADD

450 Network Control Language Reference Guide

&MAISADD

Adds a new session definition, based on user variables.

&MAISADD [PREFIX={ MAI | prefix}]

 [FIELDS={ name | (name1,name2,...,namen) }]

Used to add a new session definition with the attributes specified in the FIELDS
operand.

&MAISADD

Chapter 2: Verbs and Built-in Functions 451

Operands:

PREFIX={ MAI | prefix }

Specifies the prefix for the user variables to be accessed for the session
details. The default is MAI. The user variable names are formed by
concatenating the PREFIX operand value with the field names specified on
the FIELDS operand.

FIELDS={ name | name1,name2,...,namen }

Specifies the field names of the user variables to be accessed. The user
variable names are formed by concatenating the PREFIX operand value with
the field names specified on this operand. The following fields can be
specified on this operand:

NODE

Specific virtual terminal

Null or 1- to 8-character name

LOGON

Logon string

1 to 50 characters

SESS

Session identifier

1 to 8 characters

FJMP1/2

Jump forward key

Null or Fnn/PFnn/PAn/ATTN

RJMP1/2

Jump reverse key

Null or Fnn/PFnn/PAn/ATTN

MENU1/2

Jump to menu key

Null or Fnn/PFnn/PAn/ATTN

SISM

Screen Image Services menu key

Null or Fnn/PFnn/PAn/ATTN

SISP

&MAISADD

452 Network Control Language Reference Guide

Screen print key

Null or Fnn/PFnn/PAn/ATTN

SWAP1/2

Swap to other window key

Null or Fnn/PFnn/PAn/ATTN

REST

Restart option

Y or N

WAIT

Wait option

Y or N

FJUMP

Fast jump option

Y or N

COMP

Compression option

Y or N

LMODE

Specific logmode

Null or 1- to 8-character name

SCTPR

Script name and option

Null or 1- to 8-character name

Return Codes:

On completion, the &RETCODE system variable is set as follows:

0

The function completed successfully.

4

An error in the attributes was detected. &SYSMSG is set and the NCL
variable is updated with the ERR attribute.

&MAISCMD

Chapter 2: Verbs and Built-in Functions 453

&MAISCMD

Specifies an MAI session command against the current session.

&MAISCMD session-command

The current session is set by the &MAISGET verb. The values are processed in
the order of the in-storage MAI selection list when the MAI procedure
terminates.

Operands:

session-command

Valid session commands are:

S

The command starts the session, if not already started, and selects it for
display if no other has been previously selected.

A

Activates the session if not already active.

Note: It is not selected for display.

B

Positions the session as the last in the selection list of sessions.

T

Positions the session as the first in the selection list of sessions.

C, CU,

Cancels the active session. The session failure is reported to the
associated CC, CF application as either an unconditional, conditional or
forced disconnection.

H

Marks the session (if active) as hidden. It will not be selected via
nonspecific session jumping.

SL

Marks the session (if active) as hidden until output arrives. Upon arrival
of any data stream from the associated application, the hidden status is
reset and the session is then eligible for selection by nonspecific session
jumping.

M

&MAISCMD

454 Network Control Language Reference Guide

Modifies the session definition. The session is active or inactive. If the
session is active certain attributes cannot be changed: for example,
node-name, script procedure.

U

Updates the session definition on external storage. A full-screen
function is invoked to display the current stored definition. Changes
made are not reflected in the current in-storage definition. The session
definition is deleted by this function.

P

Purges the definition from the in-storage session definition list. The
session is no longer displayed by the MAI menu. (However, unless it is
also deleted via a stored definition update, it appears when MAI is
re-initialized.)

L

Logs on to an inactive session displaying the session characteristics (for
modification or confirmation) before starting the session.

R

Repeats a session definition. The current session definition is used as a
model to build a new session definition that is placed in the session list
immediately after the one selected. The session ID of the new session
definition is set to blanks.

&MAISGET

Chapter 2: Verbs and Built-in Functions 455

&MAISGET

The &MAISGET verb retrieves details of the specified session into user variables.

Use the verb to access the attributes of session list entries or the defaults. You
can also use the verb to mark a session as the current session for &MAISCMD.

This verb has the following format:

&MAISGET { ID=sessid | RELNUM=nn | DEFAULTS }

 [PREFIX={ MAI | prefix}]

 [ATTR={ ANY | LIST }]

 [FIELDS={ name | (name1,name2,...,namen) }]

 [PAD] }

Operands:

ID=sessid

Specifies the one- to eight-character session identifier that uniquely
identifies a defined MAI-FS session to access.

RELNUM=nn

Specifies the numerical position of a relative session within the user's
session list to access.

DEFAULTS

Retrieves the default MAI-FS session characteristics.

PREFIX={ MAI | prefix }

(Optional) Specifies the prefix for the user variables to access. The user
variable names are formed by concatenating the PREFIX operand value with
the field names specified on the FIELDS operand.

Default: MAI

ATTR={ ANY | LIST }

(Optional) Specifies whether the attributes of the active session are
returned, or those attributes of the session list entry only. ATTR=LIST
returns the attribute values of the session list entry. If an active session is
available, ATTR=ANY returns the attribute values of the session; otherwise,
the attributes of the session list entry are returned.

&MAISGET

456 Network Control Language Reference Guide

FIELDS={ name | name1,name2,...,namen }

(Optional) Specifies the field names of the user variables to return. The user
variable names are formed by concatenating the PREFIX operand value with
the field names specified on this operand. The following table shows the
fields that are specified on this operand:

Field Name Description Values Returned

DESC Session description String

DEFD DEFLOGON description String or N53D03 message

SSTAT Session status RUNNING, WAITING, ENDED,
<->

SHIDE Session visibility HIDDEN, SLEEPING, null

SOUTW Session output status *OUTPUT*, null

SWNDO Active window of session 1, 2,- (- meaning not active)

NODE Specific virtual terminal Null or 1- to 8-character
name

LOGON Logon string 1 through 50 characters

SESS Session identifier 1 through 8 characters

FJMP1/2 Jump forward key Null or Fnn/PFnn/PAn/ATTN

RJMP1/2 Jump reverse key Null or Fnn/PFnn/PAn/ATTN

MENU1/2 Jump to menu key Null or Fnn/PFnn/PAn/ATTN

SISM Screen Image Services menu
key

Null or Fnn/PFnn/PAn/ATTN

SISP Screen print key Null or Fnn/PFnn/PAn/ATTN

SWAP1/2 Swap to other window key Null or Fnn/PFnn/PAn/ATTN

REST Restart option Y or N

WAIT Wait option Y or N

FJUMP Fast jump option Y or N

COMP Compression option Y or N

LMODE Specific logmode Null or 1- to 8-character
name

&MAISGET

Chapter 2: Verbs and Built-in Functions 457

Field Name Description Values Returned

SCTPR Script name and option Null or 1- to 8-character
name

PAD

(Optional) Returns the fields with their default maximum length.

Return Codes:

On completion, the &RETCODE system variable is set as follows:

0

The function completed successfully and the variables are set.

4

An error in the request was detected. &SYSMSG is set to indicate the error
condition. No user variables are updated.

Note:

When the verb accesses a session list entry, the session is marked as the current
session. A subsequent &MAISCMD verb affects this session.

&MAISPUT

458 Network Control Language Reference Guide

&MAISPUT

The &MAISPUT verb updates MAI session list entries, or the defaults.

This verb has the following format:

&MAISPUT { ID=sessid | RELNUM=nn | DEFAULTS }

 [PREFIX={ MAI | prefix}]

 [FIELDS={ name | (name1,name2,...,namen) }]

Operands:

ID=sessid

Specifies the one- to eight-character session identifier that uniquely
identifies a defined MAI-FS session to update.

RELNUM=nn

Specifies the numerical position of a relative session within the defined list
to update.

DEFAULTS

Updates the default session details.

PREFIX={ MAI | prefix }

Specifies the prefix for the user variables to update. The user variable
names are formed by concatenating the PREFIX operand value with the field
names specified on the FIELDS operand.

Default: MAI

FIELDS={ name | name1,name2,...,namen }

Specifies the field names of the user variables to update. The user variable
names are formed by concatenating the PREFIX operand value with the field
names specified on this operand. The following table shows the fields that
are specified on this operand:

Field Name Description Value

NODE Specific virtual terminal Null or 1-to 8-character
name

LOGON Logon string 1 through 50 characters

SESS Session identifier 1 through 8 characters

FJMP1/2 Jump forward key Null or Fnn/PFnn/PAn/ATTN

&MAISPUT

Chapter 2: Verbs and Built-in Functions 459

Field Name Description Value

RJMP1/2 Jump reverse key Null or Fnn/PFnn/PAn/ATTN

MENU1/2 Jump to menu key Null or Fnn/PFnn/PAn/ATTN

SISM Seen Image Services menu
key

Null or Fnn/PFnn/PAn/ATTN

SISP Screen print key Null or Fnn/PFnn/PAn/ATTN

SWAP1/2 Swap to other window key Null or Fnn/PFnn/PAn/ATTN

REST Restart option Y or N

WAIT Wait option Y or N

FJUMP Fast jump option Y or N

COMP Compression option Y or N

LMODE Specific logmode Null or 1-to 8-character
name

SCTPR Script name and option Null or 1-to 8-character
name

Return Codes:

On completion, the &RETCODE system variable is set as follows:

0

The function completed successfully.

4

An error in the attributes was detected. &SYSMSG is set and the NCL
variable is updated with the ERR attribute.

&MASKCHK

460 Network Control Language Reference Guide

&MASKCHK

Returns a string that indicates the matching of a value against a nominated
wildcard mask.

&MASKCHK mask data [wildcard | *]

&MASKCHK is a built-in function and must be used to the right of an assignment
statement.

&MASKCHK is used to perform generic pattern matching. The mask is a string of
characters containing wildcard characters, by default asterisks (*), which imply
that any character is accepted in positions occupied by wildcard characters,
when testing the data string.

This provides a rapid way of determining if the target data is within an
acceptable range, or matches specific selection criteria.

Testing the mask against data is performed on a character by character basis
moving from left to right. After this comparison, one of the following values is
returned:

EQ

The data matches the supplied mask and is the same length as the mask.

EQL

The data matches the supplied mask, but is longer than the mask. This
implies the supplied mask contains a wildcard character as its last character.

EQS

The data matches the supplied mask, but is shorter than the mask.

NE

The data does not match the supplied mask.

&MASKCHK

Chapter 2: Verbs and Built-in Functions 461

Operands:

mask

A selection mask from 1 to 256 characters in length containing one or more
wildcard characters. By default the wildcard character is an asterisk (*), but
an alternative character is specified. A wildcard character within mask
implies that any value in that data position is accepted. If the last character
of mask is a wildcard character, then no further data checking is performed
and any trailing characters are accepted.

data

1 to 256 characters of target data to be scanned to see if it matches the
selection criteria established by mask.

wildcard | *

A single character regarded as a wildcard character. By default an asterisk is
used. Multiple occurrences of this character, in any position of mask is
acceptable.

Examples: &MASKCHK

&A = &MASKCHK IST* &MSGID

&IF &A = EQ &THEN +

 &GOSUB .PROCESSIST

&A = &MASKCHK ABC* ABCD -* &A will be set to EQ

&A = &MASKCHK A*C* ABCD -* &A will be set to EQ

&A = &MASKCHK %%C% A*CD % -* &A will be set to EQ

&A = &MASKCHK ABC* ABCDE -* &A will be set to EQL

&A = &MASKCHK ABC* ABC - * &A will be set to EQS

&A = &MASKCHK ABC* DEF -* &A will be set to NE

Note:

When using &MASKCHK, a procedure must allow for when a value of EQ, EQL,
or EQS is returned. In such cases the following approach is used:

&A = &MASKCHK P* &TERM &IF &A NE NE &THEN &WRITE Mask matched successfully

&MSGCONT

462 Network Control Language Reference Guide

&MSGCONT

Resumes normal processing of a message delivered to MSGPROC.

&MSGCONT[COLOR=color | COLOUR=colour]

 [HLIGHT=highlight | HLITE=highlight]

 [INTENS={ HIGH | NORMAL }]

 [ALARM={ YES | NO }]

 [NRD={ NO | OPER }]

Used within a MSGPROC procedure to request that a message previously
delivered for processing by an &MSGREAD be returned for standard message
processing. Optional attributes of the message is modified.

Operands:

COLOR=color | COLOUR=colour

Specifies that the message color is to be changed to that selected. Valid
values are:

RED GREEN BLUE TURQUOISE YELLOW PINK WHITE NONE

HLIGHT=highlight | HLITE=highlight

Specifies the message highlight option to be used. Valid values are:

REVERSE BLINK USCORE NONE

INTENS={ HIGH | NORMAL }

Specifies the message display intensity to be used.

ALARM={ YES | NO }

Specifies whether the terminal alarm is sounded when the message is
delivered to an OCS screen.

NRD={ NO | OPER }

If the non-roll delete attribute of the message must be changed, use this
operand to specify the new attribute value. NRD=YES is ignored; full non-roll
delete with DOM correlation can only be set by the message originator, for
example, &WRITE.

Examples: &MSGCONT

&IF &ZMMONMSG = YES &THEN +

 &MSGCONT COLOR=RED HLIGHT=REVERSE

&MSGDEL

Chapter 2: Verbs and Built-in Functions 463

Notes:

When an &MSGCONT verb is issued and no message is currently being
processed by MSGPROC, it is ignored.

An &MSGCONT need not be issued if another &MSGREAD is to be issued. If a
message is being processed and another &MSGREAD is issued without an
intervening &MSGDEL or &MSGREPL, an implied &MSGCONT is performed and
the message is returned for standard processing before the next &MSGREAD is
satisfied.

&MSGCONT is used to free a message for delivery while the MSGPROC
procedure continues processing before issuing another &MSGREAD.

More information:

&MSGREAD (see page 464)
&MSGDEL (see page 463)
&MSGREPL (see page 469)

&MSGDEL

Deletes the message currently being processed by MSGPROC.

&MSGDEL

Used within a MSGPROC procedure to request that the message previously
delivered for processing by an &MSGREAD be deleted. Once deleted, the
message is not available for further processing.

Examples: &MSGDEL

&IF &ZMSOLIC = NO &THEN +

 &MSGDEL

Note:

An &MSGDEL issued when no message is available is ignored.

More information:

&MSGREAD (see page 464)
&MSGCONT (see page 462)
&MSGREPL (see page 469)

&MSGREAD

464 Network Control Language Reference Guide

&MSGREAD

Requests that the next message be made available to MSGPROC.

&MSGREAD { SET | VARS=prefix* [RANGE=(start,end)] |

 VARS={ var | (var1, var2, ..., varn) } |

 STRING= (name, name, ..., name) |

 ARGS [RANGE=(start,end)] |

 MDO=mdoname }

 [WAIT={ YES | NO | nnnn.nn }]

 [TYPE={ ALL | SOLICIT | UNSOLICIT }]

 [DOM={ YES | NO }]

Used within a MSGPROC procedure to request delivery of the next message. If
no message is available immediately, procedure processing is suspended at this
point and resumes when the next message to be sent to the user's terminal
arrives.

Multiple &MSGREAD statements is present within a MSGPROC, to make the
processing of group messages easier.

On completing &MSGREAD, system variable &ZVARCNT is set to the number of
variables created or modified by the operation.

The profile of the message received by &MSGREAD is set in a suite of reserved
system variables. The message profile (which includes attributes such as color,
highlighting, and source information) provides a complete description of all the
message attributes in addition to the message text.

When &MSGREAD completes, the system variable &ZFDBK is set as follows:

0

Message has been received.

4

Wait time has expired.

Operands:

SET

Specifies that no message tokenization is performed; the &MSGREAD
statement returns only the message profile of the next message.

If SET is not specified, operands must be coded on the &MSGREAD
statement specifying the tokenization requirements for the message text by
using other &MSGREAD operands.

&MSGREAD

Chapter 2: Verbs and Built-in Functions 465

VARS=prefix* [RANGE=(start,end)] |
VARS={ var | (var1, var2, ..., varn) }

Specifies the message is to be tokenized into variables from left to right
before control is returned to the procedure. If insufficient variables are
nominated, some data is lost. Excess variables are set to null. The formats of
the operands that is coded with VARS= are described below:

prefix*

Denotes that variables are generated automatically during tokenization,
with variable names prefix1, prefix2, and soon. (The RANGE= operand is
specified to indicate a starting and ending suffix number). This format
cannot be used with other variable names.

var

The name of a variable, excluding the ampersand (&).

var(n)

As var, but n denotes the length for the data that is put into the
variable.

*(n)

Denotes a skip operation, where n is the number of units to be skipped
during tokenization. On VARS= statements, n denotes 'skip n words'. An
asterisk (*) by itself is the same as *(1).

STRING=

Specifies no tokenization is performed. The entire text of the message is
treated as a single string and returned to the procedure in the nominated
variables. Formats for operands associated with STRING are:

name

The user-specified variables, excluding the leading ampersand (&),
where string text is to be placed. Text is put into each variable up to the
maximum length for that variable.

name(n)

User specified variables, excluding the leading ampersand *, where
string text is put. Text will be placed into each variable for the length
specified by n.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On STRING statements, n
denotes 'skip n characters'. An asterisk (*) by itself is the same as *(1).

&MSGREAD

466 Network Control Language Reference Guide

ARGS [RANGE=(start, end)]

Denotes that the line of text retrieved is tokenized and placed
word-by-word into automatically generated variables with the form &1
through &n, depending on how many are required to hold the text. The
RANGE operand option is coded to designate a start and an end value to
delimit the number of variables generated.

MDO=mdoname

Specifies that, if an embedded MDO is present in the message received by
&MSGREAD, it will be assigned to an object with the name specified in
mdoname.

WAIT={ YES | NO | nnnn.nn }

Specifies the action &MSGREAD processing takes if no message is available
for processing immediately. Code WAIT=NO if you want control returned
immediately to the statement after &MSGREAD when no incoming message
is available. Code WAIT=nnnn.nn to specify the number of seconds up to
which &MSGREAD waits for a message, before returning control to the
procedure (maximum is 9999.99 seconds). Code WAIT=YES or omit the
operand (it will default to YES), if &MSGREAD is to wait indefinitely for a
message to arrive. Coding WAIT=0 has the same effect as WAIT=NO.

TYPE={ ALL | SOLICIT | UNSOLICIT }

Indicates whether &MSGREAD filters solicited or unsolicited messages.
Default is ALL, which means that all messages satisfy &MSGREAD. Code
SOLICIT if you want to receive solicited messages only.

DOM={ YES | NO }

Specifies whether receipt of a delete operator message (DOM) instruction
can complete an &MSGREAD operation. If MSGPROC wants to know about
the flow of DOMs to the user's window, code DOM=YES. When a DOM
completes &MSGREAD, message profile system variables will indicate that a
DOM (and not a real message) has been received.

&MSGREAD

Chapter 2: Verbs and Built-in Functions 467

Examples: &MSGREAD

&MSGREAD WAIT=5 ARGS RANGE=(20,80)

This requests the first message from the message queue, specifying that it is to
be tokenized into variables &20 up to a maximum of &80 (&ZVARCNT is set to
total how many variables were created). If no message is immediately available,
control returns after 5 seconds.

&MSGREAD VARS=(*(3),A(2),B(3),C,D,E,F)

This example reads the next message from the message queue and tokenizes it
into individual words. *(3) indicates that the first 3 words are ignored, 2
characters of the next word are placed in the variable &A, three characters of
the next word are placed in the variable &B and the next 4 words are placed in
variables &C, &D, &E and &F respectively.

&MSGREAD STRING=(A,B(2),*(5),C(3))

Reads the next message from the message queue as a single string of text. The
first 256 bytes are placed in &A, the next 2 characters are placed in &B, the next
5 characters are ignored and the next 3 characters are placed in &C.

&MSGREAD MDO=BRUCE

Reads the next message from the message queue and, if the message contains a
user MDO, assigns the embedded MDO into an object called BRUCE and
mapped by &ZMAPNAME.

&MSGREAD

468 Network Control Language Reference Guide

Notes:

After a successful &MSGREAD, a $MSG MDO will always be available to the
MSGPROC. $MSG is mapped my $MSG, and contains all attributes of the
message. If the message is an envelope for a user MDO, the user MDO will be
automatically assigned the name specified on the MDO= operand. It is also
available directly from the $MSG.USERMDO component and its map name is in
$MSG.MAPNAME or &ZMAPNAME.

After an &MSGREAD a useful technique is to use an &GOTO statement for the
routine that will process the message, using the first token of the message
(normally the message number).

&CONTROL NOLABEL

.READ

&MSGREAD ARGS

GOTO .&1

&MSGCONT -* Unexpected messages will be

&GOTO .READ -* caught and returned for normal processing

.msg1

.msg2

-*

-* Processing

-*...

&GOTO .READ

While testing and developing a MSGPROC procedure you might need to
terminate the current version and invoke an updated copy. MSGPROC is invoked
on entering OCS Mode. Exiting OCS flushes the current MSGPROC. Subsequent
re-entry to OCS loads the latest copy of the procedure (unless it was preloaded,
when the preloaded copy is used).

The PROFILE MSGPROC=FLUSH command is used to terminate an active
MSGPROC process. PROFILE MSGPROC=name can then be used to initiate a new
MSGPROC process.

If MSGPROC terminates for any reason, standard message processing resumes.

MDO assignment which occurs during &MSGREAD processing results in the
setting of &ZMDORC and &ZMDOFDBK system variables.

More information:

&MSGCONT (see page 462)
&MSGDEL (see page 463)
&MSGREPL (see page 469)

&MSGREPL

Chapter 2: Verbs and Built-in Functions 469

&MSGREPL

Replaces the text of a message delivered to MSGPROC.

&MSGREPL [COLOR=color | COLOUR=colour]

 [HLIGHT=highlight | HLITE=highlight]

 [INTENS={ HIGH | NORMAL }]

 [ALARM={ YES | NO }]

 [SCAN={ YES | NO }]

 [NRD={ NO | OPER }]

 [DATA=replacement text]

Used within the MSGPROC procedure to request that a message previously
delivered for processing by an &MSGREAD be changed to the supplied text and
returned for standard delivery.

Operands:

COLOR=color | COLOUR=colour

Specifies that the message color is to change to the selected color. Valid
values are:

RED GREEN BLUE TURQUOISE YELLOW PINK WHITE

LIGHT=highlight | HLITE=highlight

Specifies the message highlight option is used. Valid values are:

REVERSE BLINK USCORE NONE

INTENS={ HIGH | NORMAL }

Specifies the message display intensity is used.

ALARM={ YES | NO }

Specifies whether the terminal alarm is sounded when a message is
delivered.

SCAN={ YES | NO }

Specifies whether the text contains at sign (@) word highlighting characters
for processing.

NRD={ NO | OPER }

If the non-roll delete attribute of the &MSGREAD message must be
changed, use this operand to specify the new attribute. The existing NRD
attribute of the message is tested by examining the &ZMNRD message
profile variable set after executing &MSGREAD. NRD=YES is specified but is
ignored; full non-roll delete with DOM correlation can only be set by the
message originator, for example, &WRITE.

&MSGREPL

470 Network Control Language Reference Guide

DATA=replacement text

The full text for the replacement message, including any message numbers
required. Text is either upper or lower case.

The maximum length for replacement text is 256 characters.

If no text is supplied the request is treated as an &MSGDEL. DATA can only
be specified as the last keyword on the statement since the data string is
regarded as being everything right of the DATA= keyword, to the end of the
statement.

Examples: &MSGREPL

&MSGREPL HLIGHT=BLINK DATA=NETWORK NODE &7 INACTIVE.

Notes:

If &MSGREPL is issued while no message is being processed, it is ignored.

After issuing &MSGREPL, the message is no longer available in its original format
and &MSGCONT need not be issued to return the message for normal
processing.

An &MSGREPL is followed immediately by an &MSGREAD to make the next
message available.

More information:

&MSGREAD (see page 464)
&MSGDEL (see page 463)
&MSGCONT (see page 462)

&NBLSTR

Chapter 2: Verbs and Built-in Functions 471

&NBLSTR

Returns a string with leading and trailing blanks removed.

&NBLSTR string

&NBLSTR is a built-in function and must be used to the right of an assignment
statement.

User variables may contain leading or trailing blanks entered by an operator
during full-screen processing, or from other built-in functions such as &SUBSTR,
&ASISTR, and &SETLENG.

&NBLSTR removes any leading and trailing blanks from data and returns this
string.

If the data consists entirely of blanks, the target variable is set to null.

Operands:

string

Data or a variable with data from which both leading and trailing blanks are
to be removed.

Examples: &NBLSTR

&CMD = &NBLSTR &COMMAND

&1 = &NBLSTR &1

To remove only leading blanks, use the &LBLSTR function. To remove only
trailing blanks, use the &TBLSTR function.

More information:

&LBLSTR (see page 408)
&TBLSTR (see page 700)
&ASISTR (see page 217)

&NBLSTR

472 Network Control Language Reference Guide

Free-form Syntax

Several of the NDB verbs, which are described on the following pages, use a
special syntax, which is different from normal NCL syntax, to allow easy coding
of data definitions and scan requests. The relevant verb descriptions indicate
the part that uses this free-form syntax. The free-form part must always be
coded after any fixed-form, standard NCL-syntax operands on the same
statement.

The rules for free-form syntax are as follows:

■ Blanks are only required to delimit adjacent words, except inside data
values. Blanks are not required, but is specified, around or next to special
characters (listed below) that act as delimiters.

Blanks inside data values are significant, except that trailing blanks are
never stored in character-format data.

Notes: NCL variables with blanks in the value are regarded as a special case,
and the blank is regarded as part of the data value. This is because blanks
inside NCL variables are represented internally in a special way.

■ The following special characters act as delimiters, unless enclosed in a
quoted string. They have special meaning to the syntax:

(

Left bracket

)

Right bracket

:

Colon (meaning range)

=

Equal sign

p

Not sign

<

Less than sign

>

Greater than sign

&NBLSTR

Chapter 2: Verbs and Built-in Functions 473

&

Ampersand (meaning AND)

|

Bar (meaning OR)

,

Comma

Real blank (not embedded in an NCL variable)

Certain combinations of these characters are treated as a single token for
parsing. These combinations are p=, <=, and >=, meaning not equal, less
than or equal, and greater than or equal respectively.

■ Values is enclosed in quoted strings whenever the value might contain a
special character, or a real blank.

The quotes may be single (') or double(”). If the data value being quoted
contains a single or double quote, you can quote the data with the other
quote, or double up each occurrence of the quote character.

For example, 'This''s a quoted value' will be regarded as the value This's a
quoted value.

The &NDBQUOTE built-in function provides an easy way to automatically
quote data when necessary.

A data value can always be quoted, even date, hexadecimal, or numeric
values. Quoting also prevents any possibility of the value being regarded as
a keyword.

&NBLSTR

474 Network Control Language Reference Guide

■ The following words is used instead of special characters, to aid clarity. If
surrounded by other words, ensure at least one blank separates them.

EQ (=)

NE (p=)

LT (<)

GT (>)

LE (< or =)

GE (> or =)

AND (&)

OR (|)

TO (:)

NOT (p)

&NBLSTR

Chapter 2: Verbs and Built-in Functions 475

■ Several statements support a START/DATA/END construct, that allows
free-form expressions to be constructed that are longer than a single NCL
statement is allowed to be. These statements is coded in the following way
if the free-form text will fit on one statement (with possible continuations):

&NDBxxxx dbname [operands] [DATA] free-form text

To overcome NCL statement length limitations, and also to allow the
free-form text to be built piece-meal (for example, by indirect variable
reference), the statements can also be coded as:

&NDBxxxx dbname [operands] START

&NDBxxxx dbname [DATA] part-of-free-form-text

&NDBxxxx dbname END

The free-form text is broken anywhere a blank is valid. Any number of
intermediate statements is used to build the complete free-form text. The
database is not called until the END statement is encountered.

Any other operands must be coded on the &NDBxxx START statement.

Note: The statements can be interspersed with other NCL statements,
including statements referencing other or even the same database, and
even statements building free-form text for the same database, as long as
they are different statements. That is, you is concurrently building a
multi-statement add and update for the same database, but not two
different adds for the same database.

To cancel a partially built statement,

&NDBxxx dbname CANCEL

This statement is valid even if no current START/END set is being built (thus
it is used in general error routines).

&NDBADD

476 Network Control Language Reference Guide

&NDBADD

Adds a record to a NetMaster database (NDB).

&NDBADD dbname { [DATA] add-text | START | END | CANCEL |

 FORMAT=fmtname [FSCOPE={ PROCESS | GLOBAL }] }

where add-text is:

fieldname = fieldvalue [fieldname = fieldvalue ...]

The &NDBADD statement allows an NCL procedure to add a new record to an
NDB. The new record contains the fields listed on the &NDBADD statement,
with the listed values. Following completion of the statement, the system
variable &NDBRC will indicate success or failure, and, if successful, the system
variable &NDBRID will have the record ID of the new record.

&NDBADD

Chapter 2: Verbs and Built-in Functions 477

Operands:

dbname

The name of the NDB that you wish to add a record to is a required
operand. The NDB named must have been previously opened by an
&NDBOPEN statement.

DATA

Indicates that free-form text (see page 472) follows. This operand is
optional, but it is recommended, as it prevents any ambiguous meaning of a
field name or field value of DATA, START, END, or CANCEL.

START

Indicates the start of a multi-statement &NDBADD. The statement must end
after the START keyword.

END

Indicates the end of a multi-statement &NDBADD. This statement will call
the database, passing the concatenated &NDBADD DATA information.

CANCEL

Indicates an active &NDBADD START/END set is to be canceled. If there is no
active &NDBADD START/END for this database, the statement is ignored.

FORMAT=fmtname [FSCOPE={ PROCESS | GLOBAL }]

FORMAT=fmtname specifies that the output format fmtname, defined on
the &NDBFMT statement, is to be used.

The nominated format must exist in the nominated scope. PROCESS is the
default and means a format defined by the current NCL process. GLOBAL
indicates a format is to be found in the global format pool for the NDB.

If this operand is specified, the START, DATA, CANCEL, and END operands
are not allowed.

&NDBADD

478 Network Control Language Reference Guide

fieldname = fieldvalue ...

Free-form text naming the fields to be given values in the new record, and
the values to be placed in those fields.

There may be as many name = value pairs as desired, and they may be split
across multiple statements as described in the front of the chapter, using
START/DATA.../END.

If fieldvalue is a null variable (for example, &NULL =/ &NDBADD ... X =
&NULL), the null variable will be passed to the database as a null indicator,
indicating the relevant field is not present. This is not the same as present,
with a null value (for example, 0 for a numeric field).

The following code sets FIELD1 to a value, FIELD2 to present, with a null
value, and FIELD3 not present:

&FIELD1 = value -* set to a value

&FIELD2 = &SETBLNK 1 -* set to a blank

&FIELD3 = -* set null

&NDBADD MYNDB DATA FIELD1 = &FIELD1 FIELD2 =+

 &FIELD2 FIELD3 = &FIELD3

Note: The omission of a field name and its accompanying value also sets
that field as 'not present' in the new record.

Examples: &NDBADD

The following example will add a record to the NDB called MYNDB, setting the
field SURNAME to the value BLOGGS, and the field FIRSTNAME to the value
FRED.

&NDBADD MYNDB DATA SURNAME='BLOGGS' FIRSTNAME='FRED'

The next example adds a new record to the NDB called MYNDB, and builds the
list of fields across multiple statements. It illustrates how the free-form text is
split at any point where a blank is valid.

&NDBADD MYNDB START

&NDBADD MYNDB DATA SURNAME = JONES

&NDBADD MYNDB DATA DOB =

&NDBADD MYNDB DATA 600101 FIRSTNAME = 'JOHN'

&NDBADD MYNDB END

&NDBADD

Chapter 2: Verbs and Built-in Functions 479

Notes:

Errors encountered whilst processing the &NDBADD statement may cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

If the record is added successfully (&NDBRC is 0 after the single-statement
&NDBADD, or after the &NDBADD END for a multiple-statement add), the
system variable &NDBRID will contain the assigned record ID of the new record.

At least one fieldname = fieldvalue must be specified to successfully add a
record (although the value may be the null indicator).

More information:

&NDBUPD (see page 550)
&NDBDEL (see page 494)

&NDBCLOSE

480 Network Control Language Reference Guide

&NDBCLOSE

Signs off (disconnects) from an NDB database.

&NDBCLOSE dbname

The &NDBCLOSE statement is used to terminate the connection an NCL
procedure has with an NDB. All current formats, sequences, scan lists an so on,
are deleted. If further access to the database is desired, the procedure must
issue an &NDBOPEN (see page 521) statement.

Operands:

dbname

The name of the NDB from which you want to sign off is a required operand.
If not signed on to this NDB, an error response is given, that might cause the
procedure to terminate, depending on the &NDBCTL ERROR= setting.

Examples: &NDBCLOSE

&NDBCLOSE MYNDB

This example signs off from the NDB called MYNDB. Any defined formats and
sequences are deleted.

Notes:

An implicit &NDBCLOSE is done at NCL procedure termination for all open NDBs.
(This is only at highest-level termination, not nested EXECs.)

Any active &NDBxxx START/DATA/END statements for this database are
terminated, as if &NDBxxx CANCEL was specified.

If the procedure is not currently signed on the NDB, response 35 is returned,
and the procedure is terminated if the current &NDBCTL ERROR setting is
ABORT.

If the database was not started, or is in stopping status, and this is the last user
signing off, the database stops, and may enter the LOCKED status.

Note: See also the NDB START and NDB STOP commands in the Online Help.

&NDBCTL

Chapter 2: Verbs and Built-in Functions 481

&NDBCTL

Alters NDB NCL processing characteristics.

&NDBCTL [QUOTE={NO | YES }

 [DATEFMT={ * | NO | 1 | DATE1 | 2 | DATE2 |

 3 | DATE3 | 4 | DATE4 | UK | 5 | DATE5 | US |

 6 | DATE6 | 7 | DATE7 | 8 | DATE8 | 9 | DATE9 |

 10 | DATE10 }]

 [TIMEZONE={ SYSTEM | USER | * | shhmm }]

 [ERROR={ ABORT | CONTINUE }]

 [TRACE={ NO | YES }]

 [MSG={ YES | NO | LOG }]

 [SCANDEBUG={ NO | YES }]

The &NDBCTL statement allows an NCL procedure to control several processing
options related to NDBs. For example, the procedure may retain control after a
database error.

If the &NDBCTL statement is coded with no operands, the effect is to set all
options to the default values underlined. If the &NDBCTL statement has any
operands specified, only the specified operands are changed.

Operands:

QUOTE={ NO | YES }

Controls whether or not values for character, hexadecimal (FMT=HEX),
hexadecimal number (FMT=NUM BASE=HEX), and date format data must be
quoted.

QUOTE=NO, the default, means that these data types need not be quoted,
and embedded blanks in NCL variables in free-format text are treated as
part of the surrounding word. Also, &NDBQUOTE does not force-quote
non-null data.

QUOTE=YES forces the quoting requirement for the listed data types, causes
embedded blanks to be treated as real blanks, and causes &NDBQUOTE to
force-quote all non-null data.

&NDBCTL

482 Network Control Language Reference Guide

DATEFMT={ * | NO | 1 | DATE1 | 2 | DATE2 | 3 | DATE3 | 4 | DATE4 |
UK | 5 | DATE5 | US | 6 | DATE6 | 7 | DATE7 | 8 | DATE8 | 9 | DATE9 |
10 | DATE10 }

Sets the expected input format and used output format for the DATE and
CDATE fields.

DATEFMT=* (the default) means that date data will be accepted in the
format that the current user is profiled with, either UK or US format, or, if
blank or neither of these, the system language (either UK or US). Returned
date data will also be in this format.

DATEFMT=NO, for DATE fields, means that date data is accepted in
YYMMDD format only, and returned in this format. DATEFMT=NO for CDATE
fields means that a 6-digit number is processed as YYMMDD (DATE7) and an
8-digit number is processed as YYYYMMDD (DATE8).

The formats for DATE1 through DATE10 are as follows:

■ 1 or DATE1 = YY.DDD

■ 2 or DATE2 = DAY DD-MON-YEAR

■ 3 or DATE3 = DD-MON-YEAR

■ 4 or DATE4 or UK = DD/MM/YY

■ 5 or DATE5 or US = MM/DD/YY

■ 6 or DATE6 = YY/MM/DD

■ 7 or DATE7 = YYMMDD

■ 8 or DATE8 = YYYYYMMDD

■ 9 or DATE9 = n (number, base day)

■ 10 or DATE10 = YYYYMMDD0000+0000

&NDBCTL

Chapter 2: Verbs and Built-in Functions 483

TIMEZONE={ SYSTEM | USER | * | shhmm }

Allows a Greenwich Mean Time (GMT) offset value to be nominated.

TIMEZONE=SYSTEM specifies that the system offset is used.

TIMEZONE=USER specifies that the user time zone is used if it is set,
otherwise no time zone is used.

TIMEZONE=* specifies that the user time zone is used if it is set, otherwise
the system offset is used.

TIMEZONE=shhmm specifies a signed GMT offset value, where s is the sign,
hh is hours, and mm is minutes

Note: For a signed-on user, other than EASINET, a value is always set at
signon. If the user does not have a time zone defined in UAMS, the system
offset is used.

When a time zone offset is set using the TIMEZONE operand, any and all
TIMESTAMP fields specified on an &NDBADD, &NDBUPD, or &NDBSCAN are
adjusted using this offset. This allows the fields on the NDB to be
normalized to GMT regardless of where a user is situated. Only TIMESTAMP
fields is altered, as the date might need to be changed when the time is
altered-the user's time zone is subtracted from the timestamp.

When retrieving fields, all TIMESTAMP fields are adjusted in reverse to
convert from GMT time to the user's time; that is, the user time zone is
added to the timestamp.

Passing the TIMESTAMP with a trailing Z, which signifies GMT, suppresses
alteration of the fields.

SCANDEBUG output will show the GMT timestamp, followed by a Z.

ERROR={ ABORT | CONTINUE }

Sets the processing option related to NDB error handling.

ERROR=ABORT (the default) means that any database errors cause the
procedure to terminate with an error message. Database errors are defined
as any database request that gets a return code (in &NDBRC) greater than
29.

ERROR=CONTINUE allows the procedure to retain control after an error,
with &NDBRC giving the error return code.

Syntax errors in the &NDBxxx statements themselves always cause the
procedure to terminate (for example, &NDBCTL ERROR=xxx causes the
procedure to terminate). However, syntax errors in free-form text are
returned as a database error.

&NDBCTL

484 Network Control Language Reference Guide

TRACE={ NO | YES }

Allows display of the tokenizing of free-form text when processing requests
allow free-form text.

TRACE=NO (the default) prevents the display of each distinct token in the
free-form text.

TRACE=YES will produce this message for each input token as the free-form
text is parsed by the database manager:

N87710 TOKEN: token-value (maximum 1st 20 characters)

This is useful in identifying the exact point an error is occurring in a
free-form text statement.

MSG={ YES | NO | LOG }

Controls the issuing of error messages by the database manager.

MSG=YES (the default) means that error messages are sent to the
environment the NCL procedure is running in (typically, the OCS window).
They will also be logged.

MSG=NO means that no messages are issued, except certain messages are
always forced out (for example, database corruption messages and the
trace message).

MSG=LOG means that the error messages will only be sent to the activity
log.

SCANDEBUG={ NO | YES }

Controls whether &NDBSCAN statements generate debugging messages
showing the parsed scan-Request, and messages showing the record counts
passing each level of the scan.

SCANDEBUG=NO (the default) specifies that no debugging information is
displayed. SCANDEBUG=YES means that debugging information is produced.

Note: Irrespective of the DATEFMT setting, date data can always be entered
in YYMMDD format.

The delimiters '/' is any of the characters ' / \ . , : ; - _ '. Some of these
require the date to be quoted on input. Returned dates, however, always
use '/'.

&NDBCTL

Chapter 2: Verbs and Built-in Functions 485

Examples: &NDBCTL

&NDBCTL DATEFMT=NO ERROR=CONTINUE

This example sets the acceptable date format to YYMMDD only, and allows the
procedure to stay in control after an error.

&NDBCTL

This example resets all &NDBCTL options to their default values.

Notes:

Syntax errors in the &NDBCTL statement always cause the NCL procedure to
terminate with an error message.

The &NDBCTL values are saved/restored based on the setting of &CONTROL
SAVE/NOSAVE.

More information:

&NDBRC (see page 915)
&NDBERRI (see page 914)
&DATEn (see page 885)
&CONTROL (see page 281)

&NDBDEF

486 Network Control Language Reference Guide

&NDBDEF

The &NDBDEF verb adds, updates, or deletes field definitions to/from an NDB
database. This feature is described for completeness. Use the NDB FIELD
command (which provides a better way to perform these functions) instead.

This verb has the following format:

&NDBDEF dbname { [ADD] field-entry | UPDATE field-entry | DELETE field-entry }

where field-entry is (minimum acceptable abbreviations are in uppercase):

{ fieldname | (fieldname

 [{ Fmt= | Format= } { Char | Num | Float | Hex | X | Date |

 Cdate | Time | Timestamp }]

 [Key={ No | Yes | Unique | Sequence }]

 [NULLField={ Yes | No }]

 [NULLValue={ Yes | No }]

 [Update={ Yes | No }]

 [Caps={ Yes | No | Search }]

 [Description=description]

 [{ USER1= | U1= } value]

 [{ USER2= | U2= } value]

 [{ USER3= | U3= } value]

 [{ USER4= | U4= } value]

 [NEWNAME=name]

 [BASE={ NONE | DECIMAL | HEX }]) }

Note: Specifying KEY=SEQUENCE changes the default of NULLFIELD=YES to
NULLFIELD=NO, and UPDATE=YES to UPDATE=NO. Specifying NULLFIELD=YES or
UPDATE=YES is invalid in this case. The default values shown apply for ADD only.
For UPDATE, all operands that are not specified for the field name on the
&NDBDEF statement, remain unchanged.

When an NDB is created (using the NDB CREATE command), there are no field
definitions. Use the &NDBDEF ADD statement to insert at least one field
definition into the database.

Field definitions can also be removed from an NDB. When field definitions are
removed, any index tables associated with the field are removed, and the field
data in any record becomes inaccessible. Whenever a record is updated, the
deleted fields are removed from that record.

&NDBDEF

Chapter 2: Verbs and Built-in Functions 487

Operands:

dbname

Specifies the name of the NDB that you want to add or delete field
definitions in is a required operand. An &NDBOPEN statement must have
opened this NDB previously.

ADD

(Optional) Adds field definitions to the database.

At least one field definition must follow the ADD keyword.

UPDATE

Updates the listed fields.

At least one field definition must follow the UPDATE keyword.

The UPDATE option allows the following attributes to be updated at any
time:

■ DESC

■ USER1 to 4

■ UPDATE (except sequence key)

■ KEY=Y to KEY=N

■ KEY=U to KEY=Y/N

DELETE

Deletes the listed fields from the database.

At least one field definition must follow the DELETE keyword.

field-entry

Specifies the field to add or delete.

More than one field is added or deleted in one &NDBDEF statement, up to
the maximum permissible NCL statement continuation limit.

fieldname is the name of the field. The name has the same format as an NCL
variable name; that is, 1 through 12 characters alphanumeric, and, if the
first character is numeric, the entire name must be numeric. Field names
must be unique within an NDB. Do not precede the name with an
ampersand (&), unless you want the actual field name to be the contents of
the named variable.

The optional field operands for format, key, and so on, are ignored for a
delete request (however, they must be valid).

&NDBDEF

488 Network Control Language Reference Guide

If a field entry that follows the optional ADD keyword has no parenthesis
around it, all the default values are used.

&NDBDEF

Chapter 2: Verbs and Built-in Functions 489

The optional operands are:

Fmt= | Format=

Specifies the field format. Valid values are:

Char

Character data. Any character value may be provided. The data is stored
internally as entered, with trailing blanks removed.

Num

Numeric data. Values provided must be numeric, range -2147483648 to
2147483647. The data is stored internally as a binary fullword. If keyed,
the keys collate correctly (that is, -1 before 0 before 1 if reading
sequentially).

Float

Floating-point data. The data is stored internally in IBM 8-byte
normalized floating-point format. 15 significant digits and exponent
±70. If keyed, the keys collate on ascending numeric value.

Hex | X

Hexadecimal data. Values provided must be valid
expanded-hexadecimal data. The data is stored internally in the
hexadecimal-compressed format.

Note: Trailing zeros are significant, and the values ABCD and ABCD00
are regarded as different. If keyed, the keys collate on the binary value.

Date

Date data. Values must be a valid date, the input format depending on
the &NDBCTL DATEFMT option. The data is stored internally as unsigned
packed, 3 bytes in DDMMYY format. If keyed, the keys collate on
ascending dates.

Cdate

Data is provided in one of several formats, controlled by the user,
system language code, or both, and the current &NDBCTL DATEFMT
setting. The data is stored internally as a 3-byte binary number being
the number of days from 1/1/0001.

Time

Data is provided in HHMMSS.TTTTTT format (the decimal point and
fraction is truncated or omitted). The data is stored internally as a
5-byte binary number, being the number of microseconds since
midnight.

&NDBDEF

490 Network Control Language Reference Guide

Timestamp

Data is provided in YYYYYMMDDHHMMSS.TTTTTT format. The data is
stored internally as a concatenation of a 3-byte CDATE and 5-byte TIME.

Default: Char

Note: For the UPDATE keyword, the field format can only be changed if the
NDB is empty.

Key=

The keying option. Valid values are:

No

The data is not keyed.

Yes

The data is keyed, with duplicate key values permitted.

Unique

The data is keyed, with duplicate key values not permitted.

Sequence

The data is keyed, with duplicate key values not permitted. In addition,
the key is used as the data sequence key, similar to a VSAM primary key.

Default: No

Note: KEY=SEQUENCE forces NULLFIELD=NO and UPDATE=NO.

NULLField=

Specifies whether a field is absent in a record. Absent means not provided,
and is not the same as present, with a null value (for example, all blank for a
character field).

Yes

Means that the field is not required when a record is added, or the field
can be set to null on update.

No

Means that the field must be present when a record is added, and the
field cannot be set null on update.

Default: Yes

&NDBDEF

Chapter 2: Verbs and Built-in Functions 491

NULLValue=

Specifies whether a field can be added with, or updated to, the null value
(all blank for character, 0 for numeric, blank for hexadecimal, and 000000
for date).

Yes

Means that the null value is acceptable as a value for this field.

No

Means that the null value is invalid for this field. An attempt to add a
record with this field containing the null value, or to update the field to
a null value causes an error.

Default: Yes

Update=

Specifies whether the field value can change on an update statement.

Yes

Means that the value is changed on an &NDBUPD statement.

No

Means that the field value cannot be changed on an &NDBUPD
statement.

Note: The field and its value are specified on an &NDBUPD statement in
this case, but the value must be identical to the current value.

Default: Yes

&NDBDEF

492 Network Control Language Reference Guide

Caps=

Specifies the presence and preservation of lowercase data in FMT=CHAR
fields. Specify this operand as CAPS=YES if coded on other field formats.

Yes

Lowercase data is folded to uppercase data in the stored value, and for
the key value if the data is keyed. Key values on &NDBSEQ and
&NDBGET, and search arguments on &NDBSCAN are also folded to
uppercase.

No

Lowercase data is not folded to uppercase data in either the stored
value, or the key value if the data is keyed. Key values on &NDBSEQ and
&NDBGET, and search arguments on &NDBSCAN are not folded to
uppercase.

Search

Lowercase data is not folded to uppercase in the stored value, but is
folded to uppercase for the key value if the data is keyed. Key values on
&NDBSEQ and &NDBGET, and search arguments on &NDBSCAN are
folded to uppercase. Retrieved data is as originally entered (subject to
&CONTROL UCASE/NOUCASE).

Default: Yes

Note: NDBs are language-specific. The LANG operand on the NDB CREATE
command specifies the language code when the NDB is created. The
uppercase translation table for that language code is used for search
arguments and CAPS=YES fields when translating to uppercase.

Description=description

Allows an optional description of the field, up to 60 characters, to be stored
with the field definition. This description is retrieved with the &NDBINFO
statement. If there are special characters or blanks in the description,
surround it with quotes.

USER1= | U1=

Allows the storage of an optional user-defined piece of information, for
example, a formatting indicator. The format is like description, but limited
to eight characters.

USER2= | U2=

USER3= | U3=

USER4= | U4=

&NDBDEF

Chapter 2: Verbs and Built-in Functions 493

Like USER1, USER2, USER3, and USER4 allow eight characters of extra,
user-defined information to be stored.

NEWNAME=name

This optional operand is used to rename the field, for UPDATE only.

BASE={ NONE | DECIMAL | HEX }

Specifying NONE or DECIMAL for a numeric field results in an external
representation as a signed decimal number (on output, a minus sign only is
used, if necessary). Specification of HEX causes the external representation
to be a hexadecimal string, with leading zeros suppressed on output. For
negative numbers, the full seven hexadecimal digits are used (leading X'f').

For a field format other than NUMERIC, the BASE operand is ignored, but its
syntax is checked.

Update a field definition to change the BASE operand—either by the
&NDBDEF verb or the NDB FIELD command.

If the NDB is in load mode or newly created, the following attributes can also be
updated: KEY (to/from anything except SEQ), and CAPS=N to CAPS=S and
conversely. In addition, the field is renamed at any time.

The NDB ALTER command allows a field to be dynamically indexed without
using this facility. However, if you want to alter many fields, using LOADMODE
and a full rebuild of indexes would be faster than several passes, one per field.

Examples: &NDBDEF

This example adds four fields to the NDB named MYNDB:

&NDBDEF MYNDB (SURNAME FMT=C KEY=YES NULLFIELD=NO +

 UPDATE=NO)+

 (FIRSTNAME FMT=C KEY=N) +

 (DOB FMT=DATE DESC='Date of birth') +

 COMMENT

This example deletes two fields from the NDB named MYNDB:

&NDBDEF MYNDB DELETE DOB COMMENT

This example adds the field SUBURB to the NDB named MYNDB, as a non-keyed
character field that can be updated:

&NAME = SUBURB

&NDBDEF MYNDB ADD &NAME

&NDBDEL

494 Network Control Language Reference Guide

Notes:

If the database is to have a sequence key, it must be the first field ever defined,
and the field definition cannot be deleted. There can only be one sequence key.

Currently there is no facility for making a field keyed, or removing the keys on a
field, once it is defined.

The NDB RESET command removes all data from an NDB, but leaves the field
definitions intact.

If there are any errors in the definitions, none of the definitions are added or
deleted.

The NCLEX01 security interface can disable the &NDBDEF verb. If you disable
the verb, the NDB FIELD command becomes the only way to alter NDB field
definitions. This feature allows protection of NDB field definitions.

Note: See also the NDB CREATE and NDB RESET commands in the Online Help.

More information:

&NDBINFO (see page 512)

&NDBDEL

Deletes a record from an NDB database.

&NDBDEL dbname RID=n

The &NDBDEL statement allows an NCL procedure to delete a record from an
NDB. The record to be deleted is identified by a record-ID (RID). This record ID is
assigned to each record when it is added to the database by &NDBADD, and
never changes. The system variable, &NDBRID, is set by several &NDB
statements to indicate the RID of the current record.

&NDBDEL

Chapter 2: Verbs and Built-in Functions 495

Operands:

dbname

The name of the NDB that you wish to delete the record from is a required
operand. This NDB must have been previously opened by an &NDBOPEN
statement.

RID=n

This required operand is used to indicate the RID of the record to delete. n
is the record ID, which is inserted by substitution, typically using &NDBRID,
which has been set by, for example, a preceding &NDBGET statement.

Examples: &NDBDEL

&NDBGET MYNDB FIELD=SURNAME VALUE='BLOGGS' FORMAT +

 NO-FIELDS

&NDBDEL MYNDB RID=&NDBRID

This example uses &NDBGET to retrieve a record with field SURNAME equal to
BLOGGS, and then will delete it.

&NDBSEQ MYNDB DEFINE SEQ=S1 FIELD=SUBURB VALUE=BRONX

&NDBGET MYNDB SEQ=S1 FORMAT NO-FIELDS

&DOWHILE &NDBRC = 0

 &NDBDEL MYNDB RID=&NDBRID

 &NDBGET MYNDB SEQ=S1 FORMAT NO-FIELDS

&DOEND

This example deletes all records (if any) in NDB MYNDB with field SUBURB equal
to BRONX.

Notes:

Errors encountered whilst processing the &NDBDEL statement could cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

A successful delete sets &NDBRC to 0. If the RID does not exist in the database,
&NDBRC is set to 1.

More information:

&NDBADD (see page 476)
&NDBGET (see page 506)
&NDBUPD (see page 550)

&NDBFMT

496 Network Control Language Reference Guide

&NDBFMT

Defines a list of fields to be retrieved by an &NDBGET statement, or to be added
or updated by the &NDBADD or &NDBUPD statements.

&NDBFMT dbname { [DEFINE]

 FORMAT=formatname

 [FSCOPE={ PROCESS | GLOBAL }]

 [USAGE={ OUTPUT | INPUT }]

 { START | [DATA] format-text } |

 [DATA] format-text | END | CANCEL |

 DELETE FORMAT= { formatname | * }

 [FSCOPE={ PROCESS | GLOBAL }] }

format-text for an INPUT format is:

{ NO-FIELDS | ALL-FIELDS | KEY-FIELDS |

 FIELDS [field-entry] [field-entry] ... }

field-entry for an INPUT format is:

{ { name1 [= { name2 | .RID }] | pfix1* [= pfix2*] } |

 ({ name1 [= { name2 | .RID }] | pfix1* [= pfix2*] }

 [LENGTH= { 0 | length }]

 [PAD= { ' ' | c | 'c' }]

 [JUSTIFY= { LEFT | RIGHT | CENTER }]

 [TRUNCATE]

 [NULLFIELD={ DELETE | NULLVALUE | PAD | NORETURN }]) |

 .LINK (FROM=fieldname TO=keyedfieldname)

 [ID=fmtid]

 [FROMID=fromfmtid]

 [NOFIND= { WARNING | n | IGNORE }])

 format-text }

format-text for an OUTPUT format is:

{ ALL-FIELDS | FIELDS [field-entry] [field-entry] ... }

field-entry for an OUTPUT format is:

[(] { name1 [=name2] | pfix1* [=pfix2*] }

[[TRUNCATE])]

&NDBFMT

Chapter 2: Verbs and Built-in Functions 497

The &NDBFMT statement allows an NCL procedure to predefine a list of fields to
be returned when using &NDBGET. The advantage of predefinition is that it
reduces the overhead of parsing and interpreting the format list on every
&NDBGET. The parsing and interpretation is done, and the field list validated,
just once, when the &NDBFMT statement is executed. The &NDBGET statement
can then use the FORMAT=format name syntax to use the predefined
format—the overheads is greatly reduced when reading a large number of
records.

Operands:

dbname

The name of the NDB that the format is to apply to is a required operand.
This NDB must have been previously opened by an &NDBOPEN statement.

DEFINE

An optional operand, indicating a new format definition follows, or the start
of a multi-statement format definition follows.

FSCOPE={ PROCESS | GLOBAL }

Controls whether the format is PROCESS-level (this is the default) or
GLOBAL (to the database).

A GLOBAL format has separate name space from any process. This means
that global formats can have the same name as formats defined by any
number of processes. The only way to create, reference, or delete a global
format is by use of the FSCOPE=GLOBAL operand of the &NDBFMT,
&NDBGET, &NDBADD, &NDBUPD or &NDBINFO verbs.

USAGE={ INPUT | OUTPUT }

Controls the usage of the format. INPUT is the default and means that the
format will be used for input from the NDB (that is, the &NDBGET verb).

USAGE=OUTPUT means that this format is to be used for output operations
to the NDB (that is, the &NDBADD and &NDBUPD verbs).

FORMAT=formatname

A required operand for a single-statement definition, or the start of a
multi-statement format definition, providing the name of the new format.
formatname must be a 1- to 12-character name, the first character
alphabetic or national, and the rest alphanumeric or national. formatname
must not be already defined for the nominated database, but the same
format name is defined on several databases.

START

&NDBFMT

498 Network Control Language Reference Guide

Indicates the start of a multi-statement &NDBFMT. The statement must end
after the START keyword.

&NDBFMT

Chapter 2: Verbs and Built-in Functions 499

DATA

Indicates that free-form text (see page 472) follows. This operand is
optional, but it is recommended, as it prevents any ambiguous meaning of a
name1 or name2 value of DATA, START, END, or CANCEL.

END

Indicates the end of a multi-statement &NDBFMT. This statement will call
the database management system, passing the concatenated &NDBFMT
format information.

CANCEL

Indicates an active &NDBFMT START/END set is to be canceled. If there is no
active &NDBFMT START/END for this database, the statement is ignored.

DELETE FORMAT= { formatname | * }

Indicates that the named format (formatname), or all formats (*) within the
scope specified or defaulted, are to be deleted. Following execution of this
statement, the relevant formats are no longer defined.

format-text (for an INPUT format)

Free-form text describing the desired format. The first keyword in this text
indicates the specific type of format, which is one of the following:

NO-FIELDS

Indicates that no data is wanted. An &NDBGET will only set &NDBRC to
indicate the successful retrieval or otherwise, of the requested record.

ALL-FIELDS

Indicates that all fields defined in the database are to be returned, with
fields not present in a given record being set to null. The fields will be
returned in NCL variables of the same name.

KEY-FIELDS

Indicates that all fields defined in the database as being keyed
(KEY=YES,UNIQUE, or SEQUENCE in the field definition) are to be
returned, with key fields not present in a given record being set to null.
The fields will be returned in NCL variables of the same name.

FIELDS

Indicates that a field list follows. The list will indicate the desired
database fields to be returned, with optional renaming of the returned
data.

Note: The field list is null, meaning the same as NO-FIELDS.

&NDBFMT

500 Network Control Language Reference Guide

field-entry (for an INPUT format)

When using the FIELDS option, each field-entry denotes an operation to be
performed during an &NDBGET. The operation may be to assign values from
the database records to NCL variables, or it may be to link to other records
in this NDB using field values in the previous records as keys.

If only name1 is present, it is both the name of the database field and the
name of the NCL variable that will be set to its value. If both name1 and
name2 are present, name1 is the name of the NCL variable that will hold the
returned value, and name2 is the name of the field in the database.

If only pfix1* is present, all of the fields whose names begin with pfix1 will
be assigned to NCL variables of the same name. If both pfix1* and pfix2* are
present, pfix1 is the NCL variable prefix that will be used for the variables
containing the returned values from all of the NDB fields which begin with
pfix2. pfix1 is null, which means that the NCL variable names will be
equivalent to the NDB field names, but without the prefix pfix2. In this case,
if there is a NDB field called pfix2, it will not be assigned.

.RID

Indicates that the NDB record ID of the retrieved record will be assigned to
the NCL variable name1.

LENGTH=length

Indicates the length of the NCL variable returned. Specifying 0 (the default)
means that the variable will be set to the length of the corresponding NDB
field. NDB fields shorter than that specified on the LENGTH option will be
padded and justified as per the operands explained below. Longer fields will
always be truncated on the right.

PAD= { ' ' | c | 'c' }

Indicates the pad character to use when the length for this NCL variable is
greater than the length of the NDB field. The default is space.

JUSTIFY={ LEFT | RIGHT | CENTER }

Indicates how the data from the NDB field will be justified to the NCL
variable when the length of the NCL variable is greater than the NDB field.

LEFT, the default, indicates that the data will start in the first character
position of the variable, the rightmost portion of the variable containing the
specified pad character.

RIGHT indicates that the data will finish in the right most character position
of the NCL variable, the leftmost part of the variable being filled with the
specified pad character.

&NDBFMT

Chapter 2: Verbs and Built-in Functions 501

CENTER indicates that the data will be centered and the same amount of
the specified pad character will be used on either side.

&NDBFMT

502 Network Control Language Reference Guide

TRUNCATE

If generic prefixes are specified, then it is possible for NCL variables to
exceed 12 characters. However, this will normally cause an error. If
TRUNCATE is specified, variable names will be truncated to a maximum of
12 characters. No checking on duplicates will be performed.

NULLFIELD= { DELETE | NULLVALUE | PAD | NORETURN }

Determines the action to take on a receiving NCL variable when the NDB
field is not present.

DELETE, the default, specifies that the variable is to be deleted.

NULLVALUE indicates that the variable will be assigned the correct null
value for that field type - 0 for numeric fields, space for character fields, and
00/00/00 for date fields.

PAD indicates the variable will be assigned the value of the specified pad
character.

NORETURN indicates that no action is to be performed on the variable if the
corresponding field is null. This means that if the variable had a previous
value in it, that value would remain there after the GET. NORETURN is very
dangerous unless it is used with MODFLD=YES in the &NDBGET statement
as it cannot be determined whether a field was modified or not by the
&NDBGET.

.LINK

Gives the user the facility to access up to 21 NDB records with a single
&NDBGET statement via a linked get. The maximum number of .LINK
requests on an &NDBGET statement is 20 (one .LINK retrieves one record).

FROM=fieldname

Specifies the name of the field that will contain the source data for the
linked get. This field is the field in the first (not .LINKed) record retrieved by
the &NDBGET (if no FROMID specified), or in a previously linked record (if
FROMID specified).

TO=keyedfieldname

Specifies the key field to use in the search for the linked get. The search is
always like a GET OPT=KEQ. If more than one record is found matching the
given key, the one with the lowest RID is returned.

ID=formatid

This is an optional 1- to 12-character name used to identify this particular
link. This name is used in a subsequent link entry to identify this record, as
opposed to the original record, as the source of the linked get.

&NDBFMT

Chapter 2: Verbs and Built-in Functions 503

FROMID=fromformatid

This is an optional 1- to 12-character name which must have appeared as
the ID operand of a previous linked entry. If omitted, the key value specified
in the FROM operand is taken from the primary record. Otherwise it is taken
from the record obtained in the link operation identified by from format ID

NOFIND = { WARNING | n | IGNORE }

Specifies the action to take should there be no matching record when a
linked get is performed.

WARNING, the default, means that the operation will terminate with a
response code of 10, and all subsequent link operations are ignored.

Specifying n will cause a response code of n to be generated, n being within
the range 10 to 19. Subsequent link operations will be ignored.

Specifying IGNORE will return with a response code of 0 and subsequent link
operations will be attempted if possible.

format-text (for an OUTPUT format)

ALL-FIELDS

Indicates that all fields defined in the database are to be added or
updated. The fields will be retrieved from NCL variables of the same
name.

FIELDS

Indicates that a field list follows. The list will indicate the desired
database fields to be added or updated.

field-entry (for an OUTPUT format)

If only name1 is present, it the name of both the NCL variables and the
name of the database field that will be set to its value. If both name1 and
name2 are present, name1 is the name of the field in the database, and
name2 is the name of the NCL variable containing its value.

If only pfix1* is present, then all of the database fields whose names begin
with pfix1 will be set to values retrieved from NCL variables of the same
name. If both pfix1* and pfix2* are present, pfix2 is the NCL variable prefix
that will be used for the variables to set values to the NDB fields which
begin with pfix1.

Referring to the same NDB field name twice in an OUTPUT format will cause
an error.

TRUNCATE

&NDBFMT

504 Network Control Language Reference Guide

If an NCL variable name that is greater than 12 characters long is generated
from the combination of the NCL generic prefix and the suffix from a
generically found NDB field name, the NCL variable name will be truncated
to 12 characters.

Examples: &NDBFMT

The following example defines a format for MYNDB, called F1, to return all fields
in the database when used on an &NDBGET. Any fields not in a retrieved record
cause the appropriate NCL variable to be set no null.

&NDBFMT MYNDB DEFINE FORMAT=F1 DATA ALL-FIELDS

The next example defines a new format for MYNDB, called F2, to return 3 fields
when used on &NDBGET, and returns the value in the database field 'SURNAME'
in the NCL variable &SNAM, and 'FIRSTNAME' in &FNAM.

&NDBFMT MYNDB DEFINE FORMAT=F2 START

&NDBFMT MYNDB DATA FIELDS -* indicate field list

&NDBFMT MYNDB DATA SNAM = SURNAME -* get surname back in

 -* &SNAM

&NDBFMT MYNDB DATA DOB -* get B back in &DOB

&NDBFMT MYNDB DATA (FNAM=FIRSTNAME) -* get firstname back

 -* in &FNAM

&NDBFMT MYNDB END

The next example defines a new format for MYNDB, called F3, to return all the
fields in the record prefixed by the letters 'ORD', and then to use the value in
the field 'ORDCUST#' to perform a GET OPT=KEQ using the CUST# field as the
key. If this get is successful, then all of the fields prefixed by CUST are returned
from the second record.

&NDBFMT MYNDB DEFINE FORMAT=F3 DATA FIELDS ORD* +

 .LINK (FROM=ORDCUST# TO=CUST#) FIELDS CUST*

The next example defines a new format for MYNDB, called F4, to return the
record number of the found record in the NCL variable &RECRD, and then to use
the value in the field 'ORDCUST#' to perform a GET OPT=KEQ using the CUST#
field as the key. If this get is successful, then all of the fields prefixed by CUST
are returned from the second record. It then uses the value in the field
'ORDSTAT' from the original record to perform a GET OPT=KEQ using
ORDSTATKEY as the key. If successful, &ORDSTATREC is set from the record
found using ORDSTATKEY.
&NDBFMT MYNDB DEFINE FORMAT=F4 DATA FIELDS RECRD = .RID +

 .LINK (FROM=ORDCUST# TO=CUST#) FIELDS CUST* +

 .LINK (FROM=ORDSTAT TO=ORDSTATKEY) FIELDS ORDSTATREC

&NDBFMT

Chapter 2: Verbs and Built-in Functions 505

The next example defines a new format for MYNDB, called F5, to return all the
fields in the record prefixed by the letters 'OLINE' to corresponding variable
names beginning with 'L'.

&NDBFMT MYNDB DEFINE FORMAT=F5 DATA FIELDS L* = OLINE* +

 .LINK (FROM=OLINEITEM# TO=ITEM# ID=ITEM) +FIELDS ITEM* +

 .LINK (FROM=ITEMSUPP# TO=SUPPLIER# FROMID=ITEM) +FIELDS SUPP*

For example, OLINE1 goes to L1, OLINE2 goes to L2, and so on. Then the value in
the field 'OLINEITEM#' is used to perform a GET OPT=KEQ using the ITEM# field
as the key. If this get is successful, then all of the fields prefixed by ITEM are
returned from the second record. It then uses the value in the field 'ITEMSUPP#'
in the second record to perform a GET OPT=KEQ using the SUPPLIER# field as
the key. If this get is successful, all of the fields prefixed by SUPP are returned
from the third record.

Notes:

Errors encountered while processing the &NDBFMT statement may cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

All defined PROCESS-level formats for a given database are deleted when an
&NDBCLOSE for that database is executed, and, as all open databases are
implicitly closed when the highest-level procedure terminates, all defined
PROCESS-level formats are deleted too.

The &NDBGET statement may specify a format description itself, but the
START/DATA/END option is not available, thus the format description must fit
onto a single statement.

Format names are private to an NCL procedure. Any number of users of an NDB
may use the same format name, with no interference. If a format is specified on
an &NDBGET for a key field histogram, it is ignored.

More information:

&NDBGET (see page 506)

&NDBGET

506 Network Control Language Reference Guide

&NDBGET

Retrieves a record from an NDB database. Histograms (statistical information) is
retrieved for keyed fields and histogram sequences.

&NDBGET dbname { RID=n [OPT= { KEQ | KGE | KGT | KLE | KLT }] |

 KEY=fieldname VALUE=value

 [OPT= {KEQ | KGE | KGT | KLE | KLT }] |

 FIELD=fieldname VALUE=value

 [OPT= { KEQ | KGE | KGT | KLE | KLT | GEN }] |

 SEQUENCE=seqname [SKIP=n]

 [DIR= { FWD | BWD }] }

 [MODFLD= { NO | YES }]

 { FORMAT=formatname [FSCOPE={ PROCESS | GLOBAL }] |

 FORMAT format-text }

The &NDBGET verb allows an NCL procedure to retrieve a record from an NDB.
There are four basic retrieval methods:

■ Get by record ID (RID). This method is useful when the procedure knows the
RID of the desired record.

■ Get by key-field value. This method allows a procedure to get a record that
matches a particular keyed field value.

■ Get a keyed field value and record count.

■ Get from a predefined sequence, defined by &NDBSEQ or &NDBSCAN. This
method allows sequential retrieval to be easily performed.

Operands:

dbname

This operand is mandatory. It specifies the name of the NDB that you want
to retrieve the record from. The NDB specified must have been previously
opened by an &NDBOPEN statement.

RID=n

Indicates a get by record ID (RID), and provides the RID of the desired
record, or the comparison RID if not using the default OPT=KEQ.

&NDBGET

Chapter 2: Verbs and Built-in Functions 507

OPT={ KEQ | KGE | KGT | KLE | KLT }

This optional operand indicates the relation to the passed RID that the
retrieved record RID will have.

KEQ

Retrieves the record with the passed RID, if it exists.

KGE

Retrieves the record with the passed RID, if it exists. If none exists, the
nearest RID greater than the passed RID is retrieved, if one exists.

KGT

Retrieves the record with the nearest RID greater than the passed RID, if
one exists.

KLE

Retrieves the record with the passed RID, if it exists. If none exists, the
nearest RID less than the passed RID is retrieved, if one exists.

KLT

Retrieves the record with the nearest RID less than the passed RID, if
one exists.

KEY=fieldname VALUE=value

Indicates that a keyed field histogram is to be performed. fieldname must
be keyed, and not a sequence key. Rather than return the associated record
(as GET FIELD= does), instead the field value (as requested by the VALUE
operand) is retrieved, and the count of records having that value is also
returned.

The returned key field value is always returned in &NDBKEYVALUE. The
returned record count is always returned in &NDBKEYCOUNT. The &NDBRID
system variable is always set to 0.

The VALUE= operand provides the key value for a get by keyed field. The
value is used to locate a record for the named field. Value must be a valid
value for the type of the field. For example, for a numeric field, it must be a
valid number. If the value contains special characters or embedded blanks,
it must be enclosed in quotes.

Note: Embedded blanks in NCL variable values are a special case, and are
treated as part of the value.

&NDBGET

508 Network Control Language Reference Guide

OPT= { KEQ | KGE | KGT | KLE | KLT | GEN }

Indicates the relation to the passed VALUE that the retrieved record key
FIELD will have.

KEQ

Retrieves the record with the passed VALUE, if it exists.

KGE

Retrieves the record with the passed VALUE, if it exists. If none exists,
the nearest VALUE greater than the passed VALUE is retrieved, if one
exists.

KGT

Retrieves the record with the nearest VALUE greater than the passed
VALUE, if one exists.

KLE

Retrieves the record with the passed VALUE, if it exists. If none exists,
the nearest VALUE less than the passed VALUE is retrieved, if one exists.

KLT

Retrieves the record with the nearest VALUE less than the passed
VALUE, if one exists.

GEN

(Character fields only) Retrieves the record with the lowest value
generically equal to the passed VALUE, if one exists.

Note: Trailing blanks are significant in the passed value in this case.

FIELD=fieldname

Indicates a get by a keyed field, and provides the name of that field. If this
operand is specified, the VALUE=value operand must also be coded. The
named field must be a defined field on the database, and it must be keyed.

VALUE=value

Provides the key value for a get by keyed field. The value is used to locate a
record with a value satisfying the OPT= relation for the named field. Value
must be a valid value for the type of the field, for example, it must be a valid
number for a numeric field. If the value contains special characters or
embedded blanks, it must be enclosed in quotes.

Note: Embedded blanks in NCL variable values are a special case, and are
treated as part of the value.

&NDBGET

Chapter 2: Verbs and Built-in Functions 509

OPT= { KEQ | KGE | KGT | KLE | KLT | GEN }

Indicates the relation to the passed VALUE that the retrieved record key
FIELD will have.

KEQ

Retrieves the record with the passed VALUE, if it exists.

KGE

Retrieves the record with the passed VALUE, if it exists. If none exists,
the nearest VALUE greater than the passed VALUE is retrieved, if one
exists.

KGT

Retrieves the record with the nearest VALUE greater than the passed
VALUE, if one exists.

KLE

Retrieves the record with the passed VALUE, if it exists. If none exists,
the nearest VALUE less than the passed VALUE is retrieved, if one exists.

KLT

Retrieves the record with the nearest VALUE less than the passed
VALUE, if one exists.

GEN

(Character fields only) Retrieves the record with the lowest value
generically equal to the passed VALUE, if one exists.

Note: Trailing blanks are significant in the passed value, in this case.

SEQUENCE=seqname

Indicates a get from a predefined sequence, as defined by an &NDBSEQ or
&NDBSCAN statement. seqname is the name of the sequence to retrieve
from. If the SKIP= and DIR= operands are not specified, they default to
SKIP=+1 and DIR=FWD, thus giving standard, forward, sequential retrieval.

A key field histogram sequence is specified.

The returned key field value is always returned in &NDBKEYVALUE. The
returned record count is always returned in &NDBKEYCOUNT. The &NDBRID
system variable is always set to 0.

As for a direct get on a keyed field, the format is ignored and the returned
fields are as described previously.

&NDBGET

510 Network Control Language Reference Guide

SKIP=n

Allows specification of a skip amount, that is, the number of records to skip
over before retrieving one. SKIP=+1 is the default, causing a skip to the next
record in the direction indicated by DIR. SKIP=0 will cause a reread of the
last record obtained from this sequence. A negative skip amount reverses
the direction specified by DIR.

Note: This is perfectly symmetrical; SKIP=-1, DIR=FWD is equivalent to
SKIP=+1, DIR=BWD, and so on.

DIR= { FWD | BWD }

Allows specification of the direction of sequential retrieval. FWD means
ascending values, BWD means descending values (assuming a positive skip
amount).

FORMAT=fmtname [FSCOPE={ PROCESS | GLOBAL }]

 FORMAT=fmtname specifies that the input format fmtname, defined on the
&NDBFMT statement, is to be used.

The nominated format must exist in the nominated scope. PROCESS is the
default and means a format defined by the current NCL process. GLOBAL
indicates a format is to be found in the global format pool for the NDB.

If this operand is specified, the START, DATA, CANCEL, and END operands
are not allowed.

MODFLD = { YES | NO }

If MODFLD=YES is specified, any NCL variables which previously had the
modified field attribute set will have that attribute reset, provided the GET
operation produces a zero return code. In addition, any fields which were
modified as a result of the GET statement will have their modified attribute
set. This includes variables set to pad characters as a result of the
NULLFIELD option of the &NDBFMT.

The system variable &ZMODFLD is used to return the names of the modified
fields and &ZVARCNT will be available as the number of modified fields.

This option is used with the NORETURN option (see the description of the
&NDBFMT verb) for improved efficiency. If MODFLD=NO is specified or
defaulted, no modified field attribute reset will occur, and the variables will
not have their modified attributes set. The system variables &ZMODFLD and
&ZVARCNT will be unchanged.

&NDBGET

Chapter 2: Verbs and Built-in Functions 511

Examples: &NDBGET

The following example retrieves the record with the RID in &SAVERID, and
returns all defined database fields to the procedure (assuming format F1 as
defined in the &NDBFMT examples). If there is no record with that RID, &NDBRC
will be set to 1, and no fields will be returned.

&NDBGET MYNDB RID=&SAVERID FORMAT=F1

The next example shows one way to sequentially read an entire database, in RID
sequence. The first &NDBGET gets the record with the lowest RID on the
database, and the second &NDBGET gets the next-highest, until the last record
is read. There must not be any &NDBxxx statements in the process record
section, as &NDBRID would lose its value. In this case, the value must be saved
in a user variable. (See the next example for a better approach.)

&NDBGET MYNDB RID=0 OPT=KGE FORMAT ALL-FIELDS

&DOWHILE &NDBRC = 0

 ... process record

 &NDBGET MYNDB RID=&NDBRID OPT=KGT FORMAT ALL-FIELDS

&DOEND

The next example uses a defined sequence to read the entire database, but only
returning every fifth record (this is useful for creating test files).

&NDBSEQ MYNDB DEFINE SEQUENCE=S1 RID

&NDBGET MYNDB SEQUENCE=S1 SKIP=5 FORMAT ALL-FIELDS

&DOWHILE &NDBRC = 0

 ... process record

 &NDBGET MYNDB SEQ=S1 SKIP=5 FORMAT ALL-FIELDS

&DOEND

The next example sequentially reads MYNDB forwards, backwards, and then
forwards, and so on, forever. The sequence is defined with KEEP=YES, which
means that it stays defined at each EOF. Whenever an EOF is reached, the skip is
inverted (+1 - -1, -1 - +1), and the get loop restarted.

-* database shuttlecock.

&SKIP = +1 &NDBSEQ MYNDB DEFINE SEQ=S2 FIELD=SURNAME KEEP=YES

&DOWHILE A = A

 &NDBGET MYNDB SEQ=S2 SKIP=&SKIP FORMAT ALL-FIELDS

 &DOWHILE &NDBRC=0 ... process record

 &NDBGET MYNDB SEQ=S2 SKIP=&SKIP FORMAT ALL-FIELDS

 &DOEND

 &SKIP = 0 - &SKIP

&DOEND

&NDBINFO

512 Network Control Language Reference Guide

Notes:

Errors encountered whilst processing the &NDBGET statement may cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

A record-not found condition on RID and FIELD gets will set &NDBRC to 1. An
end-of-file condition on SEQ gets will set &NDBRC to 2.

The actual NCL variables set by a successful &NDBGET depend on the format
used. An unsuccessful get never alters any NCL variables. Thus, when an
end-of-file response is returned, the NCL variables retain the values set by the
last successful &NDBGET.

The &NDBGET statement may specify a format description itself, but the
START/DATA/END option is not available. Therefore, the format description
must fit onto a single statement. It is more efficient to pre-define formats that
are used more than once in a procedure.

When reading via a sequence, an EOF condition (&NDBRC = 2) will delete the
sequence, unless it was defined with the KEEP=YES option (on &NDBSEQ or
&NDBSCAN). If MODFLD=YES is specified, the order in which &ZMODFLD returns
field names is undefined.

More information:

&NDBQUOTE (see page 525)
&NDBFMT (see page 496)
&NDBSEQ (see page 544)
&NDBSCAN (see page 527)

&NDBINFO

Retrieves information about an NDB database.

&NDBINFO dbname { DB | [FIELD] { NAME=fieldname | NUMBER=n } }

 [FORMAT=formatname [FSCOPE={ PROCESS | GLOBAL }]]

 [FULL | SHORT]

The &NDBINFO verb allows an NCL procedure to obtain information about an
NDB, including information about the database itself, and information about the
fields defined in it.

The information is returned in NCL variables.

&NDBINFO

Chapter 2: Verbs and Built-in Functions 513

Operands:

dbname

Specifies the name of the NDB that you wish to retrieve information about,
and is a mandatory operand. The NDB must have been previously opened
by an &NDBOPEN statement.

DB

Indicates that information about the database itself is to be returned. The
information is returned in the following NCL variables:

■ &NDBDBNAME contains the database name, as coded on the
&NDBINFO statement

■ &NDBDBVKL contains the VSAM key length of the database

■ &NDBDBVRL contains the VSAM maximum data length of the database

■ &NDBDBNFLDS contains the number of currently defined fields in the
database

■ &NDBDBNRECS contains the number of records in the database

■ &NDBDBNRID contains the next RID the database will use on an
&NDBADD statement

■ NDBDBLANG contains the language code that describes the database's
uppercase table If null, the standard (US-format) uppercase table is
used

■ NDBDBLOADMD indicates if the database is in load mode or not Values
are NO and YES

■ NDBDBRIDRU indicates the RID reuse status for the database Values
are:

– N/S—not supported

– POSS—possible (supported but not enabled)

– ENAB—enabled but not presently active

– ACT—presently active

– ACT/C—active with a KEYSTATS scan (collection) in progress

– COLL—a KEYSTATS scan is in progress, but reuse is not currently
active (no ranges available)

■ NDBDBRIDNRU contains the number of reused RIDs handed out since
the last KEYSTATS run

■ NDBDBRIDNNW contains the number of new RIDs handed out since the
last KEYSTATS run

&NDBINFO

514 Network Control Language Reference Guide

■ NDBDBIVERS contains the internal version of the database as 4 digits.
RID reuse became available at 0510

&NDBINFO

Chapter 2: Verbs and Built-in Functions 515

[FIELD] NAME=fieldname

Indicates that information about the named field is to be returned. If the
named field does not exist in the nominated NDB, then &NDBRC is set to 3.
The information returned is listed below.

[FIELD] NUMBER=n

Specifies that information about relative field number n is to be returned.
This number must be from 1 to the value returned by an &NDBINFO DB
request in &NDBDBNFLDS. The information returned on the field requests is
set into NCL variables as shown:

■ &NDBFLDNAME contains the name of the field

■ &NDBFLDFMT contains the field format, values CHAR, NUM, HEX,
FLOAT, or DATE

■ &NDBFLDKEY contains the field key option, values NO, YES, UNIQUE, or
SEQUENCE

■ &NDBFLDNULLF contains the NULLFIELD option, values YES or NO

■ &NDBFLDNULLV contains the NULLVALUE option, values YES or NO

■ &NDBFLDUPD contains the UPDATE option, values YES or NO

■ &NDBFLDCAPS contains the CAPS option, values YES, NO, or SEARCH

■ &NDBFLDDESC contains the field description, if one was defined;
otherwise it contains one blank

■ &NDBFLDUSER1 contains the USER1 information if present; otherwise,
it contains one blank

■ &NDBFLDUSER2 contains the USER2 information if present; otherwise,
it contains one blank

■ &NDBFLDUSER3 contains the USER3 information if present; otherwise,
it contains one blank

■ &NDBFLDUSER4 contains the USER4 information if present; otherwise,
it contains one blank

■ &NDBFLDMAXL contains the maximum length, in characters, that the
field can hold. For CHAR fields, this is 255 if not keyed, and (VSAM
keylen - 8) if keyed. For NUM fields, is 15. For HEX fields, this is 254 if
not keyed, and ((VSAM keylen - 9) * 2) if keyed. For DATE fields, this is 8.

■ &NDBFLDINTID contains a 4-digit hexadecimal string (representing a
2-byte value) that is the internal field identification inside the NDB

■ &NDBFLDBASE contains the value DEC or HEX for numeric format fields
and the value NONE for all other formats

&NDBINFO

516 Network Control Language Reference Guide

■ &NDBFLDKSTAT contains a string of blank-separated numbers as
follows:

dddddddd ff a b c d e f g h i j k l m n o p q r s

where:

■ dddddddd is the date that key statistics were last collected for this
field, in the format YYYYMMDD. If this number is all zeros, no key
statistics have been collected for it.

 Note: Even non-keyed fields will have a non-zero date set after key
statistics collection, but all other fields will be zero.

■ ff is two flag characters, each equal to Y (meaning YES) or N
(meaning NO). The first is Y if a table overflow occurred while
calculating the modal unique value occurrence (see the description
of fields g and h following). The second flag is Y if a table overflow
occurred while calculating the modal VSAM record occurrence (see
the description of fields l and m following).

■ a is the number of unique values found for this key.

■ b is the total number of VSAM records that hold information about
records having this key.

■ c is the number of times this key field actually exists in data records.

■ d, e, and f are the minimum (d), maximum (e), and average (f)
number of records that have the same unique value. For example,
for a unique key, d, e, and f are all 1, or zero if no records have the
field present.

■ g is the modal number of records that have the same unique value;
that is, the most often occurring count of same-numbers of each
unique value.

■ h is the count for the modal value. For example, if the most often
occurring count of a unique value is 35, then g is 35. If this count
occurs 97 times, then h is 97. If the first of the two flags (ff)
described is set to Y, this modal count (h) might not be correct, as
the table used to keep counts/occurrences can overflow.

■ i, j, and k are the minimum (i), maximum (j), and average (k)
numbers of VSAM records used to hold information for any unique
value.

■ l is the modal number of VSAM records for any unique value; that is,
the most often occurring count of same-numbers of VSAM records
for each unique value.

&NDBINFO

Chapter 2: Verbs and Built-in Functions 517

■ m is the count for the modal value. For example, if the most often
occurring count of VSAM records for a unique value is 27, then l is
27. If this count occurs 115 times, then m is 115. If the second of the
two flags (ff) described is set to Y, this modal count (m) might not be
correct, as the table used to keep counts/occurrences can overflow.

■ n, o, p, q, r, and s are the minimum (n), maximum (o), average (p),
modal (q), modal count (r), and all-equal (s) key lengths for this
field. The key length statistics represent significant key field
characters (NDBs use VSAM KSDSs, and the VSAM key length is fixed
for each individual NDB). For a character field, this is the length less
trailing blanks. For a HEX field, this is the exact length provided
(trailing X'00's are significant).

 Numeric, date, and floating point fields are all fixed length-4, 3, and
8 respectively. In this case, all the values except modal count are
that value (modal count equals the number of VSAM records. The
modal value calculation cannot overflow for key length statistics.

 The all-equal key length is the maximum key length, in all cases
(including fixed length fields), where all values found had the same
prefix. It can range from zero to the maximum key length. (It is used
by the scan optimizer in weighing generic and range requests.)

 The maximum number of records having any unique value is greater
than one for a field defined as KEY=UNIQUE. This is because NDB
ALTER OPT=BLDX can tolerate unique key violations during index
build, allowing you to correct them later.

FORMAT=formatname [FSCOPE={ PROCESS | GLOBAL }]

FORMAT=formatname indicates that the format formatname, defined on
the &NDBFMT statement, is to be used. The nominated format must exist in
the nominated scope. PROCESS is the default, and indicates a format
defined by the current NCL process. GLOBAL indicates that a format is to be
found in the global format pool for the NDB.

If the format does not exist, a response code of 20 is returned. If the format
exists, a set of variables is returned, as follows:

&NDBFMTUSAGE

Contains the value INPUT if this is an input format (that is, usable on an
&NDBGET statement), or the value OUTPUT if this is an output format
(for use with &NDBADD or &NDBUPD verbs).

&NDBFMT0

Contains the number of &NDBFMTn NCL variables returned.

&NDBINFO

518 Network Control Language Reference Guide

&NDBFMT1 to &NDBFMTn

Contain strings of blank-separated values that describe either an
individual field entry or a link to another record.

If the format is for input use, and the variable describes a return field, it
is in the following format:

a b c d e f g h i

where:

■ a is the return NCL variable name.

■ b is the return format. If no editing was applied (justify, pad, and so
on), this is the same as the database variable format (d). If editing
was done, it is CHAR.

■ c is the name of the NDB field that the data is coming from.

■ d is the format of the NDB field: CHAR, NUM, HEX, DATE or FLOAT.

■ e is the format length requested. It is zero if not specified.

■ f is the format pad character. If not specified, or blank, or if the
format length (e) is zero, the return value is a single dash character
(-). Otherwise, it is the pad character quoted (for example, a per
cent sign). If the pad character is a single quote, it is quoted using
double quote characters.

■ g is the justify option—LEFT, CENTER, or RIGHT. If the format length
(e) is zero, g is returned as a single dash (-).

■ h is the NULLFIELD return option—DELETE, NULLVAL, PAD, or
NORETURN.

■ i is a single dash (-) at present (reserved for a possible date format
option).

&NDBINFO

Chapter 2: Verbs and Built-in Functions 519

If the format is for input use, and the variable describes a link to
another record, it is in the following format:

a b c d e f

where:

■ a is the literal .LINK, which is an invalid variable name, thus
distinguishing this information from a variable description.

■ b is the ID value assigned to this link, or a single dash (-) if none was
specified.

■ c is the from-ID value for this link, or a single dash if none was
specified-meaning the from record is the primary retrieval record.

■ d is the from NDB field name.

■ e is the to NDB field name—it must be keyed.

■ f is the no find option—it is the word IGNORE or a number from 10
to 19.

If the format is for output use, it is in the following format:

a b c d

where:

■ a is the source NCL variable name from which data will be
extracted.

■ b is the target NDB field name that will be set.

■ c is the target NDB field format (CHAR, and so on).

■ d is additional information—currently, *TEMP is always a dash.

The order of returned information in these variables agrees with the
original format definition in that field for a specific record or link
definition. However, the order of field description entries is not
necessarily the same as the original format, as generic or range field
specifications are expanded out and all fields are returned in internal ID
order within a record or link.

FULL | SHORT

The FULL option requests that all information about the field be returned.
The SHORT option requests that the only information that is obtained
without reading the NDB be returned. The following fields are not returned:

■ &NDBFLDDESC

■ &NDBFLDUSER1, 2, 3, and 4

■ &NDBFLDKSTAT

&NDBINFO

520 Network Control Language Reference Guide

Examples: &NDBINFO

The following example returns information about the NDB called MYNDB in NCL
variables &NDBDB... (as described previously).

&NDBINFO MYNDB DB

The next example returns information about the field called 'SURNAME' in
MYNDB. The returned information is in NCL variables &NDBFLD... (as described
previously).

&NDBINFO MYNDB NAME=SURNAME

The following example returns information about all the fields defined in
MYNDB.

&NDBINFO MYNDB DB

&I = 1

&DOWHILE &I LE &NDBDBNFLDS

 &NDBINFO MYNDB NUMBER=&I

 ... process field definition

 &I = &I + 1

&DOEND

Notes:

Errors encountered whilst processing the &NDBINFO statement may cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

The nominated NCL variables are not updated if a nonzero response is returned
in &NDBRC (for example, named field not found).

The &NDBINFO statement makes it easy to write generalized NCL procedures to
manipulate NDBs. The procedures can open any NDB and, by using &NDBINFO
statements, build tables of control information for further processing.

In a similar way, a generalized database unload/reload utility is constructed.

Note: See also the NDB CREATE command description in the Online Help.

More information:

&NDBDEF (see page 486)

&NDBOPEN

Chapter 2: Verbs and Built-in Functions 521

&NDBOPEN

Signs on (connects) to an NDB database. The NDB is opened in read-only mode
and data is sent to a user open exit.

&NDBOPEN dbname

 [EXCLUSIVE]

 [INPUT]

 [DATA userdata]

The &NDBOPEN verb is used to initiate the connection an NCL procedure has
with an NDB. It is similar to the initial &FILEID for a UDB. An &NDBOPEN
statement must be executed before any other database-specific &NDBxxx
statements are executed. If the database has already been opened by the
procedure, an error condition may be indicated, depending on the setting of the
&NDBCTL ERROR= options.

Operands:

dbname

Specifies the name of the NDB that you wish to sign on to, and is a
mandatory operand. If already signed on to this NDB, an error response will
be given, that may cause the procedure to terminate, depending on the
&NDBCTL ERROR= setting.

If the database is not active, or started, this statement will cause it to be
activated.

EXCLUSIVE

This optional operand indicates that the procedure wants exclusive access
to the database. That is, the open will fail if there are any other signed on
users, and, if successful, no other users will be permitted to sign on
(&NDBOPEN) until this user signs off.

INPUT

An optional operand that indicates that this NCL process is not going to
issue any update-type verbs (&NDBADD, &NDBDEL, &NDBDEF, or
&NDBUPD).

Note: &NDBOPEN causes the database to be actually started, the database
is started in read-only mode and all other users will also be restricted to
read-only mode.

DATA userdata

&NDBOPEN

522 Network Control Language Reference Guide

An optional operand that allows you to specify data that is passed to the
NCL user exit (as specified by the NCLEX01 SYSPARMS operand). This is only
done if NDB is using the exit (NDBOPENX is set to YES), and if this
&NDBOPEN actually establishes the path to the NDB (that is, the NDB is not
already open by this process). The first 50 characters only are passed.

Examples:

The following example will sign on to the NDB called MYNDB. Other database
statements referencing MYNDB can then be used.

&NDBOPEN MYNDB

The next example will sign on to MYNDB in exclusive mode, and prevent any
other procedure from signing on.

&NDBOPEN MYNDB EXCLUSIVE

Notes:

An &NDBOPEN connects the entire procedure environment, that is, any upper
or lower level nested EXECs.

The EXCLUSIVE option is useful for database backup and restore procedures to
prevent concurrent update activity.

If the procedure is already currently signed on the NDB, response 34 will be
returned, and the procedure will be terminated if the current &NDBCTL ERROR
setting is ABORT. Aside from this case, all other error indications are returned to
the procedure; that is, an implicit &NDBCTL ERROR=CONTINUE is in effect for an
&NDBOPEN statement.

If a user exit is invoked (SYSPARMS NDBOPENX=YES), then if open is prevented
by the exit, response code 40 is returned which may be dealt with as
appropriate.

Notes: See also the NDB START command description in the Online Help.

More information:

&NDBCLOSE (see page 480)

&NDBPHON

Chapter 2: Verbs and Built-in Functions 523

&NDBPHON

Returns a phonetic value for a character string, typically a name.

&NDBPHON { SOUNDEX | USER } data

Operands:

SOUNDEX | USER

Controls the type of phonetic conversion to be performed.

SOUNDEX performs standard SOUNDEX encoding on the supplied data. See
Knuth, Art of Computer Programming, Vol III, pp. 391-392.

USER drives the NDBPHON user exit. If there is no exit, a syntax error
results. The user exit parameters are described below.

data

Specifies the source data to pass to the conversion (for example, a
surname). The data is always converted to upper case before processing.

&NDBPHON Exit Call Details

NDB can invoke a user exit when the &NDBPHON built-in function is called with
the USER option.

The exit that is called is determined by the setting of the NDBPHONX SYSPARM.
If no exit is set, then a syntax error results.

When the NDBPHONX SYSPARM nominates an exit, the exit is loaded. Any
previous exit is deleted. (NDBPHONX=NO will delete any old exit without
loading a new one).

&NDBPHON

524 Network Control Language Reference Guide

When an &NDBPHON USER built-in function is executed, and the user supplied
data is not null, then this exit is invoked as follows:

■ It is called under the main task for your product region and so must not
issue O/S waits, because this will impact other processing.

■ The user interface is as follows:

– R1: Pointer to parameter list (described later).

– R13: Standard 72-byte save area.

– R14: Return address.

– R15: Entry point.

– AM: 31 in MVS/XA or MVS/ESA.

■ Parameter list:

A(PARM1)

A(PARM2)

A(PARM3)

A(PARM4)

A(PARM5)

A(PARM6) with high bit set on

– PARM1 is a fullword function code. 0 (decimal) is &NDBPHON USER. You
should allow for function codes 4, 8, and 12 for the future and return
r15=0 for them.

– PARM2 is a fullword containing the source data length. It will contain a
value from 1 to 256. This length excludes leading and trailing blanks.

– The source data. This is a 256-character area. The source data is placed
here, uppercased, and padded to 256 with blanks.

– PARM4 is a fullword, initialized to 0, that the exit must update with the
length of the returned phonetic translation. A length of 0 to 256 must
be set.

– PARM5 is a 256-character area, initialized to blanks, that must be set to
the return phonetic translation.

– PARM6 is a 256-byte work area, initialized to binary 0. This area is used
by the exit as required.

The exit must return r15=0 and set PARM4 and PARM5 as appropriate if it can
perform the conversion. If it returns r15 not 0, the NCL process is aborted.

&NDBQUOTE

Chapter 2: Verbs and Built-in Functions 525

Important! The exit is called from under the MAINTASK for your product region.
It must not issue any O/S waits, because these will severely impact processing in
your region.

A sample exit, PHONEX01, is provided. It illustrates the parameter list usage. It
implements the same SOUNDEX algorithm as &NDBPHON SOUNDEX uses.

If the exit abends, your product region will abend.

&NDBQUOTE

Places quotes around data to protect special characters.

&NDBQUOTE data

The &NDBQUOTE built-in function allows an NCL procedure to protect data that
contains special characters, that would otherwise cause premature truncation
of the value, or syntax errors, when used on an &NDBxxx statement that
accepts free-form text.

The rules that &NDBQUOTE uses are as follows:

■ If the data contains any special characters, quoting is required.

■ If the data commences with either a single (') or double (”) quote, quoting is
required.

■ If quoting is required, then, if the data contains no double quotes, place a
double quote at each end. Otherwise, if the data contains no single quotes,
place a single quote at each end. Otherwise, place a single quote at each
end, and replace each embedded single quote by two single quotes.

The result of this operation is a single data entity that is preserved when
processed by the free-form text parsing logic.

&NDBQUOTE is a built-in function and must be used to the right of an
assignment statement.

Operands:

data

The data to be quoted. A null value is acceptable, and is reflected by a null
value being returned by &NDBQUOTE.

&NDBQUOTE

526 Network Control Language Reference Guide

Example: &NDBQUOTE

This example illustrates the rules &NDBQUOTE uses. The brackets are used to
outline the new values.

&D1 = &STR AB C

&D2 = &STR AB & C

&D3 = &STR AB'C

&D4 = &STR A'B”C

&D5 = &STR 'AB C&

DQ1 = &NDBQUOTE &D1 -* &DQ1 = < AB C >

&DQ2 = &NDBQUOTE &D2 -* &DQ2 = < ”AB & C” >

&DQ3 = &NDBQUOTE &D3 -* &DQ3 = < AB'C >

&DQ4 = &NDBQUOTE &D4 -* &DQ4 = < 'A''B”C' >

&DQ5 = &NDBQUOTE &D5 -* &DQ5 = < ”'AB C” >

Notes:

Input data, for example, from a panel, should always be processed by
&NDBQUOTE if it can contain special characters.

&NDBQUOTE will always handle the current list of special characters, so the NCL
code will not need to be altered if a new release of NDB changes the list of
special characters.

Although character format data may be up to 255 characters long, &NDBQUOTE
overheads can reduce the effective length, due to the NCL restriction that no
word can exceed 256 characters during substitution. For example, a 255
character string containing an ampersand (&) would require quoting, and thus
become 257 characters long. This is too long for an NCL variable.

Should the data be too long to quote, the procedure will be terminated with an
error message.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 527

&NDBSCAN

Scans a NetMaster database (NDB) for all records matching a search argument.

&NDBSCAN dbname { [SEQUENCE=result-list-name]

 [KEEP={ YES | NO }]

 [SORT=sort-expression]]

 [EXEC={ YES | NO }]

 [OPTIMIZE={ NO | YES }]

 [RETDEL={ NO | YES }]

 [RETMSG={ NO | YES }]

 [RETPOS={ NO | YES }]

 [IOLIMIT=n]

 [TIMELIMIT=n]

 [STGLIMIT=n]

 [RECLIMIT=n]

 { START | [DATA] S-EXP | END | CANCEL } }

S-EXP: [SELECT * FROM ndbname [correl-id] WHERE] EXP1

EXP1: EXP2 [OR EXP2 ...]

EXP2: EXP3 [AND EXP3 ...]

EXP3: [NOT ...] EXP4

EXP4: (EXP1) | EXP5

EXP5: [IGNORE { TRUE | FALSE }]

 TEST1 | TEST2 | TEST3 | TEST4 | TEST5 | TEST6 | TEST7 | TEST8 | TEST9 | TEST10

TEST1: SEQUENCE sequence-name

TEST2: L-LIST PRESENT

TEST3: L-LIST ABSENT

TEST4: [FIELDS] fieldname IS [NOT] NULL

TEST5: [FIELDS] fieldname [NOT] BETWEEN value AND value

TEST6: EXISTS (SUBSEL)

TEST7: [FIELDS] fieldname [NOT] IN { (value [, value]) | (SUBSEL) }

TEST8: L-LIST [NOT] LIKE R-LIST

TEST9: L-LIST CONTAINS R-LIST

TEST10: L-LIST { = | ¬= | < | > | <= | >= }

 { R-LIST | [ANY | ALL | SOME] (SUBSEL) }

SUBSEL: SELECT { fieldname [: fieldname] | prefix* }

&NDBSCAN

528 Network Control Language Reference Guide

 [, ...] FROM ndbname [correl-id] WHERE EXP1

L-LIST: [ANY | ALL] [FIELDS]

 { fieldname [: fieldname] | prefix* } [, ...]

R-LIST: [ANY | ALL | SOME]

 { [VALUES] { value { [: value | GENERIC] } } [, ...]|

 FIELDS [(correl-id)]

 { fieldname [: fieldname] | prefix* } [, ...]

 [{ PLUS | MINUS } number] }

The &NDBSCAN statement is used to find all records in an NDB that pass a set of
criteria, called a scan-expression.

■ These criteria include such things as:

■ A field or list of fields, that is equal to, not equal to(or other test) a given
value, or list of values.

■ A field or list of fields, that is equal to (or other test) another field, or list of
fields, in the same record. For numeric or date format fields, an adjustment
amount is specified.

■ The presence or absence of a given field, or list of fields, in a record.

■ The results of a previous &NDBSCAN, which is further filtered, combined
with other scan results.

■ Generic and range matches on values.

The resulting list of records can optionally be saved under a user-nominated
result-list-name, for processing by &NDBGET.

To prevent a scan from using excessive system resources, you can optionally
impose limits on the amount of these resources.

The fields referenced in the scan need not be keyed. The scan processing logic
uses keys wherever possible, but will automatically switch to reading records
whenever a non-keyed field is referenced. The only penalty is the number of
I/Os, and the elapsed time.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 529

Operands:

dbname

Specifies the name of the NDB that is to be scanned, and is mandatory. The
NDB must have been previously opened by an &NDBOPEN statement.

SEQUENCE=result-list-name

An optional parameter, which provides a name for the result list. This name
can then be used in an &NDBGET SEQUENCE=result-list-name statement to
retrieve the records that passed the scan.

If this operand is omitted, no results are saved. The value of &NDBRC
indicates the result of the scan, and the scan information variables are set.
KEEP= and SORT= cannot be specified if this operand is omitted. The
result-list-name must not already exist, either as a scan result list name or
as the name of a SEQUENCE specified on an &NDBSEQ DEFINE statement.

If SEQUENCE is specified, the result-list-name is only saved if the scan
completes and &NDBRC is set to zero. SEQUENCE is abbreviated to SEQ.

KEEP={ NO | YES }

This is an optional operand which is only valid if SEQUENCE is also specified.
It indicates whether or not the result list is to be retained when an
&NDBGET for the sequence returns an end-of-file (&NDBRC=2).

KEEP=NO indicates the result is to be deleted (this is the default). KEEP=YES
indicates that the result list is not to be deleted, but is to be retained until
explicitly deleted by &NDBSEQ DELETE, or by an &NDBCLOSE for this
database.

&NDBSCAN

530 Network Control Language Reference Guide

SORT=sort-expression

This is an optional operand which is only valid if SEQUENCE is specified. It
indicates the name of the field on which the final result will be sorted. Any
field defined in the database is used, not just keyed fields.

The options for this operand are:

■ omitted (no sort wanted)

■ () (no sort wanted)

■ name (entire field contents, ascending)

■ name(start,end,dir)

■ (name1(start,end,dir),name2(start,end,dir),...)

start is the start offset (* means 1). If start is omitted, 1 is assumed. It is *,
or 1 for non-character fields.

end is the end position within the field. If end is omitted or specified as *,
this means the end of the field. It must be omitted or * for non-character
fields.

dir is the sort direction. It must be A (indicating ascending, the default) or D
(indicating descending). Up to 7 sort fields is specified. If more than 1 is
specified, the entire list must be enclosed in parentheses.

If the last sort field is descending, the RIDs of records with equal sort keys
are also sorted descending. This is to ensure complete and correct up/down
symmetry.

CAPS=SEARCH fields are uppercased when used as sort keys.

EXEC={ YES | NO }

This operand allows you to syntax check a scan request without executing it.
If the scan expression (and the sort expression, if specified) has no errors,
then the scan is executed, by default.

Specification of EXEC=NO means that no execution takes place. If there are
no errors in the scan or sort expressions, &NDBRC will be set to zero.

OPTIMIZE={ NO | YES }

(Or OPTIMISE) This operand allows you to subset the optimization option in
effect for the NDB for this scan.

You cannot turn on optimization if it is off at the NDB level.

RETDEL={ NO | YES }

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 531

This option (defaulting to NO for compatibility), if set to YES, will cause
&NDBGET statements reading the resultant scan-built sequence to not skip
over deleted records. Rather, the get will return an NDBRC of 1 (record not
found), and the RID. This option will greatly simplify selection list processing
of scan sequences.

&NDBSCAN

532 Network Control Language Reference Guide

RETMSG={ NO | YES }

RETMSG=YES specifies that all messages produced as a result of errors in
the scan or sort expression, are to be returned in NCL variables with names
&NDBMSGn, where n starts from 1.

This is completely independent of any &NDBCTL MSG= setting.

RETPOS={ NO | YES }

This option (defaulting to NO for compatibility), if set to YES, will cause
&NDBGET statements reading the resultant scan-built sequence to set the
new &NDBSQPOS system variable to the relative position in the scan
sequence of the record just read. This will be a number from 1 to the
number of records in the scan sequence.

If the RETDEL=YES option is also in effect, the &NDBSQPOS variable will be
set when a delete record indication is returned (&NDBRC set to 1).

IOLIMIT=n

This operand allows the scan to be limited to processing a specified number
of logical I/Os. A logical I/O corresponds to a VSAM request, not to physical
disk I/O. A scan that exceeds this limit will be terminated with &NDBRC set
to 5.

Omission of this operand, or coding it as IOLIMIT=0, or IOLIMIT=, causes the
value of the SYSPARMS NDBDIOL setting to be used. If the value of n is
greater than the SYSPARMS NDBMIOL setting, the SYSPARMS setting is
used.

TIMELIMIT=n

This operand allows the scan to be limited to a specified elapsed time,
expressed in seconds. A scan that exceeds this time will be terminated with
&NDBRC set to 6.

Omission of this operand, or coding it as TIMELIMIT=0 or TIMELIMIT=,
causes the value of the SYSPARMS NDBDTML setting to be used. If the value
of n is greater than the SYSPARMS NDBMTML setting, the SYSPARMS setting
is used.

STGLIMIT=n

This operand allows the scan to be limited to a specified amount of working
storage, expressed in Kilobytes. A scan that exceeds this limit will be
terminated with &NDBRC set to 7.

Omission of this operand, or coding it as STGLIMIT=0 or STGLIMIT=, causes
the value of the SYSPARMS NDBDSTL setting to be used. If the value of n is
greater than the SYSPARMS NDBMSTL setting, the SYSPARMS setting is
used.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 533

RECLIMIT=n

This operand allows the scan to be limited to a specified number of records
that finally pass. If this limit is met or exceeded during the final phase of
scan processing, the scan is terminated with &NDBRC set to 8.

Omission of this operand, or coding it as RECLIMIT=0 or RECLIMIT=, causes
the value of the SYSPARMS NDBDRCL setting to be used. If the value of n is
greater than the SYSPARMS NDBMRCL setting, the SYSPARMS setting is
used.

RECLIMIT=1 is used if you only want to know whether any records at all
have or have not passed the scan criteria, and you are not concerned with
the exact number or specific IDs of any such records. &NBDSCAN
RECLIMIT=1 will not set the &NDBRID variable.

By specifying RECLIMIT=1, the scan terminates with &NDBRC set to 8, and
&NDBRID set to 0, when one passing record is found.

START

This operand indicates the start of a multi-statement &NDBSCAN request.
The scan-expression will be built up by one or more &NDBSCAN DATA
statements.

The SEQ, KEEP, SORT, and LIMIT operands must all be specified on the
START statement. The START operand must be the last operand specified on
the statement.

DATA

This operand indicates that a scan-expression (for a single-statement scan),
or part of a scan-expression (for a START/DATA/END multi-statement scan),
follows. This operand is omitted, but inclusion will prevent any syntax errors
if the scan-expression contains any &NDBSCAN operands (for example,
START or END).

END

This operand indicates the end of a multi-statement scan. The entire
scan-expression is concatenated together and passed to the database for
processing.

CANCEL

This operand indicates that a partially-built multi-statement scan is to be
canceled. This operand is valid even if no current &NDBSCAN
START/DATA/END set is active for this database.

&NDBSCAN

534 Network Control Language Reference Guide

Examples:

The following example will find all records with the field DOB present and less
that JAN 1st,1960. The list of matching records is saved in the sequence called
RESULT which can then be read using &NDBGET SEQ=RESULT.

&NDBSCAN MYNDB SEQ=RESULT SORT=SURNAME +

 DATA DOB LT 600101

The next example will find, in the database PROBLEMS, all records with the field
DATEOCUR less than today (&DATE7 is the current date in YYMMDD format),
that are either not closed (&DATECLOS ABSENT) or were closed later that 5 days
after opening.

&NDBSCAN PROBLEMS SEQ=S1 SORT=DATEOCUR START

&NDBSCAN PROBLEMS DATA DATEOCUR LT &DATE7

&NDBSCAN PROBLEMS DATA AND (DATECLOS ABSENT

&NDBSCAN PROBLEMS DATA OR DATECLOS GT FIELD DATEOCUR PLUS 5)

&NDBSCAN PROBLEMS END

The next example will determine if there are any records on MYNDB with the
field SURNAME equal to JONES. If SURNAME is keyed, an &NDBGET statement
would work, and be more efficient. However, the &NDBSCAN statement works
regardless of the keying or otherwise, and allows more complex expressions to
be specified.

If there are no records with NAME=JONES, &NDBRC will be set to 4. If there is at
least one record, the scan will terminate, and &NDBRC will be set to 8. &NDBRID
will contain the RID of the first record that the scan found.

Note: No assumption is made about the number of other records that may have
passed the scan.

&NDBSCAN MYNDB RECLIMIT=1 DATA SURNAME = JONES

The next example builds a list of all records in the PERSONEL NDB where all the
fields starting with REVIEW are equal to POOR and all fields starting with
ATTITUDE are also equal to POOR.

&NDBSCAN PERSONEL SEQ=SACKINGS START

&NDBSCAN PERSONEL DATA ALL REVIEW*= 'POOR' AND

&NDBSCAN PERSONEL DATA ALL ATTITUDE*= 'POOR'

&NDBSCAN PERSONEL END

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 535

Notes:

&NDBSCAN is an extremely powerful verb. The SYSPARMS command NDBxxx
operands allow the setting of default and maximum limits for I/O, storage, and
matching records, which you can use to control &NDBSCAN.

You need never be concerned whether fields are keyed or non-keyed when
coding an &NDBSCAN statement. The only difference will be in the number of
I/Os generated and the elapsed time.

&NDBCTL SCANDEBUG=YES displays the generated action table which shows
whether record-level scanning is required.

&NDBSCAN requests run asynchronously from other database requests. The
SYSPARMS NDBSUBMN and NDBSUBMX operands allow you to specify
minimum and maximum subthreads, which handle scan requests, for any one
NDB. Too many concurrent scan requests can impact other product region
users. Too few concurrently allowed scan requests can cause a backlog of scans.

More information:

&NDBGET (see page 506)
&NDBSEQ (see page 544)

&NDBSCAN

536 Network Control Language Reference Guide

Comments on Syntax

Following are comments on each section of the scan syntax.

S-EXP

This is the initial part of the syntax. For compatibility with SQL, an optional
SELECT clause is specified. If desired, the FROM sub-clause may specify an
overriding correlation ID for this expression, that is used on subselects to
form correlated queries. If correl-id is omitted, the NDB name is assumed.
This is also true if the entire SELECT clause is omitted.

Note: ndbname must be the current NDB name.

Following the optional SELECT clause, a scan expression must be specified,
represented by EXP1.

correl-id must be from 1 to 8 characters, in PDSNAME format. It need not be
unique. It cannot be the value WHERE. The value '*' is also acceptable,
meaning 'current NDB'.

EXP1

This is the top level of an expression or parenthesized part of an expression.
Any number of EXP2 sub-expressions is connected by use of the OR (|)
connector.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 537

EXP2

This level of an expression or parenthesized part of a sub-expression allows
any number of EXP3 sub-expressions to be connected by use of the AND
connector. AND can also be represented by an ampersand (&).

Note: AND binds tighter than OR.

EXP3

This part of the syntax shows that the NOT connector is used to negate
parts of the expression. Two adjacent NOT connectors cancel each other
out. NOT is represented by a NOT sign (¬).

EXP4

This part of the syntax shows that a parenthesized expression is used to
override precedence rules. There is no limit to the depth of parenthesis
nesting.

EXP5

This part of the syntax shows that a test is one of 10 varieties. These tests
are described next.

The optional IGNORE clause allows you to completely ignore the test and
treat it as true (IGNORE TRUE) or false (IGNORE FALSE). This is useful when
the IGNORE clause is inserted dynamically into a complex scan expression.

Note: The IGNORE clause is only supported if the quoted data option is in
effect.

TEST1

The result list of a previous &NDBSCAN is fed in as a list of matching
records.

TEST2

A field (or list of fields) being PRESENT in a record satisfies this test. See
L-LIST for specification of the field list.

TEST3

A field (or list of fields) being ABSENT (that is, not present) in a record
satisfies this test.

TEST4

A field is tested for presence (IS NOT NULL) or absence (IS NULL) in a record.
It is the ANSI SQL version of the presently existing PRESENT and ABSENT
operators. No field lists are supported, but the FIELDS keyword is supported.

&NDBSCAN

538 Network Control Language Reference Guide

TEST5

A field is tested for (not) being within the (inclusive) range of two values. It
is the ANSI SQL version of the presently supported field = value : value
syntax. Only a single field is supported (no lists or ranges). Similarly, no lists
or ranges are allowed. The FIELDS keyword is supported.

TEST6

Tests for a non-empty set of records that pass a subselect. This test always
evaluates to TRUE (at least one record) or FALSE (no records).

TEST7

Tests for set membership. The format where a list of values is supplied, is
equivalent to the presently supported list of values for the equal (=) or not
equal 〈¬=) operators. The format where a subselect is used is completely
new. No field name lists are supported, but the FIELDS keyword is
supported.

Note: If the quoted data option is not in effect, a subselect is not recognized
here, as the SELECT keyword could be a valid data value for a character
field.

TEST8

This is the pattern match test, with NOT LIKE list capabilities. LIKE uses the
ANSI SQL pattern match wildcards:

% (percent sign)

Matches 0 or more characters.

_ (underscore)

Matches exactly 1 present character.

Note: The R-LIST supports correlated field references and that this is
supported for the [NOT] LIKE operators.

TEST9

This is the CONTAINS operator. It cannot have a subselect on the right.

Note: R-LIST correlated field references are acceptable.

TEST10

The standard relational operator syntax. NDB allows list of fields on the left,
and lists of either fields or values on the right.

If a subselect is specified, then no left side lists are permitted.

Note: The SOME keyword is only permitted and recognized if the quoted
data option is in effect.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 539

SUBSEL

This is the nested selection syntax. The value(s) of the nominated fields of
the records that pass the scan expression are used in the containing scan
expression. The EXISTS test is an exception, where the fact that at least one
record passes the subselect is the only thing that matters. The nominated
fields must be type-compatible with the other fields in the containing
subselect expression.

The FROM clause is required, and an optional correlation ID (correl-id) is
specified, overriding the default of the NDB name. Correlation IDs need not
be unique, but should be.

L-LIST

This is a list of fields that are to be tested. Lists of fields can include field
name ranges or generic prefixes. With the exception of the PRESENT and
ABSENT operators, all listed fields must be of the same type. The new ANSI
SQL compatible operators do not support lists of fields (although they do
support the FIELDS keyword, so that an unambiguous test is defined if you
have a fieldname of FIELDS).

Each range or generic specification must match at least one field on the
NDB. Overlapping ranges or generic specifications are allowed. The
duplicate fields are ignored and the resulting internal list has each field only
once.

R-LIST

This is a list of fields or values that are to be tested. Lists of values can
include value ranges or generic specifications (for the equal (=) or not equal
(¬=) operators only). Lists of fields can include (for numeric and DATE format
fields only) an optional adjustment value. Lists are not supported for the
ANSI SQL operators.

If an optional correl-id is inserted before a field list, then, if the specified
correl-id is not the same as the containing select/subselect assigned
correl-id, the test is a correlated test. This is further described below. The
correl-id applies to all fields in the following field list. It can only be specified
once per R-LIST, immediately after the FIELDS keyword. In this case, no
adjustment value is allowed (the PLUS/MINUS clause).

ANY is the default for all operators except the ALL NOT EQUAL (p=)
operator, which defaults to ALL.

&NDBSCAN

540 Network Control Language Reference Guide

Scan Processing

A scan is processed in four phases:

1. The scan-expression is parsed, and an action table built.

2. The action table is processed, using keys wherever possible, to obtain a list
of records that (might) pass. If nothing in the table is processed using keys,
the whole database is regarded as passing phase 2.

3. The final result list is built. If the entire expression is evaluated using keys,
and the SORT= operand was not specified, phase 3 merely builds the result
list.

If the expression involved non-keyed fields, or certain operators (for
example CONTAINS), all records on the list from phase 2 are read, and
processed against the action table, to determine whether they pass.

If the request included a SORT field, phase 3 will build a sort list for all
records that pass. This list contains the sort fields for each record that
passes.

4. If SORT was requested, the sort is performed, and the final result list is built.

Note: Optimization of the request can cause some of phase 2, 3, or 4 to be
bypassed. For example, if there were no key fields in the scan, but the SORT key
was the SEQUENCE key, the entire file would be read in that order, obviating the
need for the actual SORT phase.

If the scan completes, and at least one record is found, &NDBRC will be set to 0,
and the NCL variables will be set.

If the scan terminates without finding any records, &NDBRC will be set to 4,and
the NCL variables will be set.

If the scan terminates because it exceeds the I/O, TIME, STORAGE or RECORD
limits set (explicitly on the statement, or implicitly by the SYSPARMS NDBxxx
settings), response codes 5 (I/O), 6 (TIME), 7 (STORAGE), or 8 (RECORD) will be
set, and the NCL variables will be set, as indicated on page 2-432. In this case,
the system variable &NDBRID might or might not be set to the first RID that the
scan passed (not necessarily the lowest valued sort key record, if SORT).

If SEQUENCE is specified, the result-list-name is only saved if the scan completes
and &NDBRC is set to 0.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 541

The following NCL variables are set by a scan that terminates successfully, or
unsuccessfully with a warning response:

&NDBSCANNRECS

Contains the number of records that passed the scan. When the scan
terminates with a limit exceeded warning, this value might be non-zero if
the scan terminated in phase 3 or later. If it is non-zero, the system variable
&NDBRID will contain the first RID that passed the scan.

&NDBSCANIOCNT

Contains the number of logical I/Os performed by the scan. If the scan
terminated on an I/O limit, this count will be 1 greater than that limit.

&NDBSCANTIME

Contains the elapsed time taken by the scan, accurate to one hundredth of
a second, in the format SECONDS.TH. If the scan terminated on a TIME limit,
the value will be marginally greater than that limit.

&NDBSCANSTG

Contains the maximum working storage used by the scan, expressed in
Kilobytes. This working storage is used to hold intermediate results lists, sort
fields, and so on. If the scan terminated on a STORAGE limit, this value will
be marginally greater that the limit.

&NDBSCAN

542 Network Control Language Reference Guide

Logic

When comparisons are being performed, special logic is used to prevent records
that do not have a given field present passing a test. The logic is called
three-valued logic.

This example illustrates three-valued logic: There are 100 records on a database,
10 records with the NAME field present, containing the value SMITH, 65 records
with the NAME field present, containing some other value, and the remaining
25 records having no name fields, then:

■ The test NAME = SMITH will match the 10 records which have SMITH in the
NAME field.

■ The test NAME NE SMITH will match the 65 records with the NAME field
present, but not equal to SMITH.

■ The remaining 25 records are the third value, that is, they are not 'equal to
SMITH' and they are not 'not equal to SMITH' (because the NAME field is
not in the record).

It is this three-valued logic that allows multiple-disjoint record types to share an
NDB.

To explicitly match records with a given field PRESENT or ABSENT, operators of
the same name are provided.

The null-field result propagates throughout the scan-expression. This means
that the expression NOT (NAME EQ SMITH OR NAME NE SMITH) will not match
all records with the NAME field absent. The result will always be no records.
Only the ABSENT operator will match the records with the NAME field absent.

The &NDBCTL SCANDEBUG=YES option causes the action table to be displayed.
The table shows the NULL-Field actions on each line, as well as the number of
records passing each test.

&NDBSCAN

Chapter 2: Verbs and Built-in Functions 543

Correlated Subselects

Subselects are implemented for both non-correlated and correlated queries.

A non-correlated query (select) is one where the search values for the tests in
the query are either constant (for this scan-they could be supplied from user
variables when the scan statement was executed, but they are constant for the
duration of the statement), or are other field values in the same record (the
previously supported field to field comparison).

In this case, each query (select) or subquery (subselect) is logically executed
once only, and the result used as input to a higher-level query (select) or as the
result of the scan.

A correlated query (select) is one where at least one field to field test is done in
the expression, but the right-hand-side field is qualified by a correlation-id that
is not the correlation-id of the current SELECT, but is a correlation-id of a parent
(higher level) SELECT. In this case, each time the correlated subselect result is
needed (it cannot be the primary select as it has no parent), the entire subselect
(and possibly sub-subselects) will be reevaluated, using as test arguments the
current values of the relevant fields of the currently considered parent record. A
nested loop results.

For purposes of deciding on use of keys, a correlated test can use keys, as at the
time the subselect is executed the supplied search values (parent field values)
are constant.

The fields referenced in the scan need not be keyed. The scan processing logic
will use keys wherever possible, but will automatically switch to reading records
whenever a non-keyed field is referenced. The only penalty is the number of
I/Os, and the elapsed time.

&NDBSEQ

544 Network Control Language Reference Guide

&NDBSEQ

Defines, deletes, or resets a sequential retrieval path for a NetMaster database
(NDB). Histograms (statistical information) is retrieved for keyed fields.

&NDBSEQ dbname { DEFINE SEQUENCE=seqname { RID | FIELD=fieldname | KEY=fieldname }

 [FROM=value] [TO=value]

 [VALUE=value] [GENERIC=value]

 [KEEP= { NO | YES }] |

 DELETE SEQUENCE= { seqname | * } |

 RESET SEQUENCE=seqname

 [REPOS=value | RID=n | RELPOS=n] }

The &NDBSEQ statement allows an NCL procedure to define, delete, or reset a
sequential access path to an NDB.

A sequential path is defined to be by RID, or by any key field defined in the
database. The bounds of the path can also be defined.

An NCL procedure can have any number of currently defined sequences.
Positioning is maintained independently for each.

The &NDBSCAN statement can also define a sequence, as the result from a scan.
The &NDBSEQ statement is used to delete or reset an &NDBSCAN-defined
sequence.

Operands:

dbname

Specifies the name of the NDB that you wish to define, delete, or reset a
sequence in. This operand is mandatory. The NDB named must have been
previously opened by an &NDBOPEN statement.

DEFINE

This operand indicates a new sequence is being defined.
SEQUENCE=seqname must be coded.

SEQUENCE=seqname

This operand, for DEFINE, names the new sequence, and, for RESET, names
an existing sequence that is to be reset. seqname is a 1- to 12-character
name, the first being alphabetic or national, the remainder alphanumeric or
national. Sequence names are unique to an NCL procedure. For DEFINE,
seqname must not currently exist, including any scan result lists.

&NDBSEQ

Chapter 2: Verbs and Built-in Functions 545

RID

This operand indicates that the sequence being defined is to be by record ID
(RID). This parameter is mutually exclusive with the FIELD=fieldname
parameter. The VALUE=value and GENERIC=value parameters cannot be
used for a sequence by RID.

FIELD=fieldname

This parameter indicates that the sequence being defined is to be by the
named key field.

KEY=fieldname

This option indicates that a keyed field histogram sequence is wanted.
fieldname must be keyed, and not a sequence key. The resulting sequence is
read using &NDBGET on the defined sequence. Rather than return the
associated record (as gets on SEQ FIELD= does), the field value is retrieved,
and the count of records having that value is also returned.

When retrieving, the FORMAT operand of GET is ignored. It must be
specified to satisfy GET syntax, but (for example) FORMAT NO or FORMAT *
is specified.

The returned key field value is always returned in &NDBKEYVALUE. The
returned record count is always returned in &NDBKEYCOUNT. The &NDBRID
system variable is always set to 0.

FROM=value

This parameter indicates the (inclusive) starting value of either RID, or the
named key field, for the sequence. The provided value must be valid for the
field format, or a valid number from 1 to 1 billion for RID. The value is
quoted, if required.

If this parameter is coded, the GENERIC and VALUE parameters cannot be
specified.

Omission of this parameter, as well as the GENERIC and VALUE parameters
(for FIELD=fieldname) implies the lowest possible value for the field format
(or RID).

&NDBSEQ

546 Network Control Language Reference Guide

TO=value

This parameter indicates the (inclusive) ending value of either RID, or the
named key field, for the sequence. The provided value must be valid for the
field format, or a valid number from 1 to 1 billion for RID. The value is
quoted, if required.

If this parameter is coded, the GENERIC and VALUE parameters cannot be
specified.

Omission of this parameter, as well as the GENERIC and VALUE parameters
(for FIELD=fieldname) implies the highest possible value for the field format
(or RID).

VALUE=value

This parameter indicates the FROM and TO values are to be the same value,
as specified. This is useful when reading by a non-unique key, top obtain all
records with a given equal key value.

Note: This is not the same as GENERIC=value. If this parameter is coded, the
GENERIC, FROM, and TO parameters cannot be coded.

This parameter is invalid for a sequence by RID.

GENERIC=value

This parameter indicates a sequence of all records with the nominated key
field generically equal to the passed key value.

If this parameter is coded, the VALUE, FROM, and TO parameters cannot be
coded.

This parameter is invalid for a sequence by RID, or for a sequence by a NUM
or DATE format field.

KEEP= { NO | YES }

This parameter indicates whether the defined sequence is to be kept when
an &NDBGET returns an end-of-file condition (&NDBRC=2).

KEEP=NO (the default) indicates the sequence is to be deleted at EOF.

KEEP=YES indicates the sequence is to be retained until explicitly deleted, or
until an &NDBCLOSE for the database. The &NDBSEQ RESET statement is
useful in this case.

DELETE

This parameter indicates an existing sequence, or all defined sequences for
this database, is to be deleted.

&NDBSEQ

Chapter 2: Verbs and Built-in Functions 547

SEQUENCE={ seqname | * }

The name of the sequence to delete, if present, or all sequences for this
database, if '*' is coded.

RESET

This parameter indicates an existing sequence is to be reset, which removes
any current end-of-file, and, optionally, positioned to a particular place
within the sequence.

REPOS=value

This optional parameter allows a sequence to be positioned to a particular
place. The next &NDBGET will retrieve the record with the key field (or RID)
equal to, or nearest to (depending on the direction), the REPOS value. This
value must be in a suitable format for the defined sequence field, or RID.

For sequences created with &NDBSCAN, this parameter is only valid if the
scan had

SORT=fieldname specified. In this case, fieldname sets the format of the
REPOS value.

RID=n

This optional parameter allows a sequence built by &NDBSCAN only to be
repositioned to a specific RID, if it is in the result list. If not, response 1 will
be returned.

RELPOS=n

This optional operand allows a sequence to be positioned to relative record
n. n must be a number in the range from 1 to the number of records in the
sequence.

Examples: &NDBSEQ

The following example defines a sequence that is used to read the entire
database sequentially, in RID order.

&NDBSEQ MYNDB DEFINE SEQUENCE=S1 RID

The next example defines a sequence that is used to read all records on the
database with field SURNAME equal to the value SMITH.

&NDBSEQ MYNDB DEFINE SEQ=S2 FIELD=SURNAME VALUE='SMITH'

&NDBSEQ

548 Network Control Language Reference Guide

The next example defines a sequence that is used to read all records on the
database with field SURNAME generically equal to the value SMITH. This would
include SMITHSON, SMITHE, and SMITH-WADDINGTON, for example.

&NDBSEQ MYNDB DEFINE SEQ=S3 FIELD=SURNAME GENERIC='SMITH'

The next example could be used to reset the sequence S2, defined previously, if
part-way through reading all the SMITH records, to allow restarting from the
beginning (or end, if &NDBGET DIR=BWD is used).

Note: If an end-of-file response had been returned, the reset would fail, as the
sequence definition did not specify KEEP=YES, and thus would have been
deleted.

&NDBSEQ MYNDB RESET SEQ=S2

Notes:

Errors encountered whilst processing the &NDBSEQ statement may cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

A successful define, delete, or reset will set &NDBRC to 0.

More information:

&NDBGET (see page 506)
&NDBSCAN (see page 527)

&NDBSEQ

Chapter 2: Verbs and Built-in Functions 549

Sequential Retrieval

Sequential database retrieval allows an NCL procedure to maintain any number
of concurrent sequential retrieval paths into an NDB.

Each path is in one of the following four states:

■ Outside the sequence range. This is the default for a newly defined
sequence, or one that is RESET (with no REPOS=/RID=).

■ Positioned on a record within the sequence range. The last record returned
by an &NDBGET for the sequence is the current position, and is reread by
&NDBGET SKIP=0.

■ At back-EOF. An &NDBGET DIR=FWD has encountered an end-of-file
condition and set back-EOF.

Note: Any further forward gets will continue to receive the EOF response
(assuming the sequence was defined with KEEP=YES. If not, further gets of
any kind would receive an error response).

■ At front-EOF. AN &NDBGET DIR=BWD has encountered an end-of-file
condition and set front-EOF.

Note: Any further backward gets will continue to get the EOF response,
subject to the previous comments.

When at an EOF, a get in the opposite direction will reset the EOF and
recommence the sequence.

The first &NDBBGET after a sequence is defined, or after a RESET with no
REPOS=/RID= sets the correct end to start from (front if FWD, back if BWD).

An &NDBSEQ RESET REPOS=value with a value outside the defined range will set
the relevant EOF, or position to the first (or last) record in the range, depending
on the direction of the next &NDBGET.

Note: Sequences have an implicit forward direction of ascending key field or RID
values. For this reason, the nominated TO value must not be less than the
nominated FROM value. To retrieve records in descending sequence, the
&NDBGET DIR=BWD option is used.

&NDBUPD

550 Network Control Language Reference Guide

&NDBUPD

Updates a record in a NetMaster database (NDB).

&NDBUPD dbname

 { [RID=rid] [DATA] update-text |

 RID=rid START | END | CANCEL |

 RID=rid FORMAT=fmtname [FSCOPE={ PROCESS | GLOBAL }] }

 update-text is:
fieldname = fieldvalue [fieldname = fieldvalue ...]

The &NDBUPD statement allows an NCL procedure to update an existing record
in an NDB. The existing record will have the fields listed in the &NDBUPD
statement set to the new values, and all other fields will be left as is. Following
completion of the statement, the system variable &NDBRC will indicate success
or failure if the update.

Operands:

dbname

The name of the NDB that you wish to update the record in is a mandatory
operand. This NDB must have been previously opened by an &NDBOPEN
statement.

RID=rid

A required parameter, if a single-statement update, or if the START
statement of a multi-statement update. Rid is the Record ID of the record
you want to update.

DATA

Indicates that free-form text (see page 472) follows. This operand is
optional, but it is recommended, as it prevents any ambiguous meaning of a
field name or field value of DATA, START, END, or CANCEL.

START

Indicates the start of a multi-statement &NDBUPD. The statement must end
after the START keyword. The RID=rid parameter must be specified on this
statement.

END

Indicates the end of a multi-statement &NDBUPD. This statement will call
the database, passing the concatenated &NDBUPD DATA information.

CANCEL

&NDBUPD

Chapter 2: Verbs and Built-in Functions 551

Indicates an active &NDBUPD START/END set is to be canceled. If there is no
active &NDBUPD START/END for this database, the statement is ignored.

&NDBUPD

552 Network Control Language Reference Guide

FORMAT=fmtname [FSCOPE={ PROCESS | GLOBAL }]

FORMAT=fmtname specifies that output format fmtname, defined on the
&NDBFMT statement, is to be used.

The nominated format must exist in the nominated scope. PROCESS is the
default and means a format defined by the current NCL process. GLOBAL
indicates a format is to be found in the global format pool for the NDB.

If this operand is specified, the START, DATA, CANCEL, and END operands
are not allowed.

fieldname = fieldvalue ...

Free-form text naming the fields to be updated in the nominated record,
and the new values for those fields. There is as many fieldname = fieldvalue
pairs as desired, and they may be split across multiple statements, using
START/DATA.../END.

If fieldvalue is a null variable (for example, &NULL =/ &NDBADD ... X =
&NULL), the null variable will be passed to the database as a null indicator,
indicating the relevant field is to be set not present. This is not the same as
present, with a null value (for example, 0 for a numeric field).

For example, the following sets FIELD1 to a value, FIELD2 to present, with a
null value, and FIELD3 not present.

&FIELD1 = value -* set to a value

&FIELD2 = &SETBLNK 1 -* set to a blank

&FIELD3 = -* set null

&NDBUPD MYNDB RID=&RID DATA FIELD1 = &FIELD1 +

 FIELD2 = &FIELD2 +

 FIELD3 = &FIELD3

Omission of a field name and its accompanying value means that the field
stays as it was in that record.

Examples: &NDBUPD

The following example sets the value of field FIRSTNAME in the record with the
RID in &SAVERID to JOHN. All other fields in the record are left as they were.

&NDBUPD MYNDB RID=&SAVERID DATA FIRSTNAME='JOHN'

The next example updates the first record in the NDB called MYNDB with field
SURNAME equal to JONES, altering the values of fields DOB and FIRSTNAME. It
illustrates how the free-form text is split at any point where a blank is valid.

&NDBGET MYNDB FIELD=SURNAME VALUE=JONES

&NDBUPD MYNDB RID=&NDBRID START

&NDBUPD MYNDB DATA DOB =

&NDBUPD

Chapter 2: Verbs and Built-in Functions 553

&NDBUPD MYNDB DATA 590101FIRSTNAME = 'MARK'

&NDBUPD MYNDB END

Notes:

Errors encountered while processing the &NDBUPD statement can cause the
procedure to terminate, or may just be reflected in the &NDBRC system
variable, depending on the setting of &NDBCTL ERROR option.

If the record is updated successfully (&NDBRC is 0 after the single-statement
&NDBUPD, or after the &NDBUPD END for a multiple-statement update), the
system variable &NDBRID will contain the record id of the updated record.

At least one fieldname = fieldvalue must be specified to successfully update a
record (although the value may be the null indicator).

More information:

&NDBADD (see page 476)
&NDBDEL (see page 494)

&NPFxCHK

554 Network Control Language Reference Guide

&NPFxCHK

Returns a value indicating the current user's NPF authorization for access to a
resource.

&NPFDCHK resource [resource2 resourcen]

&NPFMCHK resource [resource2 resourcen]

&NPFVCHK resource [resource2 resourcen]

The Network Partitioning Facility (NPF) restricts the range of network resources
a user may reference. The &NPFDCHK, &NPFMCHK, and &NPFVCHK statements
are built-in functions that let you test a user's authority to reference a particular
resource. Used with &INTCMD and &INTREAD, they let you edit multi-resource
displays from VTAM to display only the resources to which that user is allowed
access:

&NPFDCHK

Determines whether the user is entitled to use the resource nominated by a
VTAM display command, for that procedure.

&NPFMCHK

Determines whether the user is entitled to receive messages relating to the
resource nominated, for that procedure.

&NPFVCHK

Determines whether the user is entitled to use VTAM VARY and MODIFY
commands in the resource nominated, for that procedure.

Each of these verbs is a built-in function and must be used to the right of an
assignment statement.

If the user is authorized for the resource, a YES value is returned in the variable
specified, to the left of the assignment statement.

If the user is not authorized, a NO value is returned.

Multiple resources is tested by a single statement-the user must be authorized
for each of the specified resources. If the user is not authorized for one or more
of the resources, a NO value is returned.

Operands:

resource

&NPFxCHK

Chapter 2: Verbs and Built-in Functions 555

The VTAM network name for the resource to be tested. This can optionally
be qualified by a network identifier; for example, NET1.TERM001.

Examples: &NPFVCHK

&AUTH = &NPFVCHK NODE1

&IF &AUTH EQ NO &THEN +

 &ENDAFTER &WRITE ALARM=YES DATA=NOT AUTHORIZED

= &CONTROL NOLABEL

&INTCMD D &NODE

.READ

 &INTREAD ARGS

 &GOTO .&1

 &WRITE ALARM=YES DAT=UNEXPECTED MESSAGE &1

 &END

.ISTnnnI

 -*

 -* Processing

 -*

 &GOTO .READ

.ISTnnnI

 &AUTH = &NPFDCHK &7

 &IF &AUTH = NO &THEN +

 &GOTO .READ

 &WRITE &1 &2 &3 &4 &5 &6 &7 &8 &9

 &GOTO .READ

.IST314I

 &END

Notes:

The maximum length resource name that is specified is 64 characters.

Using &NPFxCHK functions in procedures executed by a user with no NPF
restrictions always returns a YES value.

The &RSCCHECK function can also be used to perform authorization verification.

&NPFDCHK is equivalent to &RSCCHECK $NMCMDD.

&NPFMCHK is equivalent to &RSCCHECK $NMMSG.

&NPFVCHK is equivalent to &RSCCHECK $NMCMD.

More information:

&RSCCHECK (see page 620)

&NRDDEL

556 Network Control Language Reference Guide

&NRDDEL

Deletes one or more non-roll deletable messages.

&NRDDEL domid [domid2 ... domidn]

Non-roll deletable (NRD) messages issued to OCS windows is hidden by the OCS
operator (by placing the cursor on the NRD message and pressing Enter), but
not deleted. These messages can only be deleted by the &NRDDEL statement
executed within an NCL procedure.

NRD messages may be sourced externally (for example, from the AOM system
component), or by using the &WRITE NRD=YES statement.

Operands:

domid

The delete operator message identifier designating the message that is to
have its non-roll deletable status removed. The DOM ID for a message is
obtained from system variable &ZDOMID (after an &WRITE NRD=YES
statement generating a NRD message), or from &ZMDOMID (when a
message is received by MSGPROC which has an NRD attribute).

Each DOM ID specified on the &NRDDEL statement refers to one message.

Examples: &NRDDEL

&NRDDEL &M1 &M2 &M3

Notes:

Messages hidden by an OCS operator pressing the Enter key are invisible only to
that operator and may be redisplayed by using the NRDRET command.

Messages from an NCL procedure using &WRITE NRD=YES are automatically
deleted when the procedure terminates - use &WRITE NRD=OPER to retain the
messages you generate. These messages have the general operational
characteristics of NRD messages but do not have an associated DOM ID.

&NUMEDIT

Chapter 2: Verbs and Built-in Functions 557

&NUMEDIT

Returns a number in a specified format.

&NUMEDIT (xx,yy,zz) number

&NUMEDIT is a built-in function and must be used to the right of an assignment
statement. After real number arithmetic calculations, the result is present in
one or more variables held in a mathematical form. For example, 22.1 occurs as:

+.221000000000000E+02

&NUMEDIT lets you reformat this representation into a standard decimal
number, so that it displays with the required number of decimal positions.

Operands:

xx

Specifies the number of characters reserved for the integer portion of the
result (that is, the section of the number to the left of the decimal point).
The range is 0 to 15, and, if this operand is not specified, it defaults to 5. If 0
is specified, it defaults to 1.

If xx is greater than the number of characters in the integer portion, then
the variable is padded with blanks to the left of the leading digit. If xx is less
than the number of digits in the integer portion of the number, then
truncation does not occur. The entire integer portion is preserved. This
might cause misalignment if you are displaying columns of figures.

yy

Specifies the number of significant decimal positions to be preserved; that
is, the number of digits preserved to the right of the decimal point. The
range is 0 to 15, and, if this operand is not specified, it defaults to 2. If 0 is
specified, an integer value is returned.

If yy is greater than the number of significant decimal positions, then the
variable is padded with zeros to the right of the last digit. If yy is less than
the number of significant decimal positions, then the result is truncated or
rounded (as indicated by the zz operand) to yy positions.

&OVERLAY

558 Network Control Language Reference Guide

zz

Indicates whether the result is truncated or rounded and whether the
exponent format is maintained. Valid values for zz is as follows: 0 The
default, meaning truncation and no exponent required R Meaning rounding
and no exponent required E Meaning truncation and exponent required ER
Meaning rounding and exponent required

If you specify E, then the number is presented with a single digit to the left
of the decimal point, then the number of significant decimal places defined
by yy, and the exponent to the right of the least significant decimal position.

For example, suppose the variable &RESULT contains the real number 38.9
with the format:

+.389000000000000E+02

After executing the statement:

&A = &NUMEDIT (0,4,E) &RESULT the value of &A is 3.8900E+01

number

The variable with the real number or integer that is to be reformatted.

Real numbers are manipulated as base 16 floating point numbers, so there
is no exact representation for some decimal values. This can cause an
apparent loss of precision in the 15th significant digit if more than 15
decimal digits were supplied as input.

Examples: &NUMEDIT

&RESULT = (27.993 * 4.882) -* &RESULT is set to

 -* +.136661826000000E+03

&A = &NUMEDIT (0,5,0) &RESULT -* &A becomes 136.66182

&OVERLAY

Returns a string that has been overlaid by a supplied string.

&OVERLAY target source

 [start [length [ALIGNL [c] | ALIGNR [c] | ALIGNC [lr]]]]

&OVERLAY is a built-in function and must be used to the right of an assignment
statement.

&OVERLAY allows data from one string (source) to be used to replace data in a
second (target) string.

&OVERLAY

Chapter 2: Verbs and Built-in Functions 559

Operands:

target

The constant value for the target string, or the name for a variable holding
the target string.

source

The source string, or the name for the variable holding the source string,
which is used to overlay the target string.

start

The location within the target string where the overlay process starts. If
omitted, overlay starts at the first position in the target variable. If the start
location lies beyond the end of the target variable, the target is padded with
blanks up to the start location.

length

The string length for which the overlay process is to occur. If longer than the
source variable, blanks are used to complete the overlay operation. If
omitted, the whole of the source variable is used to overlay the target
string.

ALIGNLc

If the overlay length exceeds the length of the source string, this option
specifies that the source string is put to the left of the overlaid area, and the
remainder of the overlaid area is to be padded to the right with the
character c. If c is omitted, blanks are used as filler.

ALIGNRc

If the overlay length exceeds the length of the source string, this option
specifies that the source string is placed to the right of the overlaid area and
the remainder of the overlaid area is padded to the left with the character c.
If c is omitted, blanks are used as filler.

ALIGNClr

If the overlay length exceeds the length of the source string, this option
specifies that the source string is placed at the center of the overlaid area
and the remainder of the overlaid area is padded to left and right with the
(left) character l and the (right) character r. If lr is omitted, blanks are used
as filler.

&OVERLAY

560 Network Control Language Reference Guide

Examples:

&A = AAAAA

&B = BBB &1 = &OVERLAY &A &B -* &1 will be set to BBBAA

&1 = &OVERLAY &A &B 2 -* &1 will be set to ABBBA

&1 = &OVERLAY &A &B 2 1 -* &1 will be set to ABAAA

&1 = &OVERLAY &A &B 1 4 -* &1 will be set to BBB A

&1 = &OVERLAY &A &B 7 3 -* &1 will be set to AAAAA BBB

&C = ABCDEFGHIJK

&D = 111

&1 = &OVERLAY &C &D 1 7 ALIGNL0 -* &1 will be set to

 -* 1110000HIJK

&1 = &OVERLAY &C &D 1 7 ALIGNR0 -* &1 will be set to

 -* 0000111HIJK

&1 = &OVERLAY &C &D 1 7 ALIGNC<> -* &1 will be set to

 -* <<111>>HIJK

Notes:

Variable substitution is performed before processing the &OVERLAY statement.
If a variable has a null value when substitution is performed, it is eliminated
from the statement. For this reason, take care to ensure that all values are
specified as desired.

&OVERLAY is used to set a repeated value. For example, to set a character string
of 64 Xs:

&X64 = &OVERLAY X X 1 64 ALIGNRX

&OVERLAY is useful for string manipulation and the management of data in
tabular formats.

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &OVERLAY is sensitive to the
presence of DBCS data (see page 1284).

&PANEL

Chapter 2: Verbs and Built-in Functions 561

&PANEL

Displays the specified full screen panel.

&PANEL [NAME=] panelname

 [TYPE=SYNC | ASYNC]

 [CDELAY=YES | NO]

 [MODALL=NO | YES]

The &PANEL statement is used to request the display of a full-screen panel. If
necessary, a full-screen environment is established for the NCL process.

The full-screen panel must have been previously defined in a panel library using
the MODS : Panel Maintenance function. On catering for undefined panels, see
Notes for this verb.

An &PANEL statement is used from any NCL procedure operating within a user
processing region associated with a full-screen terminal.

Use of the &PANEL statement from a procedure not operating in a region that
supports full-screen mode will result in an error.

Before the specified panel is displayed, it is scanned and system and user
variables are substituted. Thus, user variables required by the panel must be
created within the NCL procedure before issuing the &PANEL statement.

On completion of entry by the terminal operator, control will be returned to the
NCL procedure statement following the &PANEL statement. Data entered by the
terminal operator will be available in the user variables defined in the panel
definition.

&PANEL

562 Network Control Language Reference Guide

Operands:

NAME=panelname

The 1- to 12-character name of the panel. This panel must exist in a panel
library accessible by the user.

TYPE=SYNC | ASYNC

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
panel request. Synchronous requests display the panel and cause the
process to be suspended pending the arrival of input from the panel or
expiry of a time-out period. Asynchronous requests result in immediate
return of control to the process, with input arrival being notified in due
course via &INTREAD.

CDELAY=YES | NO

This operand indicates whether or not contention delay is used for this
panel. By default, when the panel is displayed on a terminal which is
currently in input mode, panel services delays panel output for the period
set by the SYSPARMS CDELAY operand. For CDELAY=NO, panel output
overrides the terminal's input mode and the panel is displayed at once, if
necessary, interrupting the operator.

MODALL=NO | YES

This operand indicates how input fields on the panel are to be treated when
&CONTROL FLDCTL is in effect. By default, only input fields changed by the
operator or set by the program (using &ASSIGN OPT=SETMOD) will be
returned in the modified field list.

If MODALL=YES is specified, every input field on the displayed panel will be
returned in the modified field list. The modified field list is accessed using
&ASSIGN OPT=MODFLD, or using the &ZMODFLD system variable.

Examples: &PANEL

.HELP &PANEL &HELPPANEL

&IF .&INKEY = .PF03 &THEN +

 &RETSUB

&IF .&INKEY = .PF07 &THEN +

 &HELPPANEL = HELP1

&IF .&INKEY = .PF08 &THEN +

 &HELPPANEL = HELP2

&GOTO .HELP

&PANEL

Chapter 2: Verbs and Built-in Functions 563

Notes:

An NCL process's use of Panel Services is represented by a full-screen
environment. Issuing an &PANEL statement will automatically establish a
full-screen environment if one does not already exist. You can use the FSPROC
command to initiate NCL processes with a full-screen environment. In this way,
the process's activation is synchronized with its bidding for window ownership.
The full-screen environment exists until the NCL process terminates or is
explicitly terminated by the &PANELEND statement.

Note: For more information about the facilities provided for the processing of
full-screen panels, see the Network Control Language Programming Guide.

An attempt to display a panel that has not been defined or has been incorrectly
defined will normally result in termination of the procedure with an appropriate
error message. However, using &CONTROL PANELRC it is possible for the
procedure to receive notification through the &RETCODE system variable that
the required panel does not exist or cannot be displayed due to syntax errors. If
&CONTROL PANELRC is in effect, the &RETCODE system variable will be set to
16 on return from the &PANEL statement and the &SYSMSG system variable will
contain the text of the message that describes the error. The procedure can test
the &RETCODE variable and adjust its processing accordingly.

&CONTROL PANELRC implies that the procedure has been designed to cater for
the range of return codes that is returned from an &PANEL statement. See the
&CONTROL statement PANELRC operand for full details.

Any NCL process which has access to a full-screen window may issue &PANEL at
any time. When multiple NCL processes are executing in the same NCL
processing environment (invoked by the START command) they can all bid for
the user window to display panels. To prevent another process from taking the
window, a process must use the &CONTROL NOSHAREW option to indicate that
it is not prepared to give up control of the window.

When the procedure is prepared to relinquish ownership of the window it
should issue a &PANELEND statement, which allows any other process that
wants the window for a panel display to gain access to it. An NCL process using
asynchronous panels may issue &CONTROL SHAREW to indicate it is prepared to
share the window without terminating its full-screen environment.

If INWAIT=0 is specified on a panel definition the panel is displayed before the
issuing process continues. The issuing process may therefore be suspended
indefinitely waiting for control of the window.

&PANELEND

564 Network Control Language Reference Guide

If INWAIT is specified with a positive interval defined, the panel will always be
displayed for that interval from the time that the panel wins control of the
window, regardless of how long it takes to get control of the window.

When displaying a panel with an INWAIT interval specified, your product region
will only wait for the INWAIT interval (at maximum) to get control of the
window. After that time the procedure regains control since the INWAIT period
is considered to have passed.

&PANELEND

Terminates the full-screen environment of the current process.

&PANELEND

The &PANELEND statement indicates that the issuing procedure no longer
wishes to use Panel Services. The full-screen environment, if it exists, is
terminated.

If the procedure had earlier executed &PANEL to display a screen panel, it can
indicate by &PANELEND that it has finished with panel processing, if the process
is actually the current window owner the window will be passed to the next
process with an &PANEL request outstanding or returned to the primary
environment owner, for example, OCS.

Note: A long running process may issue a panel when some event occurs. Once
the operator has responded to the panel, the procedure can issue &PANELEND
and continues its event monitoring role.

&PARSE

Chapter 2: Verbs and Built-in Functions 565

&PARSE

Provides generalized parsing functions for tokenizing data into variables.

&PARSE [{ DELIM={ c | 'cccccccc' | ”cccccccc” } | SEGMENT }]

 { VARS=name | VARS=(name, name1, ..., namen) |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] }

 [REMSTR=varname]

 [OPT={ option | (option, ..., option) }]

 [INPUT={ CHAR | HEX | HEXEXP }]

 [DATA=text]

&PARSE is a verb that allows a data string to be split into sections identified by
delimiters or segmented according to length. Each section is placed into a
separate target variable. On completion of &PARSE, the system variable
&ZVARCNT is set to the number of variables created or modified by the
operation.

&PARSE

566 Network Control Language Reference Guide

Operands:

DELIM={ c | 'cccccccc' | “cccccccc” }

Specifies the delimiter character or a series of individual delimiter
characters that will be used as the argument for the parsing process. Every
occurrence of a DELIM character in the DATA string that is being parsed
represents the end of a section of the data. The section, minus the delimiter
character, is placed in the next target variable and the parsing process
continues. Special case processing takes place when a blank is detected as
the only delimiter character (see Notes following the examples).

If DELIM is omitted the default delimiter character is a blank.

The delimiter series may be 1 to 8 characters long. Series of 2 or more
characters must be enclosed in single or double quotes.

SEGMENT

Specifies that there is no delimiter character but that the parsed string will
be placed into the receiving variables in segments that correspond to the
length of the individual variables. The length defaults to the maximum
variable length unless overridden by length specifications in a variable list.

VARS=

Specifies the target variables that are to be assigned the parsed sections of
the DATA. The format of the VARS operands may be:

name

The name of a variable, excluding the ampersand (&).

name(n)

As name, but n denotes the length of the data to be placed in the
variable. If necessary, the data is truncated.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements, n
denotes 'skip this number of words'. An asterisk (*) by itself is the same
as *(1).

If SEGMENT is specified, then n denotes 'skip this number of characters'.
An asterisk (*) by itself is the same as *(1).

prefix*

Denotes that variables are generated automatically during the parsing
process, and that variable names will be prefix1 .. prefix2, and so on. The
RANGE= operand is specified to indicate a starting and ending suffix
number. prefix* cannot be used with other variable names.

&PARSE

Chapter 2: Verbs and Built-in Functions 567

ARGS

Specifies that &1 through &n are the variables to be assigned the parsed
sections of data. The RANGE= operand may be coded to designate start and
end numbers to delimit the number of variables generated.

REMSTR=varname

Nominates a variable that is to be assigned the remainder of the DATA
string that is being parsed if insufficient target variables are specified to
hold the entire parsed string. This option is mutually exclusive with the
SEGMENT operand.

OPT={ option | (option,option) }

Specifies one or more additional options that are to apply to the results of
the &PARSE statement. Supported options are:

ASIS

Which specifies that leading and trailing blanks are to be preserved
when text is assigned into the target variables. If ASIS is not specified,
then leading and trailing blanks are stripped from the parsed string
sections as they are placed in the target variables.

NONULLS

Specifies the action to be taken if two consecutive delimiters are found
within the DATA being parsed or if the data starts with a delimiter. In
this case there is an implied null section, that is, a section of zero length.
If NONULLS is specified, then the zero length section is ignored and no
null variable is created. If NONULLS is omitted, then a null variable is
created.

INPUT={ CHAR | HEX | HEXEXP }

Describes the expected data input and mode of processing. The default of
character mode should be used for standard character data. HEX and
HEXEXP should be used when the input contains non-character hexadecimal
data. HEXEXP indicates that the hexadecimal data be expanded into display
characters in the resulting target variables.

DATA=text

The string of data that is to be parsed. The string may be present in one or
more variables or may be coded explicitly.

DATA= must be specified as the last keyword on the statement since the
data string is regarded as being everything to the right of the DATA=
keyword to the end of the statement.

&PARSE

568 Network Control Language Reference Guide

Examples: &PARSE

&PARSE DELIM=, ARGS OPT=ASIS DATA=123, 456,789

results in:

&1 = 123

&2 = 456

&3 = 789

&PARSE DELIM=':,' VARS=(A,B,C,D) REMSTR=REST +

 DATA=aaa:bbb, ,ccc,ddd:eee

results in:

&A = aaa

&B = bbb

&C = -* null value

&D = ccc

&REST = ddd:eee

&PARSE DELIM=',:' VARS=(A,B,C,D) REMSTR=REST +

 OPT=NONULLS DATA=aaa:bbb, ,ccc,ddd:eee

results in:

&A = aaa

&B = bbb

&C = ccc

&D = ddd

&REST = eee

&PARSE ARGS DATA=this is a variable msg.

results in:

&1 = this

&2 = is

&3 = a

&4 = variable

&5 = msg.

&INPUT=AABBBCCCCCCC

&PARSE SEGMENT VARS=(A(2),B(3),C) DATA=&INPUT

results in:

&A = AA

&B = BBB

&C = CCCCCCC

&PARSE

Chapter 2: Verbs and Built-in Functions 569

Notes:

The parse process proceeds from left to right through the data, until either all
data has been parsed or all target variables have been assigned a value. Where
data remains to be parsed it may be optionally assigned to a variable as
specified by the REMSTR operand.

Characters recognized as delimiter characters are never included in the result
variables. The only exception is a variable nominated in the REMSTR operand.

Where blank has been specified, or has defaulted, as a delimiter, it is never
recognized as a delimiter when found following a recognized delimiter.
Additionally, once this condition has occurred, a blank is not recognized as a
delimiter until a non-blank, non-delimiter character is next encountered.

If OPT=ASIS was not specified and a segment has been isolated which contains
only blanks, a null value is assigned to the corresponding target variable, unless
OPT=NONULLS has been specified.

More information:

&SELSTR (see page 646)
&REMSTR (see page 614)

&PAUSE

570 Network Control Language Reference Guide

&PAUSE

Suspends processing of an NCL process until the operator requests that
processing continue or be terminated.

&PAUSE [{ VARS=prefix* [RANGE=(start, end)] |

 VARS={ name | (name, name, ..., name) } |

 STRING=(name, name, ..., name) |

 ARGS [RANGE=(start, end)] [user supplied text] }]

The &PAUSE statement allows an NCL process to suspend processing pending
input from an OCS window. When using a non-full screen procedure, interaction
with the OCS operator may be required. An example of this is a procedure that
contains documentation for the operator describing some manual action that
must be taken, such as calling a number for service. Once the specified action
has been taken, the operator can enter a command to resume or to terminate
processing:

■ Use a GO command to resume processing. Optionally, the GO command can
pass information to the procedure.

■ Use a FLUSH command to terminate the NCL process.

Enter an &PAUSE statement in the procedure at the point where processing is
to be suspended. The &PAUSE is specified either with or without user text. If no
text is entered, the system will supply appropriate highlighted text defining the
action the operator must take to continue or terminate processing of the
procedure:

N04107 PROCEDURE xxxxxxxx NCLID=nnnnnn PAUSED.

The highlighted text (default or as supplied on the &PAUSE statement) is
displayed as a non-roll delete message on the OCS window and will remain
displayed until the procedure leaves its paused state.

On completing the &PAUSE, the system variable &ZVARCNT is set to the number
of variables created or modified by the operation.

&PAUSE

Chapter 2: Verbs and Built-in Functions 571

Operands:

VARS=

Specifies the variables that will contain the operator's response. The
operator response is entered using a GO command followed by text. The
response text (excluding the GO command keyword) will be tokenized into
the nominated variables from left to right before control is returned to the
procedure. If insufficient variables are provided, some data will not be
available to the procedure. Excess variables will be set to a null value. The
formats of the operands that may be coded with VARS are described below.

prefix*

Denotes that variables are generated automatically during the
tokenization process, and that variable names will be prefix1 … prefix2,
and so on. (The RANGE= operand may be specified to indicate a starting
and ending suffix number). prefix* cannot be used with other variable
names.

name

The name of a variable, excluding the ampersand (&).

name(n)

As name, but n denotes the length of the data to be placed in the
variable. If necessary, the data is truncated.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements, n
denotes 'skip this number of words'. The asterisk (*) by itself is the same
as *(1).

&PAUSE

572 Network Control Language Reference Guide

STRING=

Specifies that no tokenization is to be performed. The entire text of the
command line is treated as a single string and returned to the procedure in
the nominated variables. The formats of the operands associated with
STRING are:

name

User-specified variables, excluding the leading &, into which the string
text is put. Text is placed into each variable up to the maximum length
of that variable.

name(n)

User-specified variables, excluding the leading &, into which the string
text is put. Text is placed into each variable for the length specified n.

*(n)

Denotes a skip operation, where n denotes 'skip this number of
characters'. An asterisk (*) by itself is the same as *(1).

ARGS

Denotes that the line of text retrieved will be tokenized and placed word by
word into automatically generated variables of the form &1 through &n,
depending on how many are required to hold the text. The RANGE=
operand may be coded to designate a start number and optionally an end
number, which delimits the number of variables that will be generated.

user supplied text

Optional upper and lower case text describing the action the user must
take. When specifying this form of the &PAUSE statement, the VARS or
STRING operand cannot be specified. Entry of text on the GO command will
be assigned as if ARGS was coded.

Note: When user-supplied text is not specified, system default message
N04107 is written. When information concerning the reason the procedure
paused, or operator action is required, it is the user's responsibility to
ensure that an appropriate prompt is displayed, such as using &WRITE,
before issuing the &PAUSE.

&PAUSE

Chapter 2: Verbs and Built-in Functions 573

Examples:

&CMDLINE GO ID=&ZNCLID _YES -* Preformat OCS reply for user

&WRITE DATA=ENTER “GO YES” TO CONTINUE, “GO NO” TO END.

&PAUSE ARGS

&IF .&1 EQ .NO &THEN +

 &END

-*

-* Processing

-*

&PAUSE STRING=(CMD)

ROUTE NMT &CMD

&PAUSE ARGS RANGE=(20,80)

Waits for the operator response, specifying that it is tokenized into variables
&20 to a maximum of &80. &ZVARCNT is set to indicate how many variables
were created.

&PAUSE VARS=(*(3),A(2),B(3),C,D,E,F)

Reads the operator response text and tokenizes the message into individual
words; *(3) indicates that the first 3 words are ignored, 2 characters of the next
word are placed in the variable &A, three characters of the next word are placed
in the variable &B and the next 4 words are placed in variables &C, &D, &E and
&F respectively.

&PAUSE VARS=ABC* RANGE=(1,50)

Reads the operator response text, tokenizes it and places the text word by word
into a series of automatically generated variables of the form ABC1 ABC2 ...
ABC50. As many variables as required are generated, to the limit specified by
the RANGE operand.

&PAUSE STRING=(A,B(2),*(5),C(3))

Reads the operator response as a single string of text. The first 256 bytes are
placed in &A, the next 2 characters are placed in &B, the next 5 characters are
ignored and the next 3 characters are placed in &C.

&PPI

574 Network Control Language Reference Guide

Notes:

The status of all paused procedures in a user's NCL processing region is
interrogated using the SHOW PAUSE command.

Multiple NCL processes may be executing in the same NCL processing
environment and all may issue &PAUSE to await operator input. The operator
must use the ID operand of the GO command to identify the process being
referenced.

If an OCS operator exits while a procedure is in a paused state, the procedure
will be flushed. The PROFILE EXIT command is used to prevent termination of
OCS while NCL processes are active.

Procedures executing in a dependent processing environment can issue
&PAUSE. In association with the GO command this provides a useful mechanism
for process communication between hierarchically dependent NCL processes.

While a procedure remains paused in an OCS environment, the P mode
indicator will be displayed to the left of the command line to warn the operator.
This indicator will be cleared when all pause conditions are satisfied.

More information:

&INTCMD (see page 392)
&INTREAD (see page 397)

&PPI

Provides a facility for programs to exchange data. Each of the &PPI options
shown in the syntax below is described individually following this generic
description.

&PPI

Chapter 2: Verbs and Built-in Functions 575

&PPI ALERT [OPT={ NONE | ASIS | HEXPACK }]

 [DATA=data |

 VARS=prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] |

 VARS={ var | (var1, var2, ..., varn) } |

 MDO=mdoname]

&PPI DEACTIVATE [MAXQUEUE=n]

&PPI DEFINE ID={ * | name } [MAXQUEUE=n]

&PPI RECEIVE [WAIT={ YES | NO | n | NOTIFY }]

 [OPT={ NONE | ASIS | HEXEXP }]

 [VARS={ var | (var1, var2, ..., varn) } |

 VARS=prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] |

 STRING=(name, name, ..., name) |

 MDO=mdoname [MAP=map] }

&PPI SEND TOID=name

 [OPT={ NONE | ASIS | HEXPACK }]

 [DATA=data |

 VARS=prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] |

 VARS={ var | (var1, var2, ..., varn) } |

 MDO=mdoname]

&PPI STATUS [ID=name]

The Program-to-Program Interface (PPI) provides a general purpose facility to
exchange data between programs written in any language. It also provides a
facility for any program to forward a generic alert to your product region. No
special authorization is required to use PPI and it does not depend on having
your product region running.

This implementation of PPI is supported on z/OS, MSP, MSP/AE, MSP/EX, and
VOS3. The PPI implementation can use Cross-Memory Services or Service
request Block (SRB) scheduling, so that MSP is supported.

The NCL &PPI verb provides access to your product. This interface allows any
programming language to freely exchange information.

Note: The API provided by the Program-to-Program Interface is described in
IBM's NetView Application Programming Guide: Program to Program Interface
(SC31-6093-0).

PPI services is provided by the SOLVE Subsystem Interface (SSI) or by the
NetView Subsystem Interface.

&PPI

576 Network Control Language Reference Guide

&PPI Verb

All PPI facilities is accessed using the &PPI verb. The specific request is identified
by a keyword immediately following the &PPI verb. These keywords generally
correspond to the various functions described in the API.

The full set of &PPI requests is as follows:

&PPI ALERT

&PPI DEACTIVATE

&PPI DEFINE

&PPI RECEIVE

&PPI SEND

&PPI STATUS

Return Codes, System and User Variables

After each execution of the &PPI verb, the &RETCODE and &ZFDBK system
variables are set to indicate the success, or otherwise, of the request. &ZFDBK is
the PPI return code, and the &RETCODE is returned by the &PPI verb. The
following table shows the correlation between the values in these variables.

Note: For more information about &RETCODE and &ZFDBK, see the Network
Control Language Programming Guide.

&PPI

Chapter 2: Verbs and Built-in Functions 577

The following table shows the correlation between the &ZFDBK and &RETCODE
system variables.

&ZFDBK &RETCODE

00 00 The PPI request completed successfully

04 04 The specified receiver is not active—the data buffer or
generic alert has been queued

10 00 The PPI facility is active and can be used

14 00 The receiver program is active

15 04 The receiver program is already inactive

16 08 The receiver program is already active

18 12 The receiver ECB is not zero

20 12 Invalid request type

22 12 The program issuing this request is not executing in
primary addressing mode

23 08 The user program is not authorized

24 12 PPI is not active

25 12 The ASCB address is not correct

26 08 The receiver program is not defined

28 12 This product release does not support PPI

30 04 No data buffer in the receiver buffer queue

 20 &PPI RECEIVE WAIT=NOTIFY—no data buffers in
queue, notify is queued

31 12 The receiver data buffer length is too short to receive
the next data buffer

32 12 No storage is available

33 12 Invalid buffer length

35 08 The receiver buffer queue is full

36 12 Unable to establish ESTAE protection as requested

40 12 Invalid sender ID or receiver ID

90 12 A processing error has occurred

&PPI

578 Network Control Language Reference Guide

Other system variables are:

&ZPPI

Indicates whether this system appears to support PPI or not.

&ZPPINAME

Contains the PPI receiver ID that this NCL process is registered as.

Some &PPI functions set specific NCL user variables:

&PPISENDERID

Contains the PPI ID of the sender of a received message.

&PPIDATALEN

Contains the length of the actual received data in bytes.

Determining PPI or Receiver Status

The STATUS option of the &PPI verb allows an NCL process to determine the
status of PPI itself (available or not), or the status of a PPI RECEIVER (by using
the ID=name operand).

In either case, the process can examine the &RETCODE and &ZFDBK system
variables after the request. If &RETCODE is 0, then PPI or the receiver is
available/defined.

Defining the Process as a Registered PPI Receiver

By using the DEFINE option of the &PPI verb, an NCL process can register itself
as a receiver. A 1 to 8 character name is supplied, which must be unique (that is,
not presently defined to PPI or currently inactive). If your product region is
providing PPI services, an alternative is to use the ID=* option, which causes PPI
to provide a unique name. This option is useful when talking to globally named
servers, as you need not worry about trying to find a unique name.

A process need not be defined to send data using the SEND and ALERT options.
In this case, a sender ID of #nclid (7 characters) is used.

&PPI

Chapter 2: Verbs and Built-in Functions 579

Sending a Generic Alert

One function of the PPI facility is the collection of generic alerts and forwarding
to general CNM reporting (for example, NEWS). The &PPI ALERT verb allows any
NCL process to send an alert to CNM. The alert must be formatted as an NMVT,
including the NMVT header.

Sending Data to a Receiver

The &PPI SEND verb option allows any NCL process to send data to a nominated
receiver. This receiver must be defined, but may be inactive (in which case data
is queued unless the queue limit is reached).

The receiver may not be an NCL process at all, and may reside in another
address space.

The data to be sent may be just a character string, hexadecimal data that is
packed before sending, or an MDO object.

Receiving Data

An NCL process may receive data directed to its defined receiver ID using the
RECEIVE option of the &PPI verb. That data may come from other NCL
processes, including other product regions, or from other programs.

Standard parsing option, as on the other &xxxREAD verbs, may be used.
Alternatively, MDOs may be received.

The WAIT= operand allows the procedure to indicate whether or not it will wait
if no data is available, and if none is available, how long. Alternatively, the
process can use WAIT=NOTIFY to cause a message to be delivered to the
dependent response queue when data arrives (thus allowing other work to be
performed. When the notification arrives via &INTREAD, the process can reissue
the &PPI RECEIVE).

&PPI

580 Network Control Language Reference Guide

Deactivating the Receiver ID

The &PPI Deactivate option allows an NCL process to disconnect itself from a
defined PPI receiver ID. Optionally, a queue limit is specified, allowing data to be
queued even though no receiver is present. The ID is reactivated by this or any
other NCL process later.

If an NCL process that is defined to PPI terminates, an automatic deactivation
occurs.

Uses of PPI

Since PPI is available to any environment, not just NCL, PPI provides a simple,
powerful technique for access to a product from the outside. For example, an
NCL process could provide a batch program with the ability to issue selected
product commands and return the results of the command to it.

PPI also provides an alternative method of communication between two NCL
procedures, with no data loss if your product region terminates. The data
remains queued in the PPI server address space. The NCL procedures need not
be active on the same product region.

&PPI

Chapter 2: Verbs and Built-in Functions 581

Examples

These examples wait for requests to arrive on the PPI queue. Each request is
then executed as a product command, and any messages received from the
command are sent back through the PPI. The ID for the server is made up of
CMD and the current domain ID; therefore, a different copy of this procedure
could run on each product region in the system. If the procedure is stopped,
requests are queued, and on the next invocation the queue is processed. To
stop the server, you can either flush the procedure (interrupting the current
request) or issue an INTQ command, putting the string STOP onto the
procedure's dependent request queue.

Example 1:

The following example issues requests to the previous procedure. It shows how
the communication takes place. Any program using the PPI (whether it is an NCL
procedure on this or another region, or a program written in another language)
can request information in the same way.

&IF &ZPPI NE YES &THEN +

 &ENDAFTER +

 &WRITE COLOR=RED DATA=PPI INTERFACE NOT AVAILABLE

&PPI DEFINE ID=CMD&ZOMID

&IF &RETCODE NE 0 &THEN +

 &ENDAFTER +

 &WRITE COLOR=RED DATA=INITIALIZE FAILED +

 RC=&RETCODE FDBK=&ZFDK

&PPI

582 Network Control Language Reference Guide

&DOUNTIL &RETCODE NE 0

 &PPI RECEIVE VARS=PPI* WAIT=NOTIFY

 &DOWHILE &RETCODE EQ 0 -* Process anything waiting

 -* on the queue

 &WRITE COLOR=YELLOW LOG=YES TERM=YES +

 DATA=REQUEST RECEIVED FROM &PPISENDERID TO +

 ISSUE COMMAND &PPI1 &PPI2 &PPI3 &PPI4 &PPI5 +

 &PPI6 &PPI7 &PPI8 &PPI9

 &INTCMD &PPI1 &PPI2 &PPI3 &PPI4 &PPI5 &PPI6 &PPI7 +

 &PPI8 &PPI9

 &DOUNTIL &RETCODE NE 0 +

 INTREAD SET WAIT=5 TYPE=RESP

 &IF &ZFDBK = 0 &THEN +

 &PPI SEND TOID=&PPISENDERID DATA=&ZMTEXT

 &ELSE +

 &RETCODE 1

 &DOEND

 &IF &RETCODE NE 1 &THEN +

 &WRITE COLOR=RED DATA=PPI SEND TO +

 &ZPPISENDERID FAILED, RC=&RETCODE, FDBK=&ZFDBK

 &ELSE

 &PPI SEND TOID=&PPISENDERID DATA=END=CMD&ZDOMID

 &PPI RECEIVE VARS=PPI* WAIT=NOTIFY

 &DOEND

 &IF &RETCODE = 20 &THEN + -* Wait for a request to

 -* appear on queue

 &DO

 &DOUNTIL .&INTL1 EQ .N00101

 &INTREAD WAIT=YES TYPE=ANY VARS=INT*

 &IF .&ZINTYPE EQ .REQ AND .&INT1 EQ .STOP &THEN +

 &ENDAFTER +

 &WRITE COLOR=YELLOW +

 DATA=STOP REQUEST FROM &ZMREQID ACCEPTED

 &DOEND

 &RETCODE 0

 &DOEND

&DOEND

&WRITE COLOR=RED +

 DATA=PROGRAM SERVER CMD&ZDOMID FAILED, RC=&RETCODE,+

 ZFDBK=&ZFDBK

&END

&PPI ALERT

Chapter 2: Verbs and Built-in Functions 583

Example 2:

This example sends the data passed on the EXEC or START command to the
server shown in Example 1. The messages returned will then be written to the
terminal.

&IF &ZPPI NE YES &THEN +

 &ENDAFTER +

 &WRITE COLOR=RED DATA=PPI NOT AVAILABLE ON THIS +

 SYSTEM

&PP1 STATUS ID=CMD&ZDOMID

&IF &RETCODE NE 0 &THEN +

 &ENDAFTER +

 &WRITE COLOR=RED DATA=PROGRAM RECEIVER CMD&ZDOMID +

 NOT AVAILABLE

&PPI DEFINE ID=*

&IF &RETCODE NE 0 &THEN +

 &ENDAFTER +

 &WRITE COLOR=RED DATA=DEFINE TO PPI FAILED

&WRITE COLOR=PINK DATA=SENDING COMMAND ”&ALLPARMS” TO +

 SERVER CMD&ZDOMID

&PPI SEND TOID=CMD&ZDOMID DATA=&ALLPARMS

&DOUNTIL .&MSGLN1 EQ .END-CMD&ZDOMID OR &RETCODE NE 0

 &PPI RECEIVE WAIT=YES +

 STRING=(MSGLN1,MSGLN2,MSGLN3,MSGLN4)

 &IF &RETCODE EQ 0 AND .&MSGLN1 NE .END-CMD&ZDOMID +

 &THEN &WRITE COLOR=TURQUOISE DATA=&MSGLN1 &MSGLN2 +

 &MSGLN3 &MSGLN4

&DOEND

&PPI DEACTIVATE MAXQUEUE=0 -* Prevent others queuing

 -* to this ID.

&WRITE COLOR=PINK DATA=*** END OF MESSAGES ***

&END

&PPI ALERT

Sends a generic alert.

&PPI ALERT [OPT={ NONE | ASIS | HEXPACK }]

 [DATA=data |

 VARS=prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] |

 VARS=(list) | MDO=stem]

&PPI ALERT

584 Network Control Language Reference Guide

Operands:

ALERT

This option of the &PPI verb allows an NCL process to send a generic alert to
the PPI ALERT receiver, NETVALRT. The alert must be in NMVT format,
including the NMVT header. If the process is not defined using &PPI DEFINE,
the sender ID used is #nnnnnn, where nnnnnn is the 6-digit (leading zeros)
NCL ID.

OPT={ NONE | ASIS | HEXPACK }

An optional parameter that indicates how the supplied data is to be
processed before sending. This operand is only valid when the data is
specified using the DATA= operand.

NONE

The default, indicates that the data is to have trailing blanks stripped,
but is to otherwise be left alone.

ASIS

Indicates that the data is to be completely left alone. This allows passing
binary data in NCL tokens with no alteration.

HEXPACK

Indicates that the data supplied is character-format hexadecimal strings.
Each string must contain an even number of hexadecimal characters.
The strings are each packed to binary and then abutted together. The
resulting binary data is sent as is. For generic alerts, this is the most
useful format.

Note: The OPT operand is only valid when the DATA operand is specified.

DATA=data

This operand, if specified, delimits the start of the data to send as the
generic alert. The data starts immediately after the DATA= keyword.

If the alert is successfully sent, and NETVALRT is active, &RETCODE will be
set to 0. If the alert is queued and NETVALRT is inactive, &RETCODE will be
set to 4. Other values indicate an error of some sort. &ZFDBK is inspected to
determine the exact PPI return code.

VARS=prefix* [RANGE=(start,end)] |ARGS [RANGE=(start,end)] VARS=(list)

The contents of the variables or arguments specified are concatenated to
form the data which is sent as the generic alert.

MDO=stem

The data within this MDO is sent as the generic alert.

&PPI DEACTIVATE

Chapter 2: Verbs and Built-in Functions 585

&PPI DEACTIVATE

Deactivates and disconnects an NCL process from PPI.

&PPI DEACTIVATE [MAXQUEUE=n]

Operands:

DEACTIVATE

The DEACTIVATE option of the &PPI verb allows a PPI-defined NCL process
to deactivate the defined receiver ID. This action also disconnects the NCL
process from PPI, allowing a new DEFINE, possibly with a different receiver
ID.

The PPI queue limit may be altered when deactivating.

MAXQUEUE=n

An optional parameter, that allows alteration of the queue limit for the
deactivated receiver. If not specified, the existing queue limit is maintained.

The allowable range is 0 to 9999.

Following a successful deactivate, &RETCODE will be 0. &ZFDBK will also be
0. &ZPPINAME will now be null, indicating that no PPI receiver ID is
associated with the process.

If a DEFINEd NCL process does not issue &PPI DEACTIVATE before
terminating, an implicit deactivation occurs, with the queue limit being
maintained as it was.

More information:

Examples (see page 581)

&PPI DEFINE

586 Network Control Language Reference Guide

&PPI DEFINE

Defines an NCL process to PPI.

&PPI DEFINE ID={ * | name } [MAXQUEUE=n]

Operands:

DEFINE

The DEFINE option of the &PPI verb allows an NCL process to register itself
to PPI. It can optionally ask PPI to supply a unique receiver/sender ID. Once
defined, the NCL process can use all other &PPI verb options. When sending
data using &PPI SEND or &PPI ALERT, the defined name is used as the
sender ID.

The DEFINE option can also be used by a defined process to alter the queue
limit.

ID={ * | name }

A required parameter that supplies the name that the procedure is to be
registered to PPI under. If name is used, then it must be a valid PPI
sender/receiver ID, as described earlier in this section. If * is used, PPI will
supply a unique name, if possible.

If the process is already defined, then the * option cannot be used, and the
name the procedure is defined under must be supplied. This name is
available in the &ZPPINAME system variable. This is done when dynamically
altering the queue limit.

If the NCL process is executing in the product region that is connected to the
SSI that owns PPI, then names starting with NETV or NETM is used.
Otherwise, they cannot, and a PPI return code of 40 (in &ZFDBK; &RETCODE
of 12) will be returned.

MAXQUEUE=n

An optional parameter, that allows setting of the defined receiver queue
limit. For a new definition, the default value, if not specified, is 10.

The allowable range is 0 to 9999.

If altering the queue limit for an already-defined receiver, there is no
default. Not specifying this parameter means that no change occurs.

Following a successful define, &RETCODE will be 0. &ZFDBK will also be 0.
&ZPPINAME will contain the actual receiver ID allocated. This will equal the
name supplied if a name was supplied, or will be the PPI-allocated name if
an asterisk was used.

&PPI DEFINE

Chapter 2: Verbs and Built-in Functions 587

More information:

Examples (see page 581)

&PPI RECEIVE

588 Network Control Language Reference Guide

&PPI RECEIVE

Receives data from PPI.
&PPI RECEIVE [WAIT={ YES | NO | n | NOTIFY }]

 [OPT={ NONE | ASIS | HEXEXP }]

 { VARS=(list) |

 VARS=prefix*[RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] | STRING=(list) |

 MDO=stem [MAP=map] }

Operands:

RECEIVE

The RECEIVE option of the &PPI verb allows a PPI-defined NCL process to
receive the next available data buffer queued to that receiver ID. The data
may be parsed into NCL variables in a variety of ways.

The NCL process need not be concerned with the length of the incoming
data; this is handled automatically.

WAIT={ YES | NO | n | NOTIFY }

An optional parameter, that indicates what action to take if there is no data
buffer immediately available to process.

WAIT=YES (the default) indicates that the process is to wait indefinitely for a
buffer to arrive. The process may be flushed while waiting.

WAIT=NO indicates that the process is to immediately continue execution.
In this case, &RETCODE will be 4, and &ZFDBK will be 30 (the PPI return
code for no data).

WAIT=n indicates that the process is to wait the indicated number of
seconds (from 0.01 to 9999.99). If no buffer arrives in that time, action is as
for WAIT=NO. The process may be flushed while waiting.

WAIT=NOTIFY indicates that the process is to continue execution, and that a
message is to be queued to the dependent processing environment,
informing it when a data buffer arrives. This as akin to the way that &PANEL
TYPE=ASYNC works. The message may be seen using &INTREAD. This allows
the process to wait for several events simultaneously. If a new &PPI RECEIVE
(of any type) is issued before the message has been queued, the notification
is canceled (a message may already be queued, but not yet received using
&INTREAD, so be careful). The notification message (N00101) has a type of
PPI, and an event class of RECEIVE. If the receiver ECB is posted with a
shutdown code (99), the event class will be SHUTDOWN.

If no data is immediately available, &RETCODE will be set to 20. indicating
that a message will be queued to &INTREAD.

&PPI RECEIVE

Chapter 2: Verbs and Built-in Functions 589

The process simply reissues &PPI RECEIVE after reading the notification
message.

OPT={ NONE | ASIS | HEXEXP }

An optional parameter that controls how the incoming data is parsed.

NONE (the default) means that any unprintable data is translated to blanks
when placing it into the nominated NCL tokens.

ASIS means that unprintable characters will be left alone when placing it
into NCL tokens. This is typically useful only when using the STRING parse
option, as the other options delimit on blanks (x'40'), which may actually be
part of the hexadecimal data.

HEXEXP means that each string being placed into an NCL token is
hexadecimal-expanded to character-format hexadecimal. This limits the
amount of data that maybe placed into a token to 128 source bytes (for a
maximum of 256 hexadecimal-expanded characters). Typically useful only
with the STRING parse option.

VARS=(list) |

VARS=prefix*[RANGE=(start,end)] |

ARGS [RANGE=(start,end)] |

STRING=(list)

One of these options is required, and sets the parsing option for the
received data.

The input data is parsed using blanks as the separator, or broken up into
string segments.

VARS=(list) parses the data on blanks into a list of variables. Each entry in
the list must be a valid variable name, without the & (unless you wish to
substitute the variable name itself). Each variable in turn receives the next
blank-delimited piece of source data, truncated to 256 characters if
required (128 before hexadecimal-expansion of using OPT=HEXEXP). A piece
of source data may be skipped by specifying * as the variable name. Several
may be skipped by specifying *(n). A variable may have the amount of data
placed in it truncated by specifying name(n) for that entry.

VARS=prefix* and ARGS (which is the same as VARS=*) parse as for
VARS=(list) with the variable names being formed from the prefix, suffixed
by the numbers specified in the RANGE= operand. All the target variables in
the range are cleared before this parsing is performed.

&PPI SEND

590 Network Control Language Reference Guide

STRING=(list) indicates that the data is to be placed into the nominated
variables in order, delimiting only be length. If no subscripts are specified on
the variables in the list, 256 is used. Part of the data may be skipped by
using *(n) and each variable may have an explicit length specified after it.

Note: If you are using OPT=HEXEXP, these lengths refer to the length before
hexadecimal-expansion, and in this case the maximum length allowed is
128.

Following a successful RECEIVE, &RETCODE will be 0. &ZVARCNT contains
the count of the number of variables updated.

The sender ID of the data is stored in the NCL user variable &PPISENDERID.
The actual byte length of the received data is stored in the user variable
&PPIDATALEN.

MDO=stem [MAP=map]

The received data is assigned into the MDO. If MAP=map is specified, then
the specified map is attached to the MDO.

More information:

Examples (see page 581)

&PPI SEND

Sends data to a PPI receiver.

&PPI SEND TOID=name

 [OPT={ NONE | ASIS | HEXPACK }]

 [DATA=data |

 VARS=prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)] |

 VARS=(list) |

 MDO=stem]

&PPI SEND

Chapter 2: Verbs and Built-in Functions 591

Operands:

SEND

The SEND option of the &PPI verb allows an NCL process to send data to any
defined PPI receiver. The receiver need not be another NCL process. If the
sending process is not defined (via &PPI DEFINE), the sender ID used is
#nnnnnn. nnnnnn is the 6-digit (leading zeros) NCL ID.

TOID=name

A required parameter, providing the PPI receiver ID to send to. The ID must
be a valid PPI receiver ID (see earlier in this document). It must be defined,
although not necessarily active.

OPT={ NONE | ASIS | HEXPACK }

An optional parameter that indicates how the supplied data is to be
processed before sending. This operand is only valid when the data to send
as the generic alert is specified using the DATA= operand.

NONE

The default, indicates that the data is to have trailing blanks stripped,
but is to otherwise be left alone.

ASIS

Indicates that the data is to be completely left alone. This allows passing
binary data in NCL tokens with no alteration.

HEXPACK

Indicates that the data supplied is character-format hexadecimal strings.
Each string must contain an even number of hexadecimal characters.
The strings are each packed to binary and then abutted together. The
resulting binary data is sent as is.

DATA=data

This operand, if specified, delimits the start of the data to send as the
generic alert. The data starts immediately after the DATA= keyword.

VARS=prefix* [RANGE=(start,end)] |ARGS= [RANGE=(start,end)]VARS=(list)
|

The contents of the variables or arguments specified are concatenated to
form the data which is sent as the generic alert.

MDO=stem

The data within the MDO is sent as the generic alert.

&PPI STATUS

592 Network Control Language Reference Guide

Note:

If the data is successfully sent, and the target receiver is active, &RETCODE will
be set to 0. If the data is queued and the receiver is inactive, &RETCODE will be
set to 4. Other values indicate an error of some sort. &ZFDBK is inspected to
determine the exact PPI return code.

More information:

Examples (see page 581)

&PPI STATUS

Determines PPI or receiver status.

&PPI STATUS

 [ID=name]

Operands:

STATUS

The STATUS option of the &PPI verb allows an NCL process to determine the
status of PPI itself, or of a specific receiver.

ID=name

An optional parameter. If specified, indicates that a specific receiver ID is to
be checked. &RETCODE will indicates whether the nominated receiver ID is
active (0), inactive (4), or undefined (8).

If omitted, the status of PPI itself is returned. If PPI is active, &RETCODE will
be 0. Other values indicate that PPI is not active.

Note:

&PPI status provides further information beyond the &ZPPI system variable,
which simply indicates whether PPI may be usable in this environment.

More information:

Examples (see page 581)

&PPOALERT

Chapter 2: Verbs and Built-in Functions 593

&PPOALERT

Generates a simulated PPO message and specifies delivery options for a local or
remote system.

&PPOALERT [{ [LOCAL] [REMOTE] [PPOPROC] } | ALL]

 [LINK={ linkname | * } | DOMAIN={ domainid | * }]

 [MSGID=nnnn]

 [MNAME=name]

 [PNAME=name]

 [MNETNAME=name]

 [PNETNAME=name]

 [ONETNAME=name]

 [ODOMAIN=name]

 [OSSCP=name]

 [OLINK=name]

 [LDOMAIN=name]

 [ALARM={ YES | NO }]

 [COLOR=color]

 [HLIGHT=highlight]

 [INTENS={ HIGH | NORMAL }]

 [NRD={ NO | OPER }]

 [SCAN={ YES | NO }]

 [{ DATA | TEXT= } message-text]

Simulates a PPO message on a LOCAL or REMOTE system. &PPOALERT may be
used to signal an event on the local system, or one which is connected by an ISR
link.

Operands:

LOCAL REMOTE PPOPROC | ALL

These operands correspond to the DELIVER options on the DEFMSG
command. They determine the destinations for message delivery. For
simulated VTAM messages where no options are specified, the delivery
options in the DEFMSG table of the target system are used, otherwise these
options will override the delivery options in the DEFMSG table. (For more
information, see Notes for this verb.)

LINK={ linkname | * } | DOMAIN={ domainid | * }

Specifies the ISR-connected system on which the &PPOALERT is to be
simulated. LINK=* generates an alert on all connected systems. DOMAIN=*
generates an alert on all connected systems as well as the system issuing
the alert.

MSGID=nnnn

&PPOALERT

594 Network Control Language Reference Guide

A 3- or 4-digit VTAM message number associated with the alert message.
This number corresponds to the nnnn part of the VTAM ISTnnn or ISTnnnn
message ID.

MNAME=name

The minor resource name (MNAME) associated with the message. This must
form a valid resource name and may be from 1 to 8 characters long.

PNAME=name

The group resource name (PNAME) associated with the message. This must
form a valid resource name and may be from 1 to 8 characters long.

MNETNAME=name

The minor network name (MNETNAME) associated with the message. This
must form a valid network name and may be from 1 to 8 characters long.

PNETNAME=name

The group network name (PNETNAME) associated with the message. This
must form a valid network name and may be from 1 to 8 characters long.

ONETNAME=name

ODOMAIN=name

OSSCP=name

OLINK=name

These four parameter options let you override the originating network
name, domain ID, SSCP name, or link name, if necessary. This may be useful
when using &PPOALERT procedures to generate test messages.

LDOMAIN=name

Lets you override the last domain name.

ALARM={ YES | NO }

Specifies whether the terminal alarm sounds when a message is delivered.

COLOR=color

Specifies the screen display color for the message.

HLIGHT=highlight

Specifies whether the message is to be highlighted.

INTENS={ HIGH | NORMAL }

Specifies the message intensity required.

NRD={ NO | OPER }

&PPOALERT

Chapter 2: Verbs and Built-in Functions 595

Sets the non-roll delete attribute for the message.

SCAN={ YES | NO }

Specifies whether at signs (@) within text are to be interpreted as word
highlight markers.

DATA | TEXT=message-text

The alert message text generated.

Examples: &PPOALERT

&PPOALERT LINK=CENTRAL TEXT=Successful Recovery of Area-3

Notes:

&PPOALERT simulates a VTAM message if the MSGID operand is specified, or if
the message identifier within TEXT is a valid VTAM message ID.

The ALL, LOCAL, and REMOTE operands on the &PPOALERT verb represent the
delivery options for the location at which the message is simulated. (This is
different from the &PPOCONT and &PPODEL verbs, where these operands
direct message flow from PPOPROC.) The LINK= or DOMAIN=operands can also
be specified on the &PPOALERT statement. The delivery options are then used
to override DEFMSG on the targeted domains. For example:

&PPOALERT LOCAL PPOPROC LINK=CENTRAL + TEXT=Node ASYD01 is now active

This statement causes the message to be delivered to link name CENTRAL, and
at CENTRAL it assumes the delivery options of LOCAL and PPOPROC.

Message COLOR and HIGHLIGHT values you specify in the &PPOALERT verb
override the PPOCOLOR and PPOHLITE SYSPARMS operands.

&PPOALERT

596 Network Control Language Reference Guide

If LINK={ linkname | * } or DOMAIN={ domainid | * } is specified, the &ZFDBK
system variable is set, following execution, as follows:

0

The message was enqueued successfully.

8

The specified link or domain was not enabled for PPO. This may mean that
the link has not been started or PPO ISR has not been enabled for the link.

12

The specified link or domain is enabled for PPO but is not enabled for
outbound unsolicited PPO traffic.

16

Storage shortage, message not sent.

20

ISR queue overflow on one or more links, &ZPPOSCNT has a count of the
links on which a message was successfully sent.

28

ISR internal error.

In all other cases, &ZFDBK is set to zero.

If sends on multiple links are attempted because an asterisk has been specified
on the LINK or DOMAIN operands, any error code returned will reflect the first
error encountered, except for a queue overflow condition, which will always be
indicated if it has occurred on any of the links.

Note: For information about how the ISR queue limit is calculated, see the
description of the ISR QMAXK operand in the Online Help.

&PPOCONT

Chapter 2: Verbs and Built-in Functions 597

&PPOCONT

Resumes normal processing of a VTAM PPO message and optionally overrides
delivery options or queues a copy of the message to a specific ISR link.

&PPOCONT [NONE | LOCAL | REMOTE | ALL |

 LINK={ linkname | * } |

 DOMAIN={ domainid | * }]

 [ALARM={ YES | NO }]

 [COLOR=color]

 [HLIGHT=highlight]

 [INTENS={ HIGH | NORMAL }]

Used within a PPOPROC procedure to return a message from the previous
&PPOREAD to your product region for processing.

The message may either be returned for standard delivery, or delivery may be
overridden by the &PPOCONT verb.

Operands:

NONE

This operand indicates that delivery will take place according to delivery
options specified for the VTAM message in the DEFMSG table. All other
delivery options will override those specified in DEFMSG.

LOCAL

The PPO message will be released for delivery to local PPO recipients only.
The message is no longer available to PPOPROC.

REMOTE

The PPO message will be released for delivery to eligible ISR links enabled
for PPO/ISR outbound traffic. LOCAL delivery is suppressed. The message is
no longer available to PPOPROC.

ALL

This releases the PPO message for delivery to authorized PPO receivers, and
to all eligible ISR-connected systems (unless any ISR delivery has already
been performed). The message is no longer available to PPOPROC.

LINK={ linkname | * } | DOMAIN={ domainid | * }

If a specific link or domain is indicated, a copy of the message is queued to
the specified link. Addressing to a local link name, or a remote domain ID
may be used.

&PPOCONT

598 Network Control Language Reference Guide

When an asterisk (*) is specified, a copy of the message is queued to all ISR
links that are enabled for PPO/ISR outbound traffic.

The message is not released, but remains available to PPOPROC.

ALARM={ YES | NO }

Specifies whether the terminal alarm is sounded when the message is
delivered.

COLOR=color

Specifies the screen display color for the message. Valid values are:

RED GREEN BLUE TURQUOISE YELLOW PINK WHITE

HLIGHT=highlight

Specifies whether the message is to be highlighted. Valid values are:

REVERSE BLINK USCORE

INTENS={ HIGH | NORMAL }

Specifies the message intensity required.

Examples: &PPOCONT

&PPOCONT LINK=CENTRAL

An &PPOCONT issued when no VTAM PPO message is available is ignored.

If the current message is a copy of an SPO (VTAM command response) message,
or a copy of a VTAM command, the message or command is never delivered
locally.

Notes:

An &PPOCONT need not be issued if another &PPOREAD is issued. If a message
is being processed and another &PPOREAD is issued without an intervening
&PPODEL or &PPOREPL, an implied &PPOCONT is performed and the message is
returned for standard processing before the next &PPOREAD is carried out.

&PPOCONT is used to free a message for delivery even though the PPOPROC
procedure continues processing before issuing another &PPOREAD.

When PPO messages are delivered to connected systems the Inter System
Routing facility (ISR) is used to carry the PPO message traffic; this facility allows
centralized collection of PPO message traffic.

&PPOCONT

Chapter 2: Verbs and Built-in Functions 599

If LINK=linkname or DOMAIN=domainid is specified, the &ZFDBK system variable
is set, following execution, as follows:

0

Message queued satisfactorily.

4

Not sent, message originated or arrived from nominated link, or already
sent to this link.

8

The specified link or domain was not enabled for PPO. This may mean that
the link has not been started or PPO ISR has not been enabled for the link.

12

The specified link or domain is enabled for PPO but is not enabled for
outbound unsolicited PPO traffic.

16

Message not sent, storage error.

20

Message not sent, ISR queue overflow.

24

Previous &PPODEL LINK/DOMAIN has blocked this link.

28

ISR internal error.

If &PPOCONT LINK=* or DOMAIN=* is used, the &ZFDBK system variable is set
as follows:

0

Message queued to at least one ISR link.

4

Message not queued to any ISR link.

8

Previous &PPODEL LINK/DOMAIN=* has prevented any delivery.

In all other cases, &ZFDBK is set to zero (0) by &PPOCONT.

Message COLOR and HIGHLIGHT values you specify in the &PPOCONT verb
override the PPOCOLOR and PPOHLITE SYSPARM variables.

&PPODEL

600 Network Control Language Reference Guide

&PPODEL

Deletes a VTAM PPO message, or blocks ISR delivery of a VTAM PPO message.

&PPODEL [{ ALL | DOMAIN={ domainid | * } |

 LINK= { linkname | * } |

 LOCAL | REMOTE }]

Used within the PPOPROC procedure to delete a message previously delivered
for processing by an &PPOREAD, or else used to block automatic ISR delivery for
a message.

Depending on the option specified, the message may not be available for any
further processing.

Operands:

ALL

(The default) means the PPO message is deleted and no delivery takes
place. Copies queued to ISR links by previous &PPOCONT LINK= or
&PPOCONT DOMAIN= statements are not affected.

The message is no longer available to PPOPROC.

DOMAIN={ domainid | * } LINK={ linkname | * }

A specific domain or link is indicated to block ISR delivery of the message to
the specified ISR link. Addressing to a local link name, or a remote domain
ID may be used.

When an asterisk (*) is specified, ISR delivery to all ISR links is blocked.

The message is not released, and remains available to PPOPROC.

LOCAL

The PPO message is released for delivery to eligible ISR links that are
enabled for PPO/ISR outbound traffic. The message is not delivered to any
local PPO receivers.

The message is no longer available to PPOPROC.

REMOTE

The PPO message is released for delivery to local PPO receivers only. No ISR
delivery occurs (any copies sent previously by &PPOCONT
LINK/DOMAIN=name have already been sent).

The message is no longer available to PPOPROC.

&PPODEL

Chapter 2: Verbs and Built-in Functions 601

Notes:

An &PPODEL issued when no VTAM PPO message is available is ignored.

&PPODEL is normally used to eliminate many of the excess messages presented
by VTAM, particularly some group messages.

If LINK=linkname, or DOMAIN=domainid is specified, the &ZFDBK system
variable is set, following execution, as follows:

0

Message delivery has been blocked.

8

Specified link is not enabled for PPO.

24

A copy of the message has already been sent by &PPOCONT
LINK/DOMAIN=name.

In all other cases, &ZFDBK is set to 0.

&PPOREAD

602 Network Control Language Reference Guide

&PPOREAD

Requests the next VTAM PPO message be made available to PPOPROC.

&PPOREAD { SET |

 VARS=prefix* [RANGE=(start,end)] |

 VARS={ name | (name,name, ..., name) } |

 STRING=(name, name, ..., name) |

 ARGS [RANGE=(start,end)] |

 [WAIT={ YES | NO | nnnn.nn }]

The PPOPROC system level procedure uses &PPOREAD to receive the next
VTAM message.

If no VTAM PPO message is immediately available, processing of the procedure
will be suspended at this point and will resume when the next VTAM PPO
message arrives.

If DEFMSG has been used to limit the messages that are to be intercepted, only
those messages will satisfy an &PPOREAD.

Multiple &PPOREAD statements is present within PPOPROC, thus making the
processing of group messages easier. Delivery of all unsolicited VTAM messages
to the one NCL process allows PPOPROC to correlate and react intelligently to
VTAM's notification of network events.

On completion of &PPOREAD the system variable &ZVARCNT is set to the
number of variables created or modified by the operation.

The profile of the message received by &PPOREAD is set in a suite of reserved
system variables. The message profile (which includes attributes such as color,
highlighting, and source information) provides a complete description of all the
PPO message attributes in addition to the message text.

Operands:

SET

Specifies that no tokenization of the PPO message is to be performed, but
that the &PPOREAD statement is to return only the message profile of the
next PPO message.

If SET is not specified, instructions must be coded on the &PPOREAD
statement specifying the tokenization requirements for the message text by
using the other &PPOREAD operands.

&PPOREAD

Chapter 2: Verbs and Built-in Functions 603

VARS=

Specifies that the message is to be tokenized into the nominated variables
before control is returned to the procedure. Each word of the command
output line will be tokenized into the nominated variables from left to right.
If insufficient variables are provided, some data will not be available to the
procedure. Excess variables will be set to a null value. The formats of the
operands that may be coded with VARS= are described below. The format of
the operands associated with VARS= are:

prefix*

Variables will be generated automatically during the tokenization
process, and that the variable names will be prefix1 .. prefix2, and so on.
The RANGE= operand may be specified to indicate a starting and ending
suffix number. prefix* cannot be used in conjunction with other variable
names.

name

The name of a variable, excluding the ampersand (&).

name(n)

As name, but n denotes the length of the data that is to be placed in the
variable.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements n
denotes 'skip this number of words'. An asterisk (*) by itself is the same
as *(1).

&PPOREAD

604 Network Control Language Reference Guide

STRING=

Specifies that no tokenization is to be performed. The entire text of the
command line is to be treated as a single string and returned to the
procedure in the nominated variables. The formats of the operands
associated with STRING are:

name

User-specified variables (excluding the leading &) into which the string
text is to be placed. Text will be placed into each variable for the
maximum length of a variable.

name(n)

User-specified variables (excluding the leading &) into which the string
text is to be placed. Text will be placed into each variable for specified
length n.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On STRING statements n
denotes 'skip this number of characters'. An asterisk (*) by itself is the
same as *(1).

ARGS

Denotes that the line of text retrieved will be tokenized and placed word by
word into automatically generated variables of the form &1 through &n,
depending on how many are required to hold the text. The RANGE=
operand may be coded to designate a start number and optionally an end
number, which delimits the number of variables that will be generated.

WAIT={ YES | NO | nnnn.nn }

YES signifies that if no message is immediately available, the PPOPROC
procedure is suspended until a message arrives. NO indicates that if no
message is available control is to be returned to the procedure immediately.
nnnn.nn signifies the number of seconds, and 1/100th seconds the
procedure is suspended for, awaiting a message to arrive, before control
will be returned to the procedure (maximum is 9999.99 seconds). WAIT=0
has the same effect as WAIT=NO.

&PPOREAD

Chapter 2: Verbs and Built-in Functions 605

Examples:

&PPOREAD ARGS RANGE=(20,80)

Reads or waits for the next unsolicited VTAM message specifying that it is
tokenized into variables &20 to a maximum of &80. &ZVARCNT will be set to
indicate how many variables were created.

&PPOREAD VARS=(*(3),A(2),B(3),C,D,E,F)

Reads or waits for the next unsolicited VTAM message, and tokenizes the
message into individual words. *(3) indicates that the first 3 words are ignored,
2 characters of the next word are placed in the variable &A, three characters of
the next word are placed in the variable &B and the next 4 words are placed in
variables &C, &D, &E and &F respectively.

&PPOREAD VARS=ABC* RANGE=(1,50)

Reads or waits for the next unsolicited VTAM message, tokenizes it and places
the text word by word into a series of automatically generated variables of the
form ABC1 ABC2 ... ABC50 and so on. As many variables as required are
generated, to the limit specified by the RANGE operand.

&PPOREAD STRING=(A(3),B(2),*(5),C(3))

Reads the next unsolicited VTAM message as a single string of text. The first 3
characters are placed in &A, the next 2 characters are placed in &B, the next
5 characters are ignored and the next 3 characters are placed in &C.

&PPOREAD

606 Network Control Language Reference Guide

Notes:

Following an &PPOREAD a useful technique is the use of an &GOTO statement,
using the VTAM message number, to go to the routine that will process the
message.

&CONTROL NOLABEL

.READ

 &PPOREAD VARS=(A,B,C,D,E,F,G,H)

 &GOTO .&A

 -* Unexpected messages will be caught here,

 -* and returned for normal processing.

 &WRITE MON=YES DATA=UNEXPECTED MESSAGE NO: &A

 &GOTO .READ

.ISTnnnI

.ISTnnnI

:

: process ...

While testing and developing a PPOPROC procedure, you may need to
terminate the current version and invoke a new updated copy. This is achieved
using the SYSPARMS PPOPROC=FLUSH command, which is specifically designed
to force termination of PPOPROC, followed by a SYSPARMS PPOPROC=member
command to reinstate PPOPROC.

The &RETCODE system variable is set to zero (0) by &PPOREAD, except when
WAIT=NO or WAIT=n was coded and no message arrived. In this case,
&RETCODE is set to 12.

When PPOPROC terminates for any reason, standard PPO processing is
resumed, and no PPO messages will be lost.

Preloading of PPOPROC using the LOAD command offers no performance
advantage as the procedure remains loaded for the duration of processing.

&PPOREPL

Chapter 2: Verbs and Built-in Functions 607

&PPOREPL

Resumes normal processing of a VTAM PPO message, after replacing the
message text.

&PPOREPL [ALARM={ YES | NO }]

 [COLOR=color]

 [HLIGHT=highlight]

 [INTENS={ HIGH | NORMAL }]

 [NRD={ NO | OPER }]

 [SCAN={ YES | NO }]

 [DATA | TEXT=replacement text]

Used within a PPOPROC procedure to return the updated message text from the
previous &PPOREAD to your product region for processing.

The message is returned for standard delivery as specified in the DEFMSG table.
NPF processing is not affected by the updated text. Network Partitioning (NPF)
processing is not affected by the updated text. The resource name used by NPF
is the name extracted from the original text.

Operands:

ALARM={ YES | NO }

Specifies whether the terminal alarm sounds when the message is
delivered.

COLOR=color

Specifies the screen display color for the message. Valid values are:

RED GREEN BLUE TURQUOISE YELLOW PINK WHITE

HLIGHT=highlight

Specifies whether the message is to be highlighted. Valid values are:

REVERSE BLINK USCORE

INTENS={ HIGH | NORMAL }

Specifies the message intensity required.

NRD={ NO | OPER }

Sets the non-roll delete attribute for the message.

SCAN={ YES | NO }

Specifies whether @ characters within text are to be interpreted as word
highlight markers.

DATA | TEXT=replacement text

&PPOREPL

608 Network Control Language Reference Guide

The alert message text replacement generated.

Examples: &PPOREPL

&PPOREPL TEXT=APPLICATION &7 HAS FAILED

Notes:

An &PPOREPL issued when no VTAM PPO message is available is ignored.

After issuing an &PPOREPL, the message is no longer available in its original
form and no &PPOCONT need be issued to return the message for normal
processing. &PPOREPL is ignored if the message is an SPO message delivered to
the PPO interface. An &PPOREPL is followed immediately by an &PPOREAD to
make the next PPO message available.

&PPOREPL lets you replace a VTAM message with replacement text of your own
choice.

&PROMPT

Chapter 2: Verbs and Built-in Functions 609

&PROMPT

Writes the specified text to the user's terminal and waits for input.

&PROMPT [NR]

 [NOPRT]

 [WAIT=nn]

 { VARS=prefix* [RANGE=(start,end)] |

 VARS={ name | (name,name, ..., name) } |

 STRING=(name, name, ..., name) |

 ARGS [RANGE=(start,end)] }

 [INPUT={ CHAR | HEX | HEXEXP }]

 [AUTONL={ YES | NO }]

 [prompt]

&PROMPT is used within an NCL procedure to converse with a user at an LU1
terminal. Having written the supplied text to the terminal, the procedure will be
suspended until the user enters some data in reply, or until any supplied time
limit expires. Data entered is made available in user variables, as detailed below.

On completion of &PROMPT the system variable &ZVARCNT is set to the
number of variables created or modified by the operation.

Operands:

NR

Specifies that no carriage return/line feed function is to be performed
following the text. The print head of the terminal will be left at the end of
the text. If NR is not specified, the print head will be positioned at the
beginning of the next line for subsequent entry of data.

&PROMPT

610 Network Control Language Reference Guide

NOPRT

Specifies that the Inhibit Print SCS character is to be sent with the prompt
text. For terminals that support this character, the subsequent input will not
be printed or displayed at the terminal. The next &WRITE or &PROMPT will
automatically re-enable printing.

WAIT=nnnn.nn

Specifies that the procedure can wait for nnnn.nn seconds for the user to
enter some data (maximum value is 9999.99 seconds). If, after nnnn.nn
seconds, no data has been entered, control is returned to the procedure.
The &INKEY system variable set to a null value. If data is entered within the
time specified, or if no time is specified, &INKEY contains the word ENTER.

VARS=

Specifies that the input is to be tokenized into the nominated variables
before control is returned to the procedure. Each word of the input will be
tokenized into the nominated variables from left to right. If insufficient
variables are provided, some data will not be available to the procedure.
Excess variables will be set to a null value. The formats of the operands that
may be coded with VARS are described below.

prefix*

Denotes that variables are generated automatically during the
tokenization process, and that variable names will be 'prefix1,…,prefix2'
and so on. The RANGE operand may be specified to indicate a starting
and ending suffix number. prefix* cannot be used with other variable
names.

name

The name of a variable, excluding the ampersand (&).

name(n)

As name, but n denotes the length of the data to be placed in the
variable.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements, n
denotes 'skip this number of words'. An asterisk (*) by itself is the same
as *(1).

&PROMPT

Chapter 2: Verbs and Built-in Functions 611

STRING=

Specifies that no tokenization is to be performed. The entire text of the
command line is treated as a single string and returned to the procedure in
the nominated variables. The formats of the operands associated with
STRING are:

name

User-specified variables, excluding the leading &, into which the string
text is put. Text is placed into each variable up to the maximum length
of that variable.

name(n)

User-specified variables, excluding the leading &, into which the string
text is put. Text is placed into each variable for the length specified n.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On STRING statements, n
denotes 'skip this number of characters'. An asterisk (*) by itself is the
same as *(1).

ARGS

Denotes that the input will be tokenized and placed word by word into
automatically generated variables of the form &1 through &n, depending on
how many are required to hold the text. The RANGE= operand may be
coded to designate a start number and optionally an end number, which
delimits the number of variables that will be generated.

INPUT={ CHAR | HEX | HEXEXP }

Specifies the format of the data returned in the variables created by the
&PROMPT operation. Default is standard character data. If HEX is specified
it means that the data in the variables is pure hexadecimal (and therefore
not directly procurable by NCL). HEXEXP means that the data in the
variables is hexadecimal data represented as expanded hexadecimal, so that
a hexadecimal byte with a value of, for example, 0A will appear in a variable
as two characters 0A. HEX and HEXEXP support provide data transparency
across &PROMPT operations.

AUTONL={ YES | NO }

YES specifies that the next output will be preceded by a new line character,
if necessary to ensure the output starts in position 1. Specify NO if you do
not wish this extra character to be automatically added.

prompt

&PROMPT

612 Network Control Language Reference Guide

The text of the message to be written. Normal variable substitution is
performed before sending the message. Text is in upper and lower case.

Examples: &PROMPT

&PROMPT ARGS Please enter your log on request

&PROMPT NR WAIT=900 STRING=(RESPONSE) Enter log on request ===>

Notes:

Any data entered by the user when an &PROMPT statement is not outstanding
will be queued pending the next &PROMPT statement, but only up to the 32 KB.

The text of an &PROMPT message can contain non-printable or hexadecimal
characters.

Messages written with &PROMPT will not be logged to the activity log. The use
of the &WRITE statement should be considered if information is to be written to
the log.

The use of the &WRITE LF=NO operand is considered to create 'strike-over
masks' on those terminals that do not support the Print Inhibit SCS character.

If the device to which an &PROMPT message is sent responds with a
multiple-element chain in reply, &PROMPT completes on the arrival of each
chain element. Multiple &PROMPT statements must be issued to receive the
entire reply from the terminal. The &ZLU1CHN system variable (see page 974)
indicates the position within the current chain of each message received.

Note: See also the sample EASINET procedure $EASINET in the distribution
library.

&QEXIT

Chapter 2: Verbs and Built-in Functions 613

&QEXIT

Terminates the current procedure and all higher levels, and optionally ends the
current processing window.

&QEXIT [NOMSG | PMENU]

&QEXIT provides a means of ending the current processing window from within
an NCL procedure. If issued, the current procedure is terminated, all higher
levels of nested procedures are ended without further processing, and the
window under which the procedure was executing is ended. If the user has only
one processing window, &QEXIT terminates the window and logs the user off.

Operands:

NOMSG

If the termination of the window results in a user log off, then this operand
determines if the standard disconnect message

N20005 SESSION TERMINATED AT hh.mm.ss ON day dd-mon-year FOR USERID=userid

will be issued indicating that the session has terminated. If this operand is
specified then the session is terminated without issuing the termination
message.

PMENU

If you code the PMENU operand, &QEXIT terminates all processing in the
current window but returns the window to the primary menu position
rather than terminating the window environment completely.

Examples: &QEXIT

&IF .&INKEY = .PF04 &THEN &QEXIT PMENU

&IF .&COMMAND = .LOGOFF &THEN &QEXIT

&REMSTR

614 Network Control Language Reference Guide

&REMSTR

Returns the data following the first occurrence of a specified character in a
supplied string.

&REMSTR (c) text

&REMSTR is a built-in function and must be used to the right of an assignment
statement.

&REMSTR will scan the specified data looking for the nominated selection
character and returns the data following it into the target variable.

&REMSTR is used in conjunction with &SELSTR to split and manipulate strings of
data.

&SELSTR assigns the data up to the nominated search character into the
nominated variable. &REMSTR assigns the data following the nominated search
character into the nominated variable.

Operands:

(c)

The selection character. The scan will be terminated at the first occurrence
of the character 'c'. If this character is not found the target variable will be
set to null.

The data assigned to the target variable will not include the selection
character.

If the selection character is a blank then a space should be specified. Where
the selection character is a blank that is one of many successive blanks, only
the first blank will be dropped. To eliminate multiple leading blanks in a
variable, use either the &LBLSTR built-in function or the &PARSE verb.

text

The string of data to be split at the specified character.

Examples: &REMSTR

&MMSS = &REMSTR (.) &TIME -* If &TIME is currently

 -* 09.23.50

 -* then &MMSS will be set

 -* to 23.50

&RETCODE

Chapter 2: Verbs and Built-in Functions 615

Notes:

&REMSTR is used with data returned from full-screen panels where it is
necessary to internally manipulate the data for further processing.

Having split a string using &REMSTR, the &NBLSTR, &TBLSTR and &LBLSTR
functions is used to strip leading and/or trailing blanks as necessary. It may be
desirable to use &PARSE, where complex parsing is required.

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &REMSTR is sensitive to the
presence of DBCS data (see page 1287).

More information:

&PARSE (see page 565)
&SELSTR (see page 646)

&RETCODE

Returns the current system return code or sets a new return code value.

&RETCODE [value]

&RETCODE may be referenced as a system variable to return the current return
code value or as a verb to set a new value.

A nested procedure can set a return code on the &END statement. On return to
the higher level, &RETCODE contains the return code value. In addition, many
NCL functions can set &RETCODE as an indication of the success or otherwise of
the function.

&RETCODE is in the range 0 to 99 and is used to indicate the completion of a
function performed by a nested procedure.

When used as a verb, &RETCODE sets the value of the &RETCODE variable.

Operands:

value

A new value in the range 0 to 99 to be placed in &RETCODE.

&RETCODE

616 Network Control Language Reference Guide

Examples: &RETCODE

&GOSUB .GETREQ

&IF &RETCODE NE 0 &THEN +

 &DO

 &SYSMSG = &STR NO REQUESTS IN QUEUE

 &RETCODE 4

 &RETURN &SYSMSG

 &DOEND

&CONTROL FINDRC

EXEC &REQUEST

&IF &RETCODE EQ 100 &THEN +

 &WRITE DATA=Requested Procedure &REQUEST not found

A procedure may set a value in the range 0 to 99 for &RETCODE. A value of 100
is set by the system if the &CONTROL FINDRC option is set. This option allows a
procedure to determine the success of a request for a nested procedure. If the
requested procedure does not exist and &CONTROL FINDRC is set processing
continues but &RETCODE is set to a value of 100. If &CONTROL FINDRC is not
set, the requesting procedure will terminate.

If no user exit is installed, &SECCALL EXIT sets the &RETCODE to 100.

When a process is initiated, &RETCODE will have a default value of 0.

An alternative to using the &END statement to pass a return code is to use the
&RETURN statement, which can return variables to a higher nesting level, or
&CONTROL SHRVARS, which allows sets of variables to be shared between
procedures.

The &RETSUB statement may be coded with a value to be set as &RETCODE.
Alternatively, &RETCODE is set within the body of the subroutine.

More information:

&END (see page 333)
&RETURN (see page 618)
&RETSUB (see page 617)
&CONTROL (see page 281)

&RETSUB

Chapter 2: Verbs and Built-in Functions 617

&RETSUB

Returns from a subroutine within a procedure.

&RETSUB [returncode]

Common processing routines within an NCL procedure may be placed in
subroutines. Control is transferred to a subroutine using the &GOSUB
statement. The subroutine returns control to the statement following the
&GOSUB by issuing an &RETSUB statement. There is a one to one correlation
between each &GOSUB and its associated &RETSUB, allowing nested subroutine
calls.

Operands:

returncode

A return code in the range 0 to 99 may be specified. This is available in the
variable &RETCODE on return to the calling statement. A return code
outside these ranges will cause termination of the procedure.

Examples: &RETSUB

.GETSUB -* subroutine to get a request from a user

 -*

 -* Subroutine processing

 -*

 &IF &RETCODE = 4 &THEN +

 &RETSUB

 &RETSUB 0

Notes:

If &RETSUB is issued without a preceding &GOSUB, the statement is ignored.

If &RETSUB is specified without any other operands, any existing value of
&RETCODE is retained. Thus the following are equivalent:

&RETSUB 4

&RETCODE 4

&RETSUB

More information:

&GOSUB (see page 376)

&RETURN

618 Network Control Language Reference Guide

&RETURN

Returns to a higher nesting level passing the nominated variables.

&RETURN [&var1 &var2 &varn]

To return to a higher NCL nesting level, optionally passing the nominated
variables.

Operands:

&var1 &var2 &varn

names of user variables that are to be returned to the higher nesting level.
The variables must be specified including the leading ampersand (&).
Resolution of complex variables (for example, &&1) is not supported on this
statement. Any number of user variables is nominated.

Following an &RETURN statement in a nested procedure, processing will
resume in the higher nesting level (the invoking procedure). The variables
specified on the &RETURN statement will then be available to this higher
level. If a variable of the same name existed in the higher level before the
&RETURN statement was processed, it will be updated to reflect the value
in the lower nesting level when the &RETURN statement was processed. If
no variable of that name existed in the higher level, then a new variable will
be created containing the data from the lower level. If the variable had a
null value in the lower level when the &RETURN statement was issued a null
value will also be set in the higher level when processing resumes.

Examples: &RETURN

& IF &RETCODE EQ 4 &THEN +

 &DO

 &SYSMSG = &STR DETAILS NOT ON FILE

 &RETCODE 8

 &RETURN &SYSMSG

 &DOEND

&RETCODE 0

&RETURN &DEVICEID &DEVICELOCN &DEVICEADDR

&RETURN

Chapter 2: Verbs and Built-in Functions 619

Notes:

If no variables are nominated, the &RETURN statement acts as an &END.

An &RETURN statement processed in a non-nested NCL procedure will act as an
&END statement. If &CONTROL ENDMSG is in effect, messages indicating the
return variables and their values will be generated. This allows processing of
subroutine procedures to be verified by direct invocation.

The &RETURN statement makes it possible to develop modular procedures that
perform common functions. Such procedures is invoked passing data using the
EXEC statement. Having completed processing the procedure can return control
using the &RETURN statement to return required data.

An &RETURN statement does not modify or change the names of the variables
being returned. They must be referenced in the higher level procedure using the
names specified on the &RETURN statement.

An alternative to the use of variables on &RETURN, is &CONTROL SHRVARS,
which allows selected groups of user variables to be shared between nested
levels.

If &CONTROL SHRVARS is in effect when a procedure is invoked, any variables
specified on an &RETURN statement are returned and will supplement any
variables returned as a result of SHRVARS processing.

The &RETCODE value returned to the calling procedure, will be the value that is
current at the time &RETURN is executed.

More information:

&END (see page 333)
&CONTROL (see page 281)

&RSCCHECK

620 Network Control Language Reference Guide

&RSCCHECK

Returns a value indicating a user's access to resources within a specified
resource group.

&RSCCHECK resource-group resource [resource resource]

&RSCCHECK is a built-in function and must be used to the right of an assignment
statement.

The resource validation facility provides a means of controlling access to
installation-defined resource groups from an NCL procedure.

If the specified resource is found within the user's scope, a value of YES is
returned in the variable specified to the left of the assignment statement.

Multiple resources within a single resource group may be tested in a single
statement. When multiple resources are tested, the user must be authorized for
all the resources specified. If the user is not authorized for one or more of the
resources, a NO value is returned.

Operands:

resource-group

The name for the resource group containing the resources for testing. The
resource-group is a mandatory operand (resource groups are defined in the
Resource List member specified in the user's UAMS record).

resource resource

The name for the resource to be tested. This is qualified by a network name
for network resources, or by a resource qualifier if this is present in the
resource group member definition control statement.

If the resource name can contain a period (.), and no qualifier is needed,
then use a leading period in the value to indicate that there is no qualifier.

Examples: &RSCCHECK

&AUTH = &RSCCHECK $NMMSG NETA.NODE1

&IF &AUTH = NO &THEN +

 &ENDAFTER &WRITE DATA=NOT AUTHORIZED

&AUTH = &RSCCHECK USERGRP resourcea resourceb resourcec

&RSCCHECK

Chapter 2: Verbs and Built-in Functions 621

Notes:

The maximum length for a resource is an optional 8-character qualifier, followed
by a period (.), followed by a 64-character resource name.

If no RESOURCE LIST member is specified in the user ID record, then &RSCCHECK
returns YES.

&RSCCHECK $NMMSG resource replaces &NFPMCHK resource.

&RSCCHECK $NMCMD resource replaces &NFPVCHK resource.

&RSCCHECK $NMCMDD resource replaces &NFPDCHK resource.

More information:

&NPFxCHK (see page 554)

&SECCALL

622 Network Control Language Reference Guide

&SECCALL

Communicates with the Userid Access Security Subsystem (UAMS) or your
installation security exit.

&SECCALL ADD USERID=userid

 PWD=password

 FIELDS={ (nnnn,...,nnnn) | * }

 [TYPE={ USER | GROUP }]

 [PREFIX=prefix]

&SECCALL CHANGE USERID=userid

 [PWD=password]

 [NEWPWD=newpassword]

 [FIELDS={ (nnnn,...,nnnn) | * } |

 DETAILS={YES | NO }]

 [PREFIX=prefix]

&SECCALL CHECK USERID=userid

 PWD=password

&SECCALL DELETE USERID=userid

&SECCALL EXIT DATA={ xxx ... xxx } |

 VARS={ xxx | (xxx,...,xxx) } |

 prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)]

&SECCALL GET USERID=userid

 FIELDS={ (nnnn,...,nnnn) | * }

 [OPT={ KEQ | KGT | KLT }]

 [PREFIX=prefix]

&SECCALL QUERY [PREFIX=prefix]

 [FIELDS={ (nnnn,...,nnnn) | * }]

&SECCALL UPDATE USERID=userid

 FIELDS={ (nnnn,...,nnnn) | * }

 [PREFIX=prefix]

The &SECCALL verb provides NCL with a method of communication with the
security subsystem or security exit. Security is provided for the use of functions
that potentially update the security definition of a user, that is, ADD, UPDATE,
and DELETE. The CHANGE function is restricted to changing the issuer's user
password unless the user is authorized for UAMS. The QUERY function returns
the attributes that the user is using in their currently active region.

&SECCALL

Chapter 2: Verbs and Built-in Functions 623

Examples: &SECCALL

&SECCALL ADD USERID=userid PWD=password FIELDS=*

&SEC0010 = NAME

&SEC0012 = LOCATION

&SEC0013 = 123-4567

&SECCALL CHANGE USERID=&USERID PWD=password +

 NEWPWD=newpwd DETAILS=YES

&SECCALL CHECK USERID=&USERID PWD=password

&SECCALL DELETE USERID=userid

&SECCALL GET USERID=userid FIELDS=(0010,0012,0013) OPT=KEQ

&SEC0010 = NEW-NAME

&SEC0012 = NEW-LOCATION

&SEC0013 = 123-4567

&SECCALL UPDATE USERID=userid FIELDS=(0010,0012,0013)

&A = PARM1

&B = PARM2

&C = PARM3

&SECCALL EXIT VARS=(A,B,C)

Notes:

&SECCALL is particularly useful from EASINET procedures, where it may be used
to verify user ID privileges, validity, and passwords before passing the user to a
selected application.

&SECCALL is designed to shield the issuing NCL procedure from any knowledge
of the type of security subsystem in operation, and provides the same function
whether UAMS is in use or an installation-provided security exit is active. If a
security exit is provided, &SECCALL causes a call to that exit.

Note: For more information about parameters passed to the exit and
information expected from the exit, see the Security Guide.

&SECCALL CHECK function can validate access by a user from the IP host to the
local port. This verification is controlled by the system parameter
IPCHECK=REGISTER | NONE, which is set only during system initialization. If a
user is successfully validated by &SECCALL CHECK, with IPCHECK set to
REGISTER, then the system associates their user ID with the IP connection.

IPCHECK=REGISTER results in user IDs being recorded for IP connections by
product region signon and &SECCALL CHECK processing.

&SECCALL

624 Network Control Language Reference Guide

Structured Fields:

All user ID security attributes use structured fields to exchange data between
NCL and the security subsystem or security exit.

All user variables referring to structured fields that are exchanged between NCL
and the security subsystem are in the form &prefixnnn where prefix is defined
by the PREFIX operand and nnn refers to a structured field that is defined for
your product region. (Structured fields referring to components and applications
that are not licensed, or that have been excluded, are not available from the
security subsystem.)

For example, structured field number 0010 represents the USERID NAME. On
completion of &SECCALL GET USERID=userid FIELDS=0010, a variable exists
called &SEC0010, containing the user ID of the user for which information was
requested.

If a particular structured field contains more than one subfield, one variable is
returned for each subfield. In this case the variable representing the first
subfield is named in the format described previously, and the remaining
subfields are returned in variable names in the format:

&SECxxxxB

&SECxxxxC

...

&SECxxxxZ

For example, structured field number 0016 represents the terminals to which a
user is restricted and includes three subfields. On completing &SECCALL GET
USERID=userid FIELDS=0016, three variables exist, in the format:

&SEC0016

&SEC0016B

&SEC0016C

Optional features can also generate structured fields to represent
feature-dependent user ID attributes or privileges.

Note: For more information, see the Security Guide.

&SECCALL ADD

Chapter 2: Verbs and Built-in Functions 625

&SECCALL ADD

Requests the nominated user ID be added to the UAMS database or to the
external security exit. UAMS authority is required to use this function.

&SECCALL ADD USERID=userid

 PWD=password

 FIELDS={ (nnnn,...,nnnn) | * }

 [TYPE={ USER | GROUP }]

 [PREFIX=prefix]

Operands:

USERID=userid

The user ID of the user definition to be added. This user ID must be 1 to 8
characters long.

PWD=password

The initial password for this user ID. This password is used the first time the
user logs on to your product region. It is then expired and the user is
requested to enter a new password.

This field is required if a user definition is being added to a local UAMS data
set. It is not required if a security exit is installed. However, if a password is
supplied, it is available to the security exit. It is not required if a group
definition is being added.

The password must be 1 to 8 characters long, or a minimum length as
specified by the SYSPARMS PWMIN operand and a maximum length as
specified by the SYSPARMS PWMAX operand. (This default is overridden by
using the SYSPARMS PWMAX and PWMIN operands.)

FIELDS={ (nnnn,...,nnnn) | *}

Provides a list of nominated structured field values for the user ID being
defined. A list of structured field values is supplied; all fields not supplied
are set to defaults. To set all structured fields, you can use an asterisk (*).

Note: For more information about structured fields, see the Security Guide.

The user variables that identify the structured fields in the field list must be
in the form &prefixnnnn, where prefix is defined by the PREFIX operand and
nnnn is a defined structured field for this system.

&SECCALL ADD

626 Network Control Language Reference Guide

TYPE={ USER | GROUP }

Defines the type of definition to be added:

TYPE=USER (the default) indicates that a user definition is to be added and
represents an individual user ID definition.

TYPE=GROUP identifies the definition being added as being a group
definition. Group definitions are used to group the security definitions for a
number of users. For example, when a user's security definition is retrieved
at logon time and the user is defined with a group definition, the security
attributes for the group definition are used.

PREFIX=prefix

Defines a 1- to 7-character prefix of the variables referred to by the FIELDS
operand. The default is SEC.

Return Codes:

The result of the ADD function sets &RETCODE as follows:

0

Request successful. The user definition has been added to the UAMS
database, or to the external security exit.

4

Request unsuccessful. The user definition was not added to the UAMS
database, or the external security exit rejected the add. &SYSMSG is set to
contain an error message indicating cause of failure.

More information:

&SECCALL (see page 622)

&SECCALL CHANGE

Chapter 2: Verbs and Built-in Functions 627

&SECCALL CHANGE

Allows a user's password and/or user details to be changed. This function is
used to change the user's password for the user executing this function, or to
force change another user's password (in this case the password is also expired).
The user's new password and/or user details must be specified.

&SECCALL CHANGE USERID=userid

 [PWD=password]

 [NEWPWD=newpassword]

 [FIELDS={ (nnnn,...,nnnn) | * } |

 DETAILS={ NO | YES }]

 [PREFIX=prefix]

&SECCALL CHANGE

628 Network Control Language Reference Guide

Operands:

USERID=userid

The user ID of the target user for which the password is to be changed. The
user ID must be 1 to 8 characters long and defined to the security
subsystem. If the user ID is other than that of the issuing user ID then the
issuing user must be authorized for UAMS.

PWD=password

The current password of the issuing user ID. The current password must be
supplied if the user is changing their own password. This operand is
required if the issuing user is not authorized for UAMS. If the user is
authorized for UAMS and the current password is not provided then the
new password is expired and the user must change their password the next
time they log on to your product region.

NEWPWD=newpassword

The new password to be used by the user the next time they log on to your
product region. The new password must be 1 to 8 characters long or a
minimum length as specified by the SYSPARMS PWMIN operand and a
maximum length as specified by the SYSPARMS PWMAX operand.

FIELDS={ (nnnn,...,nnnn) | * }

The FIELDS operand provides a list of nominated structured field values for
the user ID being defined. A list of structured field values is supplied. To set
all structured fields, you can use an asterisk (*). The user variables that
identify the structured fields in the field list must be in the form
&prefixnnnn, where prefix is defined by the PREFIX operand and nnnn is a
defined structured field for this system.

Note: For more information about structured fields, see the Security Guide.

Valid structured fields for &SECCALL CHANGE are as follows:

0011

User name

0012

User address

0013

User telephone phone number

0014

User language code

001D

&SECCALL CHANGE

Chapter 2: Verbs and Built-in Functions 629

User email address

0030

User time zone name

0520

Event notification services attribute 1

0521

Event notification services attribute 2

0522

Event notification services attribute 3

0523

Event notification services attribute 4

Note: The FIELDS operand cannot be used in conjunction with the DETAILS
operand.

DETAILS={ NO | YES }

Specifies whether user details, name, location, and phone number are to be
changed.

DETAILS=NO specifies that user details are not to be changed.

DETAILS=YES indicates that the user details are to be changed. The user
details are identified as the following structured fields:

■ 0011 (user name)

■ 0012 (user location)

■ 0013 (user phone number)

■ 0014 (user language code)

■ 001D (user email address)

■ 0030 (user time zone name)

The user details are referred to from NCL in the form &prefix0011,
&prefix0012, and &prefix0013, where prefix is defined by the PREFIX
operand.

The DETAILS operand cannot be used in conjunction with the FIELDS
operand.

PREFIX=prefix

Defines a 1- to 7-character prefix of the variables referred to by the DETAILS
operand. The default is SEC.

&SECCALL CHANGE

630 Network Control Language Reference Guide

Return Codes:

The result of the CHANGE function sets &RETCODE as follows:

0

Request successful. The user's password has been successfully updated.

4

The user's password and/or user details update was unsuccessful, function
unsupported.

8

The user's password and/or user details were not updated. Function
supported but an error occurred. &SYSMSG is set to contain an error
message indicating cause of failure.

The &ZFDBK system variable is set as follows after the fields or user details
CHANGE function:

0

User details update was successful.

4

User details update was unsuccessful.

More information:

&SECCALL (see page 622)

&SECCALL CHECK

Chapter 2: Verbs and Built-in Functions 631

&SECCALL CHECK

&SECCALL CHECK Provides the ability to determine whether the nominated user
ID and password combination would be allowed to log on to the system in
which the NCL procedure is executing.

&SECCALL CHECK USERID=userid

 PWD=password

Operands:

USERID=userid

The user ID of the target user for which the check is to be performed. The
user ID must be 1 to 8 characters long and defined to the security
subsystem. The call is valid only for the issuing user ID or from an EASINET
NCL procedure.

PWD=password

The current password of the user ID.

&SECCALL CHECK

632 Network Control Language Reference Guide

Return Codes:

The result of the CHECK function is indicated by the setting of &RETCODE as
follows:

0

The password is correct and logon to this system would be successful.

4

The password is correct but logon would fail for other reasons. &SYSMSG is
set to contain an error message indicating the cause of the failure. The
conditions under which your product region sets this return code are:

■ User ID already logged on and the user is not authorized for multiple
logons.

■ The user ID is suspended.

■ Logon not allowed from this terminal.

■ Maximum users logged on.

■ System is shutting down-logons have been stopped.

If a security exit is installed, the exit may refuse logons for other reasons. An
appropriate error message is set in &SYSMSG.

8

Password is correct but it has expired. Logon would succeed but the user is
required to change their password.

12

Password is correct but this is a new user ID definition. Logon would
succeed but the user is required to change their password.

16

Password is invalid. Logon fails

20

User ID is unknown. Logon fails.

24

Request failed or the function is not available.

28

Password is valid but the user ID is not defined as a user on UAMS. (This
applies only if a partial exit is in place.)

&SECCALL CHECK

Chapter 2: Verbs and Built-in Functions 633

The return codes from the &SECCALL CHECK function are supported as
documented by native UAMS processing. The &ZFDBK system variable reflects
the setting of the return code as set by the security exit.

Note: For more information about these return code settings, see the Security
Guide.

Notes:

If a security exit is in use, the CHECK call is handled by the exit. The exit may
choose to support the same return codes for the same results, or it may not.
Check the return codes supported by your security exit before using the CHECK
option of &SECCALL.

The CHECK call completing with return code 28 indicates that the security exit
has verified the user ID/password combination as valid, but the user ID is not
actually defined to your product region as a valid user. This is common in cases
where EASINET is used as the network security gateway and user ID/password
checking is performed by your product region before the user is allowed to
access any application in the network. In these circumstances user ID/password
validation is performed for users who may not have access to your product
region but do have access to other network applications.

If a security exit is in place, then &ZFDBK reflects the value of the return code
set by the security exit. This is useful as supplemental information to
&RETCODE. For example, if a user who is not authorized for multiple signons
attempts to unlock his terminal, an &SECCALL CHECK is executed on his behalf.
As the user is already signed on, &SECCALL CHECK returns an &RETCODE of 4. If
the user's password expires while the terminal is locked, &RETCODE is still 4. It
is not possible to discern from &RETCODE that the password has expired.
However, in the first case, &ZFDBK is set to 0, and with the expired password
condition, it is set to 4. The $NMLOCK procedure is then able to determine that
the password has expired and react accordingly.

The call is valid only for the issuing user ID or from an EASINET NCL procedure.

&SECCALL DELETE

634 Network Control Language Reference Guide

&SECCALL DELETE

Provides the ability to delete a nominated user definition from the UAMS
database or the external security system. UAMS authority is required to use this
function.

&SECCALL DELETE USERID=userid

Operands:

USERID=userid

The user ID of the target user that is to be deleted. The user ID must be 1 to
8 characters long and defined to the security subsystem.

Return Codes:

The result of the DELETE function is indicated by the setting of &RETCODE as
follows:

0

Result successful. The user ID has been deleted.

4

Result unsuccessful. The user definition was not deleted from the UAMS
database or the external security exit rejected the exit. &SYSMSG is set to
contain an error message indicating the cause of failure.

&SECCALL EXIT

Provides a direct interaction between an NCL procedure and the installation's
full security exit or partial security exit.

&SECCALL EXIT DATA=xxx ... xxx |

 VARS={ xxx | (xxx, ...,xxx) } |

 prefix* [RANGE=(start,end)] |

 ARGS [RANGE=(start,end)]

&SECCALL EXIT

Chapter 2: Verbs and Built-in Functions 635

Operands:

DATA=xxx ... xxx

Any user variable that contains data to be passed to the security exit. Any
number of variables is passed to the exit within the limitations of the
maximum NCL statement length. The data passed to the exit is segmented
into words on blanks.

VARS=

Specifies the names of the source variables to be passed to the security exit.
Each variable will be passed as a separate word to the security exit. The
formats of the operands that is coded with VARS= are:

VARS=xxx | (xxx, ..., xxx)

The name of a variable, excluding the ampersand (&) prefix. A variable
list is supplied by enclosing in brackets multiple names separated by
commas.

VARS=prefix* [RANGE=(start, end)]

Supplies the leading characters terminated by an asterisk that denote a
numeric range of variables. If the RANGE= operand is specified or
allowed to default, then an ascending numeric range is generated by
concatenating the supplied prefix with a numeric suffix that is
sequentially incremented within the supplied start and end values. The
start and end values must be in the range 0 to 65535.

ARGS [RANGE=(start, end)]

Supplies variables in the form &1 to &n. The RANGE= operand, as described
previously, is coded to designate a start number and optionally an end
number, which delimits the number of variables passed.

Return Codes:

On return from this function, &RETCODE is set to whatever return code was set
(in Register 15) on return from the security exit. This must be in the range 0 to
99.

On return from the exit, returned data is constructed into variables &1, &2 ...
&n, regardless of the names of the variables used to pass data to the exit. This
function returns as many variables as there were operands passed.

&SECCALL EXIT

636 Network Control Language Reference Guide

Notes:

&SECCALL EXIT allows direct communication between EASINET NCL procedures
and a security exit. This function allows a procedure to pass the contents of
nominated variables to the security exit for processing and the security exit can
return information exchanged between the procedure in defined variables. The
content and processing of the information exchanged between the procedure
and the exit is determined absolutely by the installation. Your product region
has no knowledge of, or impact on, that information.

Using &SECCALL EXIT is valid only if a full or partial security exit is installed.

The NCL procedure must specify sufficient variables to hold all expected
information from the security exit. Null variables are passed to the security exit
when using &SECCALL EXIT DATA=. If the exit deletes all information from one
of the variables, that variable is returned as a null variable. The procedure
should be written to cater for this circumstance.

&SECCALL GET

Chapter 2: Verbs and Built-in Functions 637

&SECCALL GET

Provides the ability to retrieve the nominated user's security attributes and
privileges.

&SECCALL GET USERID=userid

 FIELDS={ (nnnn,...,nnnn) | * }

 [OPT={ KEQ | KGT | KLT }]

 [PREFIX=prefix]

Operands:

USERID=userid

The user ID of the target user which is to be retrieved. The user ID must be 1
to 8 characters long and defined to the security subsystem.

FIELDS={ (nnnn,...,nnnn) | * }

Provides a list of nominated structured field values for which the security
attributes for the user ID are to be retrieved.

Note: For more information about structured fields, see the Security Guide.

A list of structured field values is supplied or an asterisk (*) is used to specify
that all security attributes are to be returned. The variables are set as
indicated by the required structured fields and are returned to the NCL
procedure in the form &prefixnnnn, where prefix is defined by the PREFIX
operand and nnnn is a defined structured field for this system.

OPT={ KEQ | KGT | KLT }

Indicates which record, in relation to the user ID specified in the USERID
operand, is to be retrieved.

OPT=KEQ indicates that you wish to retrieve the user definition with an
exact match on the specified user ID.

OPT=KGT indicates that you wish to retrieve the user definition with the
lowest key value greater than the specified user ID. A key of blanks retrieves
the first user ID record on UAMS.

OPT=KLT indicates that you wish to retrieve the user definition with the
highest key value less than the specified user ID.

If a full security is installed, then the options KGT and KLT are presented to
the security exit. It is up to the security exit to decide whether to support
the call and to return the correct user ID information.

PREFIX=prefix

&SECCALL GET

638 Network Control Language Reference Guide

Defines a 1- to 7-character prefix of the variables referred to by the FIELDS
operand. The default is SEC.

Return Codes:

The result of the GET function is indicated by the setting of &RETCODE as
follows:

0

Request successful. The user ID attributes are available in the user variables
generically named &SECnnnn.

4

Request unsuccessful. The user ID information was not available. &SYSMSG
is set to contain an error message indicating cause of failure.

More information:

&SECCALL (see page 622)

&SECCALL QUERY

Chapter 2: Verbs and Built-in Functions 639

&SECCALL QUERY

Provides the ability to return the security attributes that the user is using in
their current region.

&SECCALL QUERY [PREFIX=prefix]

 [FIELDS={ (nnnn,...,nnnn) | * }]

Operands:

PREFIX=prefix

Defines a 1- to 7-character prefix of the variables referred to by the FIELDS
operand. The default is SEC.

FIELDS={ (nnnn,...,nnnn) | * }

Provides a list of nominated structured field values for which the security
attributes for the user ID are to be returned.

Note: For more information about structured fields, see the Security Guide.

A list of structured field values is supplied, or an asterisk (*) is used to
specify that all security attributes are to be returned. The variables are set
as indicated by the required structured fields and are returned to the NCL
procedure in the form &prefixnnnn, where prefix is defined by the PREFIX
operand and nnnn is a defined structured field for this system. (For more
information about the FIELDS operand, see Structured Fields in this
chapter.)

If the FIELDS operand is omitted, then all security attributes are returned.

&SECCALL QUERY

640 Network Control Language Reference Guide

Return Codes:

The result of the QUERY function sets &RETCODE as follows:

0

Request successful. The user ID attributes are available in the user variables
generically named &prefixnnnn.

4

The request was unsuccessful. The &SYSMSG system variable is set to an
error message indicating the cause of failure.

Notes:

The query function is issued only by a user logged on to your product region.
Default values for all structured fields are returned if the function is issued from
EASINET.

There are no calls made to either the native UAMS database or to the external
security exit, as the information is obtained from the user's current region.

If a request is made for a structured field that is part of an unlicensed or
excluded feature, then the relevant variable is null.

The following structured fields are valid for &SECCALL QUERY:

0010

Current user ID

0014

User language code

0017

User time-out control (Y/N)

0019

Multiple signon capacity (Y/N)

0020

OCS access privilege (Y/N)

0021

Broadcast Services access privilege (Y/N)

0022

Network Services access privilege (Y/N)

&SECCALL QUERY

Chapter 2: Verbs and Built-in Functions 641

0023

System Support privilege (Y/N)

0025

CA SOLVE:FTS access privilege (Y/N)

0026

NEWS access privilege (Y/N)

0027

MAI-FS access privilege (Y/N)

0028

User Services procedure name

0029

User's NCL procedure library

002A

UAMS access privilege (Y/N)

002B

Operations Management privilege (Y/N)

002D

NCS access privilege (Y/N)

002E

User's SPLIT/SWAP privilege (Y/N)

002F

Library Services path name

0030

User's time zone name

0050

OCS command authority level

0051

OCS Monitor status (Y/N)

0055

PPO message receipt option (Y/N)

0057, B

&SECCALL QUERY

642 Network Control Language Reference Guide

NPF message restriction option (Y/N)

0059

OCS MSG message receipt (Y/N)

&SECCALL QUERY

Chapter 2: Verbs and Built-in Functions 643

005A

OCS unsolicited message receipt (Y/N)

0081

Information Services access (Y/N)

0100

CA SOLVE:FTS definition privilege (P/S/N)

0101

CA SOLVE:FTS private request privilege (Y/N)

0102

CA SOLVE:FTS system request privilege (Y/N)

0103

CA SOLVE:FTS private control privilege (Y/N)

0104

CA SOLVE:FTS system control privilege (Y/N)

0105

CA SOLVE:FTS private function mask (12 characters)

0106

CA SOLVE:FTS system function mask (12 characters)

0150

NEWS statistics reset privilege (Y/N)

0151

NTS access privilege (Y/N)

0180, B

AOM message delivery and routing codes

0181, D

AOM MVS SYSCMD console authority

0182

AOM MSG level (20 characters)

0183, E

AOM VM SYSCMD authority (Y/N)

0185

&SECCALL UPDATE

644 Network Control Language Reference Guide

AOM VOS3/JSS4 SYSCMD authority (0 to 15)

0200

MAI-FS privilege class (A/B/C/D)

0201

MAI-FS model user ID (8 characters)

0202

MAI-FS A and E command capability (Y/N)

0510

Panel command access authority (Y/N)

0511

System services access (Y/N)

0530

TCP/IP Services access privilege (0-2)

0580

CA SOLVE:NetMail access (Y/N)

0601

MODS access (Y/N)

&SECCALL UPDATE

Provides the ability to update the nominated user's security attributes and
privileges. UAMS authority is required for this function.

&SECCALL UPDATE USERID=userid

 FIELDS={ (nnnn,...,nnnn) | * }

 [PREFIX=prefix]

&SECCALL UPDATE

Chapter 2: Verbs and Built-in Functions 645

Operands:

USERID=userid

The user ID of the target user which is to be updated. The user ID must be 1
to 8 characters long and defined to the security subsystem.

FIELDS={ (nnnn,...,nnnn) | * }

Provides a list of nominated structured field values for which the security
attributes for the user ID are to be updated.

Note: For more information about structured fields, see the Security Guide.

A list of structured field values is supplied, or an asterisk (*) is used to
specify that all security attributes are to be updated. The user variables
expected by the UPDATE function must be in the form &prefixnnnn, where
prefix is defined by the PREFIX operand and nnnn is a defined structured
field for this system and nominated in the field list (or with an asterisk).

The following fields are not valid for &SECCALL UPDATE:

■ 0010 User ID

■ 0018 Last updated date/time

■ 001B User/group definition type

PREFIX=prefix

Defines a 1- to 7-character prefix of the variables referred to by the FIELDS
operand. The default is SEC.

Return Codes:

The result of the UPDATE function is indicated by the setting of &RETCODE as
follows:

0

Request successful. The user ID information has been updated.

4

Request unsuccessful. The user ID information was not updated. The
&SYSMSG system variable is set to an error message indicating cause of
failure.

More information:

&SECCALL (see page 622)

&SELSTR

646 Network Control Language Reference Guide

&SELSTR

Returns the data preceding a specified character in a supplied string.

&SELSTR (c) text

&SELSTR is a built-in function and must be used to the right of an assignment
statement.

To scan the specified data looking for the nominated selection character and
return the data up to the specified selection character.

&SELSTR is used to split a variable at a nominated point.

&SELSTR is used in conjunction with &REMSTR to split and manipulate strings of
data.

Operands:

(c)

The selection character. The scan will be terminated at the first occurrence
of the character c. If this character is not found the entire string will be
assigned to the target variable. If the selection character is the first
character found, a null value will be assigned to the target variable.

If the selection character is a blank then a space should be specified.

text

The data to be scanned for the occurrence of the character c.

Examples: &SELSTR

&A = &SELSTR () &1 -* select data up to first blank

&HOUR = &SELSTR (.) &TIME

Notes:

&SELSTR is ideal for use with data returned from full-screen panels where it is
necessary to internally manipulate the data for further processing.

&REMSTR acts as the converse to &SELSTR. &SELSTR assigns the data up to the
specified character, while &REMSTR assigns the data following the specified
character.

&PARSE may also be used for dissecting strings.

&SETBLNK

Chapter 2: Verbs and Built-in Functions 647

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &SELSTR is sensitive to the
presence of DBCS data (see page 1288).

More information:

&PARSE (see page 565)
&REMSTR (see page 614)
&SUBSTR (see page 699)

&SETBLNK

Returns a blank string.

&SETBLNK [length]

&SETBLNK is a built-in function and must be used to the right of an assignment
statement.

The &SETBLNK function sets a variable to blanks and optionally sets it to a
specific length. If the target variable already exists, then it will be set to blanks
for the current length of the variable, if the length operand is omitted. If length
is specified, then the length of the variable will be truncated or extended as
necessary.

If the target variable (to the left of the assignment statement) does not exist (a
null), then one will be created and blank filled to the specified length. If length is
not specified, then the maximum length for a variable will be assumed.

Setting a length of zero will cause the variable to be deleted (set to null).

Operands:

length

The new length for the target variable. This may be from 0 to the maximum
length of a variable.

Examples: &SETBLNK

&VAR = &SETBLNK 20

&ABC = &SETBLNK

Notes:

Use of &SETBLNK will destroy any data currently assigned to an existing
variable.

&SETLENG

648 Network Control Language Reference Guide

&SETLENG

Sets the length of a variable.

&SETLENG length

&SETLENG is a built-in function and must be used to the right of an assignment
statement.

The &SETLENG function forces a variable to a specific length.

If the specified length is less than the current length, the data within the
variable will be truncated. If the specified length is greater than the current
length of data in the variable, trailing blanks will be added.

If the variable does not exist (a null), then it is created and padded with blanks
to the specified length.

Setting a length of zero causes the variable to be deleted (set to null).

Operands:

length

The new length for the target variable. This must be in the range 0 to the
maximum length of the variable.

Examples: &SETLENG

&KEY = AAABBBCCC

&KEY = &SETLENG 5 -* &KEY is set to AAABB

&NAME = &SETLENG &NAMELEN

Notes:

The &SETLENG function is ideal for setting up keys of fixed length that are to be
used in subsequent file processing and for setting fields to known lengths,
perhaps to interface with other off-line systems.

Using &SETLENG can add trailing blanks to pad out existing data to the new
length. If necessary, use the &TBLSTR function to remove these trailing blanks
when no longer required.

If a series of variables are to be displayed in a tabular form (for example, in a
report, or as message lines on a panel), the &OVERLAY statement is used
instead.

&SETLENG

Chapter 2: Verbs and Built-in Functions 649

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &SETLENG is sensitive to the
presence of DBCS data (see page 1290).

&SETVARS

650 Network Control Language Reference Guide

&SETVARS

Extracts named keywords and associated data from a data string.

&SETVARS [PREFIX=ppp]

 [MODFLD={ NO | YES }]

 [ERROR={ ABORT | CONTINUE }]

 [DUPLICATE={ YES | NO }]

 [CONCAT={ YES | NO }]

 [KEYWORDS=(list-of-keywords)]

 [PARMS | ARGS [RANGE=(start,end)] |

 VARS=prefix* [RANGE=(start,end)] |

 DATA=value]

&SETVARS allows a procedure to analyze either a data string or a set of
variables, to extract named keywords and their associated data. &SETVARS
takes data in the form keyword=data, keyword=data,…, creates variables for
each keyword, and assigns the corresponding data to it. The variable names
created are (by default) the name of the keyword. However, a prefix may be
specified for the names.

Operands:

PREFIX=ppp

An optional 1- to 8-character prefix for the generated variable names. If
PREFIX is not specified, the variable created is named the same as the
corresponding keyword.

If you specify a numeric prefix, all keywords must be all-numeric.

MODFLD={ NO | YES }

When set to YES, the MODIFIED attribute is reset for all existing variables,
and the MODFLD attribute is set on generated output variables.

ERROR={ ABORT | CONTINUE }

Indicates what action is to be taken if an error is found during processing of
input data or variables.

ABORT indicates that the procedure is to abort. CONTINUE causes
&RETCODE to be set to 8, &SYSMSG to be set to an error message, and
creation of variables to cease at the variable in error.

Any syntax errors always result in the procedure aborting, regardless of the
setting of the ERROR operand.

DUPLICATE={ YES | NO})

&SETVARS

Chapter 2: Verbs and Built-in Functions 651

Indicates whether duplicate keywords are allowed. The default, YES,
indicates that duplicates are allowed.

CONCAT={ YES | NO }

When CONCAT=YES is specified, all the input data specified by the PARMS,
ARGS, and VARS= operands is concatenated together (without blanks), and
treated as if the entire string had been specified on the DATA= operand.

CONCAT=YES cannot be specified when DATA= is specified.

KEYWORDS=(list-of-keywords)

This is an optional list of valid keywords for input. If specified, all keywords
must be found in the list. Any listed keywords (prefixed by the optional
prefix) have the associated variable deleted before processing.

Each keyword must be a valid part of a variable name and, if the specified
prefix is numeric, then the keywords must all be numeric.

PARMS

This is the default operand meaning that &1, &2, &3, from 1 to &PARMCNT,
are used (that is, the parameters supplied to the procedure).

This is similar to ARGS RANGE=(1,&PARMCNT), except that, if there are no
parameters, then there are no errors.

ARGS [RANGE=(start,end)]

Indicates that numeric variables in the range are to be used as input.

VARS=prefix* [RANGE=(start,end)]

Indicates that nominated prefixed variables are to be used as input.

Note: The previous three options mean that a set of variables is used as input.
The range is processed as follows:

■ Null variables are ignored.

■ Each non-null variable must be in the format: keyword=value, where the
keyword and the equal sign are required and the value (which may be null)
is assigned to the prefix keyword variable, without modification.

■ Duplicate and keywords list checks are done as requested.

&SETVARS

652 Network Control Language Reference Guide

DATA=value

This optional operand can contain input data in the following formats:

kwd=value

kwd='value'

kwd=“value”

kwd=

or any combination of the above.

If quotes are used then they must be validly paired, and are stripped. Any
double quote is singled up in a target variable, and blanks (real ones) is
placed in a variable. Otherwise data is delimited on blanks (real or
embedded).

Example 1:

If your procedure is executed as follows:

EXEC MYPROC PARM1='VALUE1 VALUE2' PARM2=OPTION

the parameter string could be analyzed using &SETVARS as follows:

&SETVARS PREFIX=AA DATA=&ALLPARMS

This results in the variable &AAPARM1 containing VALUE1 VALUE2, and
&AAPARM2 containing OPTION.

Example 2:

If your procedure is executed as follows:

EXEC MYPROC PARM1=VALUE PARM2=OPTION

the parameter string is analyzed using &SETVARS as follows:

&SETVARS PREFIX=AA

This results in the variable &AAPARM1 containing VALUE and &AAPARM2
containing OPTION.

Notes:

The DATA= option allows you to easily pass data to a procedure and parse it into
variables, including embedded blanks.

The ERROR=CONTINUE option allows you to keep control even if the data is
incorrect.

&SMFWRITE

Chapter 2: Verbs and Built-in Functions 653

&SMFWRITE

(z/OS systems only) Writes a record to the SMF data set.

&SMFWRITE [TEST] [RECID=nnn]

 hexadecimal-string

NCL processes executing in z/OS regions could need to record SMF information
for later analysis and off line processing. You can write a procedure that creates
an SMF record, holding the information that you wish to record, then use
&SMFWRITE to write the record to the SMF data set.

Operands:

TEST

Specifies that all formatting of the SMF record is to be performed but the
record will not be written to SMF. Instead the data provided is dumped to
the activity log with an SMFWRITE eye catcher.

RECID=nnn

Specifies the (decimal) SMF record type to be generated. Range is 0 to 255.
Default is as set by the SYSPARMS SMFID operand.

If RECID is not specified, the following occurs:

■ The default as set by the SMF Customizer Parameter Group (/PARMS) is
used.

■ The SMF Record Identifier field is set to the desired default value. To
Display this value, use the /SYSPARM shortcut to display the SMFID
sysparm.

hexadecimal-string

The data to be written as an SMF record. This is provided in expanded
hexadecimal form, that is, if the record is to contain the characters AB, the
hexadecimal string will express them as C1C2.

Example1:

The following &SMFWRITE call uses the default SMF Record Identifier value and
generates the SMF data set record containing the string set in the &MYDATA
variable.

&MYDATA = &STR THIS DATA WILL BE WRITTEN TO SMF

&SMFREC = &HEXEXP &MYDATA

&SMFWRITE &SMFREC

&SMFWRITE

654 Network Control Language Reference Guide

Example 2:

The following code extract only sends the output to the product region’s activity
logs as TEST output.

&MYDATA = &STR THIS TEST SMF DATA IS SENT TO LOG ONLY

&SMFREC = &HEXEXP &MYDATA

&SMFWRITE TEST RECID=132 &SMFREC

This produces the following output in the activity log:

SMFWRITE +0000 00380000 3E840003 79630107 024FC3C1 d.. `... .|CA

SMFWRITE +0010 F3F1E3C8 C9E240E3 C5E2E340 E2D4C640 31TH IS T EST SMF

SMFWRITE +0020 C4C1E3C1 40C9E240 E2C5D5E3 40E3D640 DATA IS SENT TO

SMFWRITE +0030 D3D6C740 D6D5D3E8 LOG ONLY

Notes:

■ The header of the SMF record is created by the &SMFWRITE verb.

■ hexadecimal-string is compressed by the &SMFWRITE verb. The use of the
&HEXEXP built-in function assists in the formatting of hexadecimal data
strings prepared for &SMFWRITE.

■ Enter /SYSPARM to access the SMFTRACE system parameter.

■ The SMFTRACE system parameter (/SYSPARM at the command prompt),
when set to YES, can be used to dynamically request the writing of the SMF
record to the activity log. It is done regardless of the TEST operand
specification. When the TEST operand is specified on the &SMFWRITE verb,
the SMF record is written to the activity log only, regardless of the
SMFTRACE system parameter setting. Normally, only background users can
write data to SMF using &SMFWRITE verb. The SMF record is written to the
activity log regardless of the authorization. Message N25B02 is logged if
authorization fails.

■ The use of &SMFWRITE is authorized by the NCL file ID access authorization
exit. For more information about using &SMFWRITE, see the Security Guide.
By default, &SMFWRITE is always authorized if executed by a system level
procedure and always denied if executed by a process executing on behalf a
real user. You must implement an NCL File ID Access Authorization exit to
authorize use of &SMFWRITE by ordinary users.

■ &SMFWRITE operates only if your product region is running as an
authorized task.

&SMFWRITE

Chapter 2: Verbs and Built-in Functions 655

Return Codes:

On completion, &RETCODE is set to one of the following values:

0

Operation was successful. &ZFDBK = SMF return code.

4

SMF inactive. &ZFDBK = SMF return code.

8

SMF operation failed. &ZFDBK = SMF return code.

12

Invalid system for request or not APF authorized.

16

User is not authorized for request.

More information:

&HEXEXP (see page 384)

&SNAMS CANCEL

656 Network Control Language Reference Guide

&SNAMS CANCEL

The &SNAMS CANCEL verb cancels an outstanding MDS request. Effectively, an
MDS error message is generated and sent to the responder, indicating that the
requester no longer requires a reply.

All MDS replies already received by SNAMS on behalf of the canceled request
are discarded. The senders of these messages are not informed of this situation.

This verb has the following format:

&SNAMS CANCEL ID=requestid

Operands:

ID=requestid

Specifies the identifier of the outstanding request to cancel. Its value was
returned in the &ZSNAMID variable when the outstanding MDS request was
issued using the &SNAMS SEND verb.

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 Request canceled, no MDS replies

 1 Request canceled, MDS replies discarded

4 0 Not an outstanding request, no MDS replies

 1 Not an outstanding request, MDS replies discarded

For &RETCODE 0, an MDS error is sent to the responder.

&SNAMS DEREGISTER

Chapter 2: Verbs and Built-in Functions 657

&SNAMS DEREGISTER

The &SNAMS DEREGISTER verb deregisters a registered NCL application from
SNAMS.

A registered NCL application uses this option to deregister itself from SNAMS.
Consequently, it is no longer a valid destination for incoming MDS-MUs.
Messages already received by the MDS Router on behalf of this application are
discarded; the senders are not informed of this situation.

Deregistration also flushes active transactions for which the deregistered
application is the responder. Partner applications are informed of this
deregistration through an MDS error (sense code X'08A90003' for unit-of-work
canceled).

If the application has registered interest in focal point updates with MS-CAPS
(that is, it is an entry point application) or if it is registered as a focal point
application, then deregistration signifies the end of such roles. Active entry
point nodes are informed of the deregistration through an MDS error (sense
code X'08A80003' for unknown application name).

This verb has the following format:

&SNAMS DEREGISTER

 [NAME=applicationname | ID=registrationid]

Operands:

NAME=applicationname

Specifies the name of the application to deregister. The operand is not
required but, if supplied, the ID= operand cannot be specified. If both
NAME= and ID= operands are omitted, all applications registered by the
requesting NCL process are deregistered.

Limit: 1 through 32 characters in length

ID=registrationid

Specifies the non-zero registration identifier returned in the &ZSNAMID
system variable for the registered application. This operand is not required
but, if supplied, the NAME= operand cannot be specified. If both NAME=
and ID= operands are omitted, all applications registered by the requesting
NCL process are deregistered.

&SNAMS DEREGISTER

658 Network Control Language Reference Guide

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 Applications deregistered successfully

4 0 Application not registered by this process

For &RETCODE 8, the &SYSMSG variable contains an error message.

Notes:

Deregistration can trigger the following EDS system configuration notification
events:

■ $$SNAMS.APPL.DEREGISTER

This is always generated for application deregistration. The resources for
this event are, respectively, the application routing name and the local node
name.

■ $$SNAMS.FP.INACTIVE.LOCAL

This is generated if it was registered as a focal point application. The
resources are respectively, the MS category and the focal point address.

■ $$SNAMS.EP.INACTIVE

This is generated for each entry point within the sphere of control of the
local node for the MS category registered by the application. The resources
are respectively the MS category and the entry point node name.

Processes that are profiled for the receipt of the events have the message
N00102 queued to their response queues and accessible using the &INTREAD
statement. The resources for this message are formatted as follows:

Application routing name, or MS category

Is a hexadecimal quoted string if it is an SNA-architected value, that is, a
4-byte value containing non-displayable characters (for example,
'23F0F3F1'x). Otherwise, it is formatted as a text string (for example,
USERAPPL).

Node name

Contains the network identifier and the NAU name, separated by a period
(for example, NETID.NAUNAME).

Focal point address

&SNAMS RECEIVE

Chapter 2: Verbs and Built-in Functions 659

Contains the network identifier, NAU name, and focal point application
routing name, each separated by a period (for example,
NETID.NAUNAME.'23F0F3F1'x).

&SNAMS RECEIVE

The &SNAMS RECEIVE verb receives an MDS-MU that is a reply or error
message.

An NCL application uses this option to receive an MDS request (if explicitly
registered), an MDS reply (if a requester) following a previous SEND operation,
or an MDS error message.

This verb has the following format:

&SNAMS RECEIVE MU=mdo

 [ID=requestID]

 [WAIT=nnn]

Operands:

MU=mdo

Specifies the target MDO for the MDS-MU received. The value is a stem
name or a compound MDO name.

ID=requestid

(Optional) Specifies the message identifier.

When omitted, SNAMS returns the first MDS-MU received on behalf of this
NCL process.

If supplied, it is the request identifier for an outstanding &SNAMS SEND
request, or the registration identifier of an application registration. Both of
these identifiers are returned in the &ZSNAMID system variable after their
respective &SNAMS requests.

WAIT=nnn

Specifies the time, in seconds (for example, 15) or seconds and hundredths
(for example, 1.25), for which the procedure is prepared to wait for the
arrival of an MDS-MU. If one is not available before this interval expires, the
receive request is canceled and an unsuccessful return code results (that is,
&RETCODE is set to 12).

&SNAMS RECEIVE_NOTIFY

660 Network Control Language Reference Guide

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 MDS-MU received successfully

4 0 Request cannot be satisfied - no outstanding
request

8 0 Data is invalid for the specified MDO (mapped)

12 0 Request timed out - no data

For &RETCODE 0, the &ZSNAMID variable contains the message identifier for
the MDS-MU received. This value is the request identifier for an outstanding
&SNAMS SEND request; otherwise, the registration identifier of the receiving
application.

For &RETCODE 8, the &SYSMSG variable contains an error message.

Notes:

This verb affects outstanding &SNAMS RECEIVE_NOTIFY requests as follows:

■ A request for a specific message cancels outstanding RECEIVE_NOTIFY
requests for nonspecific messages, and requests for that particular
message.

■ A request for a nonspecific message cancels all outstanding
RECEIVE_NOTIFY requests.

&SNAMS RECEIVE_NOTIFY

The &SNAMS RECEIVE_NOTIFY verb notifies the procedure when data is
available to be received.

This option is an asynchronous request which enables the procedure to
continue execution and is notified of data arrival by a notification event being
queued to the internal environment of the procedure. This request returns no
data. When the notify event is received the &SNAMS RECEIVE request is used to
access any data that arrived.

This verb has the following format:

&SNAMS RECEIVE_NOTIFY [ID=requestid]

&SNAMS RECEIVE_NOTIFY

Chapter 2: Verbs and Built-in Functions 661

Operands:

ID=requestid

(Optional) Specifies the message identifier.

When omitted, SNAMS issues a notification for the first MDS-MU received
on behalf of this NCL process.

If supplied, it is the request identifier for an outstanding &SNAMS SEND
request or the registration identifier of an application registration. Both of
these identifiers are returned in the &ZSNAMID system variable after their
respective &SNAMS requests.

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 Request successful

4 0 Request cannot be satisfied - no outstanding
request

Notes:

This verb affects outstanding &SNAMS RECEIVE_NOTIFY requests in one of the
following ways:

■ A request for a specific message cancels outstanding RECEIVE_NOTIFY
requests for nonspecific messages

■ A request for a nonspecific message cancels all outstanding
RECEIVE_NOTIFY requests for specific messages

Thus at any instance, either multiple RECEIVE_NOTIFY requests for specific
messages, or a single nonspecific RECEIVE_NOTIFY request is outstanding. When
the request is satisfied the following message is placed on the request queue of
the internal environment for the NCL procedure:

N00101 NOTIFY: SNAMS EVENT: RECEIVE RESOURCE: &ZSNAMID

where the value &ZSNAMID is the message identifier, that is, the request
identifier for an outstanding &SNAMS SEND request, or the registration
identifier of the destination application.

&SNAMS REGISTER

662 Network Control Language Reference Guide

&SNAMS REGISTER

The &SNAMS REGISTER verb registers an application with SNAMS.

An NCL application uses this option to register itself with SNAMS. Once
registered, it is deemed to be a valid destination for MDS-MUs.

The application can optionally register a category for which it intends to be the
local focal point. This registration indicates to MS_CAPS that the local node can
negotiate for the role of a focal point for that category in an MS Capabilities
exchange.

Alternatively, the application can register interest in a category to receive focal
point updates from MS_CAPS. This option however, is unnecessary for
applications that use such notification messages solely to obtain addressing
details, to send MDS-MUs to the active focal point. The &SNAMS SEND verb
provides an option for sending MDS-MUs to the focal point of a specified
category, eliminating the need for applications to track focal point
activation/deactivation.

This verb has the following format:

&SNAMS REGISTER NAME=applicationname

 [APPLID=routingname]

 [CATEGORY=fpcategory [TYPE={ FP | FPN }]]

Operands:

NAME=applicationname

(Mandatory) The name of the application being registered and must be 1
through 32 characters long. If the APPLID= operand is not supplied, the first
eight characters of this name are used as the routing name. Otherwise it is
purely a descriptive name known only to the local system.

APPLID=rountingname

This operand, if supplied, is the name recognized by SNAMS as a potential
target application for incoming MDS-MUs. If omitted, the first 8 bytes of the
NAME= operand is used as the routing name. This operand is designed for
SNA-architected applications with nondescriptive names (for example,
'23F0F3F1'X). The value must be four bytes specified as a hexadecimal
quoted string.

&SNAMS REGISTER

Chapter 2: Verbs and Built-in Functions 663

CATEGORY=fpcategory [TYPE={ FP | FPN }]

The CATEGORY operand indicates the focal point category for the TYPE=
operand. The operand is not required, but if supplied, it must be one
through eight characters long and specified as a hexadecimal quoted string.

TYPE={ FP | FPN }

Indicates the role of the registered application with respect to the
category specified for the CATEGORY= operand. This operand itself is
optional. If supplied, the CATEGORY= operand must be specified.

TYPE=FP registers the application as the local focal point for the
specified category. This registration authorizes MS-CAPS to accept
negotiations with remote nodes aimed at establishing the local node as
the focal point for that category, and with this application acting as the
focal point application.

TYPE=FPN indicates to MS_CAPS that this application wishes to be
notified of all focal point updates for the specified category.

Default: FP

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 Registration successful

4 0 Duplicate registration for this process

8 0 Application registered by another process

 1 Supplied details conflict with an existing
registration

For &RETCODE 0 and 4, the &ZSNAMID variable contains a non-zero application
registration identifier.

For &RETCODE 8, the &SYSMSG variable contains a system error message.

&SNAMS REGISTER

664 Network Control Language Reference Guide

Notes:

New registrations trigger the following EDS system configuration notification
events:

■ $$SNAMS.APPL.REGISTER

This is generated when the application is registered for the first time. The
resources for this event are, respectively, the application routing name and
the local node name.

■ $$SNAMS.FP.ACTIVE.LOCAL

This is generated if the registration is for a focal point application. The
resources for this event are respectively, the MS category and the focal
point address.

Processes that are profiled for the receipt of the events have the message
N00102 queued to their response queues and accessible using the &INTREAD
statement. The resources for this message are formatted as follows:

Application routing name, or MS category

Is a hexadecimal quoted string if it is an SNA-architected value, that is, a
4-byte value containing non-displayable characters (for example,
'23F0F3F1'x). Otherwise, it is formatted as a text string (for example,
USERAPPL).

Node name

Contains the network identifier and the NAU name, separated by a period
(for example, NETID.NAUNAME).

Focal point address

Contains the network identifier, NAU name, and focal point application
routing name, each separated by a period (for example,
NETID.NAUNAME.'23F0F3F1'x).

&SNAMS SEND

Chapter 2: Verbs and Built-in Functions 665

&SNAMS SEND

The &SNAMS SEND verb sends a formatted MDS-MU request, reply, or error to
a nominated target application or focal point. In addition to the application data
GDS variable, the following MDS-MU Routing Information GDS variable (X'1311')
contents must be present:

■ Origin application name (if it is not registered)

■ Destination application name (if not sending to a focal point)

■ MDS-MU type (Request or Reply or Error)

■ MDS-MU flags (First Message/Last Message)

■ Origin and destination network identifier and NAU name, if omitted, default
to values of the local node

■ Origin application name, if omitted, defaults to that of the last registered
application

If the MDS-MU is destined for a focal point, destination values in the MDS-MU
header are set to those destinations of the active focal point for the supplied
category.

If the MDS_MU is flagged as the FIRST message, the Agent Unit of Work
Correlator GDS variable (X'1549') is not required (SNAMS generates one for it).
Otherwise, Agent Unit of Work Correlator is mandatory (that is, for MDS
replies).

This verb has the following format:

&SNAMS SEND MU=mdo [CATEGORY=fpcategory]

&SNAMS SEND

666 Network Control Language Reference Guide

Operands:

MU=mdo

Specifies the name of the MDO that contains a formatted MDS-MU to send.
The value is a stem name or a compound MDO name.

CATEGORY=fpcategory

(Optional) If specified, must be one through eight characters long-it is a
hexadecimal quoted string. The MDS-MU is sent to the active focal point
application for this category, with respect to the original application.

The active focal point is determined as follows:

■ A local focal point exists on the same system:

If the origin application is the local focal point application itself, ASM
concludes that the MDS-MU is sourced from a nested focal point and
targeted at the nesting, or remote focal point. The assigned focal point
is selected as its destination. Otherwise, ASM sends the MDS-MU to the
local focal point application.

■ No local focal point exists:

The MDS-MU is sent to the assigned focal point, if one is active.

Return Codes:

&RETCODE &ZFDBK Meaning

0 0 Send request accepted

4 0 Focal point is unavailable

8 0 MDS-MU header format exception

 1 MDS routing exception

 2 Request rejected by internal application

 3 Invalid origin node

For &RETCODE 0, if it is an MDS-MU request that expects one or more MDS-MU
replies (that is, it is not flagged as the LAST message), the &ZSNAMID variable
contains a non-zero request identifier, which is used on subsequent &SNAMS
RECEIVE verbs for correlating replies.

For &RETCODE 8, the &SYSMSG variable contains an error message. A sense
code is also returned for &ZFDBK 0 and 1.

&SNAMS SEND

Chapter 2: Verbs and Built-in Functions 667

Notes:

Although SNAMS can accept the SEND request, it does not guarantee delivery of
the MDS-MU to a remote destination. If delivery failed for one reason or
another, an MDS error message is returned.

MDS replies, if any, are delivered to the initiator of the request and not the
registered receiver of the destination application. Thus, the origin application of
MDS requests need not be registered with SNAMS. MDS errors however, are
delivered to the registered receiver if it does not correlate to an outstanding
request. Thus, if the origin application is not registered, errors are lost.

&SOCKET ACCEPT

668 Network Control Language Reference Guide

&SOCKET ACCEPT

Services incoming connection requests.

&SOCKET ACCEPT ID=socket_id [TYPE={SYNC | ASYNC}]

ACCEPT is used by a server application to accept incoming connection requests
from a client and create a new socket.

Operands:

ID=socklet_id

Specifies the identity of the socket created by &SOCKET REGISTER.

TYPE={SYNC | ASYNC}

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request. If TYPE=ASYNC is specified, the verb returns control
immediately, and a notification message is queued to the dependent
environment when ACCEPT completes:

N00101 NOTIFY: TCP/IP EVENT: ACCEPT RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info ID=new_socket_id

Note: ID= is omitted if the ACCEPT fails.

Examples: &SOCKET ACCEPT

&SOCKET ACCEPT ID=&SOCKETID TYPE=SYNC

Return Codes:

0

Accept successful

8

Accept failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR
for further error information (see page 1304).

&SOCKET ACCEPT

Chapter 2: Verbs and Built-in Functions 669

Notes:

When you are writing a server application, use &SOCKET REGISTER to start
listening for incoming connection requests.

You would normally start another NCL process to handle the new connection
and use &SOCKET TRANSFER_REQUEST to pass the connection to that process.

The &ZSOCID system variable contains the socket number to be used for
communications with the client.

The port number and IP address of the remote system are available by
referencing the &ZSOCPRT and &ZSOCHADR system variables.

Use TYPE=ASYNC so that your NCL process does not wait for connection
requests in &SOCKET ACCEPT.

The &SOCKET ACCEPT verb is executed only by the server in client/server
applications.

More information:

&SOCKET REGISTER (see page 687)
&SOCKET TRANSFER_REQUEST (see page 696)
&SOCKET TRANSFER_ACCEPT (see page 695)

&SOCKET CLOSE

670 Network Control Language Reference Guide

&SOCKET CLOSE

Closes the socket specified by the socket ID.

&SOCKET CLOSE ID=socket_id

CLOSE indicates that the NCL process has finished using the socket.

Operands:

ID=socklet_id

(Mandatory) Specifies the identifier of the socket to be closed.

Examples:

&SOCKET CLOSE ID=&NSOCKID

Return Codes:

0

Close successful

8

Close failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR for
further error information (see page 1304).

Notes:

Use &SOCKET CLOSE on sockets created by &SOCKET OPEN, CONNECT, and
ACCEPT.

More information:

&SOCKET OPEN (see page 677)
&SOCKET CONNECT (see page 671)
&SOCKET ACCEPT (see page 668)

&SOCKET CONNECT

Chapter 2: Verbs and Built-in Functions 671

&SOCKET CONNECT

Connects a process to a server.

&SOCKET CONNECT

 { ADDRESS=ip_address | HOSTNAME=host_name }

 PORT=port_id

 [WAIT={ time | 30 }]

 [TYPE={ SYNC | ASYNC }]

CONNECT attempts to establish a connection to the server, at the host specified
by IP address or host name on the specified port number.

Operands:

ADDRESS=ip_address

Specifies the IP address of the host.

HOSTNAME=host_name

Specifies the name of the host to which you are connecting.

PORT=port_id

(Mandatory) Specifies the TCP port number that the server is waiting on for
client connections. TCP port numbers range from 0 to 65535.

WAIT={ time | 30 }

Specifies the time (in seconds)to wait for the host to respond. The default
value is 30 seconds.

TYPE={ SYNC | ASYNC }

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request.

If TYPE=ASYNC is specified, WAIT cannot be specified.

If TYPE=ASYNC is specified, the verb returns control immediately, and a
notification message is queued to the dependent environment when
CONNECT completes:

N00101 NOTIFY: TCP/IP EVENT: CONNECT RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info ID=new_socket_id **addr/name**

where **addr/name** is set to the destination specified on the CONNECT
request (that is, either ADDRESS=ip_address or HOSTNAME=host_name)

Note: ID= is omitted if the CONNECT fails.

Examples: &SOCKET CONNECT

&SOCKET GETHOSTBYADDR

672 Network Control Language Reference Guide

&SOCKET CONNECT ADDRESS=172.24.91.45 PORT=&PRT

&SOCKET CONNECT HOSTNAME=TESTMVS1 PORT=&PRT

Return Codes:

0

Connect successful

8

Connect failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR
for further error information (see page 1304).

Notes:

The verb is executed only by the client in client/server applications using TCP
sockets.

The &ZSOCID system variable contains the socket number to be used for
communications with the server.

&SOCKET GETHOSTBYADDR

Obtains name information for a specified host.

&SOCKETGETHOSTBYADDR ADDRESS=ip_address

 [MDO=mdo_name]

 [WAIT=time]

 [TYPE={SYNC | ASYNC}]

GETHOSTBYADDR is used to obtain the real name of the host at an IP address
specified by the ADDRESS operand.

&SOCKET GETHOSTBYADDR

Chapter 2: Verbs and Built-in Functions 673

Operands:

ADDRESS=ip_address

(Mandatory) Specifies the IP address of the host about which information is
required. No alias name information is returned.

MDO=mdo_name

Specifies the name of the Mapped Data Object (MDO) into which
information about the host is to be formatted. The MDO is mapped by the
$NMTCPHE map.

WAIT=time

Specifies the time (in seconds)to wait for the host to respond. The default
value is 30 seconds.

TYPE={SYNC | ASYNC}

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request.

If TYPE=ASYNC is specified, WAIT cannot be specified.

If TYPE=ASYNC is specified, the verb returns control immediately, and a
notification message is queued to the dependent environment when
GETHOSTBYADDR completes:

N00101 NOTIFY: TCP/IP EVENT: GETHOSTBYADDR RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info ADDRESS=ip_address

The return MDO is available in $INT.USERMDO after &INTREAD receives the
message.

Examples: &SOCKET GETHOSTBYADDR

&SOCKET GETHOSTBYADDR ADDRESS=172.24.91.45

&WRITE NAME=&ZSOCHNM IPADDRESS=&ZSOCHADR

Return Codes:

0

Get successful

8

Get failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR for
further error information (see page 1304).

&SOCKET GETHOSTBYNAME

674 Network Control Language Reference Guide

Notes:

The information returned is set into the following NCL variables:

&ZSOCHNM contains the host name.

■ &ZSOCFHNM contains the full name of the host.

■ &ZSOCHADR contains the IP address of the host.

More information:

&SOCKET GETHOSTBYNAME (see page 674)

&SOCKET GETHOSTBYNAME

Obtains name and address details for a specified host.

&SOCKET GETHOSTBYNAME HOSTNAME=host_name

 [MDO=mdo_name]

 [WAIT=time]

 [TYPE={SYNC | ASYNC}]

GETHOSTBYNAME is used to obtain the IP address and, if an alias name is used
in the HOSTNAME parameter, the full real name of a specific host.

&SOCKET GETHOSTBYNAME

Chapter 2: Verbs and Built-in Functions 675

Operands:

HOSTNAME=host_name

(Mandatory) Specifies the name of the host about which information is
required. If an alias name is used both the full real name and full alias name
of the host are returned. If a real name is specified no alias name
information is returned.

MDO=mdo_name

Specifies the name of the Mapped Data Object (MDO) into which
information about the host is to be formatted. The MDO is mapped by the
$NMTCPHE map.

WAIT=time

Specifies the time (in seconds) to wait for the host to respond. The default
value is 30 seconds.

TYPE={SYNC | ASYNC}

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request.

If TYPE=ASYNC is specified, WAIT cannot be specified.

If TYPE=ASYNC is specified, the verb returns control immediately, and a
notification message is queued to the dependent environment when
GETHOSTBYNAME completes:

N00101 NOTIFY: TCP/IP EVENT: GETHOSTBYNAME RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info HOSTNAME=host_name

The return MDO is available in $INT.USERMDO after &INTREAD receives the
message.

Examples: &SOCKET GETHOSTBYNAME

&SOCKET GETHOSTBYNAME HOSTNAME=TESTMVS1

&WRITE NAME=&ZSOCHNM IPADDRESS=&ZSOCHADR

Return Codes:

0

Get successful

8

Get failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR for
further error information (see page 1304).

&SOCKET GETHOSTBYNAME

676 Network Control Language Reference Guide

Notes:

The information returned is set into the following NCL variables:

■ &ZSOCHNM contains the host name.

■ &ZSOCFHNM contains the full name of the host.

■ &ZSOCHADR contains the IP address of the host.

More information:

&SOCKET GETHOSTBYADDR (see page 672)

&SOCKET OPEN

Chapter 2: Verbs and Built-in Functions 677

&SOCKET OPEN

Creates a UDP socket.

&SOCKET OPEN [PORT=port_id]

OPEN is used to create a socket with a specified UDP port.

Operands:

PORT=port_id

Specifies the port number to be associated with the new socket. Port
numbers have a range of 0 to 65535 with the default being 0, in which case
the system allocates its own port number.

Examples: &SOCKET OPEN

&SOCKET OPEN PORT=&PRT

Return Codes:

0

Open successful

8

Open failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR for
further error information (see page 1304).

Notes:

This verb is executed only by applications that want to use UDP sockets.

You need to do an &SOCKET OPEN before using &SOCKET SEND_TO or &SOCKET
RECEIVE_FROM.

The information returned is set into the following NCL variables:

■ &ZSOCID contains the socket number to be used for communications.

■ &ZSOCPRT contains the UDP port number associated with the socket.

Some TCP/IP interfaces, for example Fujitsu TISP, have special requirements
regarding pre-definitions of ports.

&SOCKET OPEN

678 Network Control Language Reference Guide

More information:

&SOCKET SEND_TO (see page 691)
&SOCKET RECEIVE_FROM (see page 685)
&SOCKET CLOSE (see page 670)

&SOCKET PING

Chapter 2: Verbs and Built-in Functions 679

&SOCKET PING

Tests connectivity with a specified host.

&SOCKET PING

 { ADDRESS=ip_address | HOSTNAME=host_name }

 [PACKETSIZE=nn]

 [COUNT=nn]

 [MDO=mdo_name]

 [GETNAME={ YES | NO }]

 [WAIT=time]

 [TYPE={ SYNC | ASYNC }]

PING is used to send an echo request to a host specified either by the ADDRESS
or HOSTNAME parameter, and waits a specified period of time for a response
from the host.

Operands:

ADDRESS=ip_address

Specifies the IP address of the host.

HOSTNAME=host_name

Specifies the name of the host.

PACKETSIZE=nn

Specifies the length of the packets to send to the host. This value must be in
the range of 16 to 2048 bytes. The default value is 64.

COUNT=nn

Specifies the number of times to execute the ping. This value must be in the
range of 1 to 999. The default value is 1.

MDO=mdo_name

Specifies the name of the Mapped Data Object (MDO) to receive the
statistical information collected by this verb. The MDO is mapped by the
$NMTCPPG map.

GETNAME={ YES | NO }

If the default value YES is used the name of the destination host is resolved.

WAIT=time

Specifies the time (in seconds) to wait for the host to respond. The default
value is 30 seconds.

&SOCKET PING

680 Network Control Language Reference Guide

TYPE={SYNC | ASYNC}

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request.

If TYPE=ASYNC is specified, WAIT cannot be specified.

If TYPE=ASYNC is specified, the verb returns control immediately, and a
notification message is queued to the dependent environment when each
PING completes:

N00101 NOTIFY: TCP/IP EVENT: PING RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info RESULT=**result_type** **addr/name**

where:

result_type is PARTIAL (intermediate result) or FINAL (final result)

addr/name is set to the destination specified on the PING request (that
is, either ADDRESS=ip_address or HOSTNAME=host_name)

The return MDO is available in $INT.USERMDO after &INTREAD receives the
message.

Examples: &SOCKET PING

&SOCKET PING HOSTNAME=TESTMVS1 MDO=MDO1 COUNT=&COUNT WAIT=30

Return Codes:

0

Ping successful

4

Ping timed out

8

Ping failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR for
further error information (see page 1304).

Notes:

The information returned is set into the following NCL variables:

■ &ZSOCHNM contains the host name.

■ &ZSOCFHNM contains the full name of the host.

■ &ZSOCHADR contains the IP address of the host.

&SOCKET PING

Chapter 2: Verbs and Built-in Functions 681

Some interfaces may not support &SOCKET PING. In this case, &ZFDBK is set to
36 and &ZSOCERRN to 7 (EUNSUPP). The &ZTCPSUPP function is used to test if
&SOCKET PING is supported.

&SOCKET RECEIVE

682 Network Control Language Reference Guide

&SOCKET RECEIVE

Receives data from a TCP socket specified by the socket ID.

&SOCKET RECEIVE

 ID=socket_id

 { MDO=mdo_name |

 VARS={ name | (name,name,... name) [SEGMENT] } |

 { ARGS | VARS=prefix* } [RANGE=(start,end)] [SEGMENT] }

 [LENGTH=0..4]

 [WAIT=time]

 [TYPE={ SYNC | ASYNC }]

RECEIVE is used to receive data on a nominated TCP socket. The socket must
have been connected to a foreign host by using &SOCKET CONNECT, or
&SOCKET ACCEPT.

Operands:

ID=socklet_id

(Mandatory) Specifies the identifier of the socket to be used for
communication.

MDO=mdo_name

Specifies the name of the Mapped Data Object (MDO) into which data will
be received.

VARS={ name | (name,name,... name) }

Specifies the names of the variables to be the target of the RECEIVE
operation. If insufficient variables are provided, some data will not be
available to the procedure. Excess variables are set to a null value.

SEGMENT

Specifies that there is no delimiter character but that the parsed string
will be placed into the receiving variables in segments that correspond
to the length of the individual variables. The length defaults to the
maximum variable length unless overridden by length specifications in a
variable list.

ARGS | VARS=prefix*

Specifies that the receive operation modifies or creates variables in a
numeric range (&1 through &n for ARGS, prefix1 through prefixn for VARS)
depending on how many are needed to satisfy the operation.

&SOCKET RECEIVE

Chapter 2: Verbs and Built-in Functions 683

RANGE=(start,end)

The RANGE operand is coded to designate a start number and an end
number to delimit the number of variables generated. The start and end
values must be in the range 1 to 32767 and the end value must be equal to
or greater than the start value.

LENGTH=0..4

Specifies the length of the received data prefix that contains the data
length. The LENGTH operand is useful when incoming messages are prefixed
by the length of the rest of the message. The LENGTH value tells the
&SOCKET verb the length of the prefix, not the length of the data.

The default value is 4. If a value other than 0 is used, the receive will
complete only when all of the data specified by the data prefix length is
received by the verb (see Notes).

WAIT=time

Specifies the period of time (in seconds) to wait for the receive to be
completed. The default value is 0, meaning to wait until there is a successful
receive.

TYPE={SYNC | ASYNC}

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request.

If TYPE=ASYNC is specified, WAIT cannot be specified.

If TYPE=ASYNC is specified, the verb returns control immediately.

If data is immediately available, return code 0 is set, and VARS or MDO
contain the data.

If no data is immediately available, return code 12 is set, and a notification
message is queued to the dependent environment when data is available:

N00101 NOTIFY: TCP/IP EVENT: RECEIVE RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info ID=socket_id

After receiving this message, the procedure performs another RECEIVE with
the same parameters to obtain the data.

Examples: &SOCKET RECEIVE

&SOCKET RECEIVE LENGTH=2 ID=&NSOCKID VARS=R* WAIT=300

&SOCKET RECEIVE

684 Network Control Language Reference Guide

Return Codes:

0

Receive successful

4

Receive timed out

8

Receive failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR
for further error information (see page 1304).

12

Wait for notification of data availability

When null data is received, the connection has been terminated.

Notes:

TCP protocol makes packets of the data in discriminately-it does not retain the
boundaries between sends. This means that an application may do five sends
and the application on the remote end may do 10 receives to get all of the data.
There is no correlation between the number and size of sends at one end and
the number and size of receives at the other end.

If you are communicating with another NCL process using &SOCKET, the
LENGTH value should match on both the SEND and RECEIVE verbs at both ends
of the connection.

The LENGTH value is in network byte order (that is, the most significant byte
first). If you are communicating with a machine that uses a different byte order
to the network (for example, Intel X86), the machine you are communicating
with needs to ensure that it sends and receives lengths in the correct format.

If the LENGTH value specified in the RECEIVE parameters does not match the
incoming data, unexpected results might occur.

The &SOCKET RECEIVE verb is executed only by the client/server applications
that are using TCP sockets.

More information:

&SOCKET SEND (see page 688)
&DECODE (see page 313)

&SOCKET RECEIVE_FROM

Chapter 2: Verbs and Built-in Functions 685

&SOCKET RECEIVE_FROM

Receives data from a UDP socket specified by the socket ID.

&SOCKET RECEIVE_FROM

 ID=socket_id

 { MDO=mdo_name |

 VARS={ name | (name,name,... name) [SEGMENT] } |

 { ARGS | VARS=prefix* } [RANGE=(start,end)] [SEGMENT] }

 [WAIT=time]

 [TYPE={ SYNC | ASYNC }]

RECEIVE_FROM is used to receive data from a UDP socket.

Operands:

ID=socklet_id

(Mandatory) Specifies the identifier of the socket to be used for
communication.

MDO=mdo_name

Specifies the name of the Mapped Data Object (MDO) into which
information about the host is to be formatted.

VARS={ name | (name,name,... name) }

Specifies the names of the variables to be the target of the receive
operation. If insufficient variables are provided, some data will not be
available to the procedure. Excess variables are set to a null value.

SEGMENT

Specifies that there is no delimiter character but that the parsed string will
be placed into the receiving variables in segments that correspond to the
length of the individual variables. The length defaults to the maximum
variable length unless overridden by length specifications in a variable list.

ARGS | VARS=prefix*

Specifies that the receive operation modifies or creates variables in a
numeric range (&1 through &n for ARGS, prefix1 through prefixn for VARS)
depending on how many are needed to satisfy the operation.

RANGE=(start,end)

The RANGE operand is coded to designate a start number and an end
number to delimit the number of variables generated. The start and end
values must be in the range 1 to 32767, and the end value must be equal to
or greater than the start value.

&SOCKET RECEIVE_FROM

686 Network Control Language Reference Guide

WAIT=time

Specifies the period of time (in seconds) to wait for the receive to be
completed. The default value is 0, meaning to wait until there is a successful
receive.

TYPE={SYNC | ASYNC}

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request. If TYPE=ASYNC is specified, WAIT cannot be specified. If
TYPE=ASYNC is specified, the verb returns control immediately. If data is
immediately available, return code 0 is set, and vars/MDO contain the data.
If no data is immediately available, return code 12 is set, and a notification
message is queued to the dependent environment when data is available:

N00101 NOTIFY: TCP/IP EVENT: RECEIVE_FROM RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info ID=socket_id

After receiving this message, the procedure performs another
RECEIVE_FROM with the same parameters to obtain the data.

Examples: &SOCKET RECEIVE_FROM

&SOCKET RECEIVE_FROM ID=&NSOCKID VARS=R* WAIT=300

Return Codes:

0

Receive_from successful

4

Receive_from timed out

8

Receive_from failed; see &ZFDBK for reason code, &ZSOCERRN and
&ZSOCVERR for further error information (see page 1304).

12

Wait for notification of data availability

&SOCKET REGISTER

Chapter 2: Verbs and Built-in Functions 687

Notes:

The &SOCKET RECEIVE_FROM verb is executed only by applications that are
using UDP sockets.

The information returned is set into the following NCL variables:

■ &ZSOCHNM contains the name of the data's source host.

■ &ZSOCFHNM contains the full name of the data's source host.

■ &ZSOCHADR contains the IP address of the data's source host.

■ &ZSOCPRT contains the port number associated with the source socket on
the remote host.

More information:

&SOCKET OPEN (see page 677)
&SOCKET SEND_TO (see page 691)
&DECODE (see page 313)

&SOCKET REGISTER

Registers a socket.

&SOCKET REGISTER [PORT=port_id] [CONVLIM=nn]

REGISTER is used by a server application to obtain a socket, bind it to a specified
TCP port, and issue a listen on the socket, specifying the queue depth given by
the CONVLIM parameter.

Operands:

PORT=port_id

Specifies the TCP port number to be used by the socket. Port numbers range
from 1 to 65535, with the default being 0, in which case the system
allocates its own port number. (See Notes below.)

CONVLIM=nn

Specifies the limit for waiting conversations, this being the maximum
number of clients that is waiting for their connection request to be
ACCEPTED at any one time. The default value is 100.

Examples: &SOCKET REGISTER

&SOCKET REGISTER CONVLIM=10 PORT=&PRT

&SOCKET SEND

688 Network Control Language Reference Guide

Return Codes:

0

Register successful

8

Register failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR
for further error information (see page 1304).

Notes:

The &SOCKET REGISTER is executed only by the server in client/server
applications.

Usually a server application will have an NCL process handling a socket created
by &SOCKET REGISTER and using &SOCKET ACCEPT to accept inbound
connection requests. This process also starts independent processes to handle
each connection. The &SOCKET TRANSFER_REQUEST and TRANSFER_ACCEPT
verbs are used to transfer the connection to the new process.

The information returned is set into the NCL variable, &ZSOCID. This variable
will contain the socket number to be used when referring to the registered
socket.

Some TCP/IP interfaces, for example Fujitsu TISP, have special requirements
regarding pre-definitions of ports.

More information:

&SOCKET ACCEPT (see page 668)

&SOCKET SEND

Sends data to a TCP socket.

&SOCKET SEND

 ID=socket_id

 { MDO=mdo_name | VARS=prefix* [RANGE=(start,end)] |

 VARS={ name | name,name,... name) } |

 ARGS [RANGE=(start,end)] | DATA=data }

 [LENGTH=0..4]

SEND is used to send data to a TCP socket, identified by the ID parameter, that
has been connected by &SOCKET CONNECT or &SOCKET ACCEPT.

&SOCKET SEND

Chapter 2: Verbs and Built-in Functions 689

Operands:

ID=socklet_id

(Mandatory) Specifies the identifier of the socket that is to be used for
communication.

MDO=mdo_name

Indicates that the data to be sent is contained in the specified MDO.

VARS=prefix* [RANGE=(start,end)]

Supplies leading characters terminated by an asterisk to denote a numeric
range of variables, which contain the data to be sent.

VARS={ name | (name,name,... name) }

Specifies the names of the variables containing the data to be sent.

ARGS [RANGE=(start,end)]

The RANGE operand is coded to designate a start number and an end
number to delimit the number of variables sent. The start and end values
must be in the range 0 to 32767 and the end value must be equal to or
greater than the start value.

DATA=data

Specifies the data to be sent.

LENGTH=0..4

Specifies the length of the data prefix that contains the data length. The
default value is 4 which means that there is a 4 byte prefix added to the
data sent containing the length of the data itself. Specifying LENGTH=0
means that no prefix is added to the message. Setting the data prefix length
allows a RECEIVE operation to get all of (and only) the data sent by the
current execution of the SEND verb (see Notes).

Examples: &SOCKET SEND

&SOCKET SEND LENGTH=2 ID=&NSOCKID VARS=V1

Return Codes:

0

Send successful

8

Send failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR for
further error information (see page 1304).

&SOCKET SEND

690 Network Control Language Reference Guide

Notes:

TCP protocol makes packets of the data indiscriminately-it does not retain the
boundaries between sends. This means that an application may do 5 sends and
the application on the remote end may do 10 receives to get all of the data.
There is no correlation between the number and size of sends at one end with
the number and size of receives at the other end.

If you are communicating with another NCL process using &SOCKET, the
LENGTH value should match on both the SEND and RECEIVE verbs at both ends
of the connection.

The LENGTH value is in network byte order (that is, the most significant byte
first). If you are communicating with a machine that uses a different byte order
to the network (for example, Intel X86), the machine you are communicating
with must send and receive lengths in the correct format.

If the LENGTH value specified in the SEND parameters does not match the
incoming data, unexpected results might occur.

The &SOCKET SEND verb is executed only by the client/server applications using
TCP sockets.

More information:

&SOCKET RECEIVE (see page 682)
&ENCODE (see page 328)

&SOCKET SEND_TO

Chapter 2: Verbs and Built-in Functions 691

&SOCKET SEND_TO

Sends data to a UDP socket.

&SOCKET SEND_TO ID=socket_id

 { MDO=mdo_name | VARS=prefix* [RANGE=(start,end)] |

 VARS={ name | name,name,... name) } |

 ARGS [RANGE=(start,end)] | DATA=data }

 { ADDRESS=ip_address | HOSTNAME=host_name }

 PORT=port_id

SEND_TO is used to send the data on a UDP socket, identified by the ID
parameter, to the specified host and port number.

Operands:

ID=socket_id

(Mandatory) Specifies the identifier of the socket that is to be used for
communication.

MDO=mdo_name

Indicates that the data to be sent is formatted in the specified MDO.

VARS=prefix* [RANGE=(start,end)]

Supplies leading characters terminated by an asterisk to denote a numeric
range of variables, which contain the data to be sent.

VARS={ name | (name,name,... name) }

Specifies the names of the variables containing the data to be sent.

ARGS [RANGE=(start,end)]

The RANGE operand is coded to designate a start number and an end
number to delimit the number of variables sent. The start and end values
must be in the range 0 to 32767 and the end value must be equal to or
greater than the start value.

DATA=data

Specifies the data to be sent.

ADDRESS=ip_address

Specifies the IP address of the destination host.

HOSTNAME=host_name

Specifies the name of the destination host.

PORT=port_id

&SOCKET SEND_TO

692 Network Control Language Reference Guide

Specifies the UDP port number of the destination. Port numbers range from
0 to 65535.

Examples: & SOCKET SEND_TO

&SOCKET SEND_TO ID=&NSOCKID MDO=MDO1 PORT=&PRT +

 ADDRESS=172.24.91.45

Return Codes:

0

Send_to successful.

8

Send_to failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR
for further error information (see page 1304).

Notes:

UDP protocol does not guarantee delivery of the data, however when an
application sends data out, it arrives at the remote end as a single unit. For
example, if an application does five sends, the application at the remote end will
do five receives. Also, the size of each send matches the size of each receive.

The &SOCKET SEND_TO verb is executed only by applications using UDP sockets.

The maximum size datagram that is sent is determined by the vendor interface.
Attempting to send a larger datagram results in ZFDBK being set to 3, for
example, &ZSOCERRN to 29 (EMSGSIZE).

More information:

&SOCKET OPEN (see page 677)
&SOCKET RECEIVE_FROM (see page 685)
&ENCODE (see page 328)

&SOCKET TRACEROUTE

Chapter 2: Verbs and Built-in Functions 693

&SOCKET TRACEROUTE

Obtains a list of routers along the route to the host.

&SOCKET TRACEROUTE

 { ADDRESS=ip_address | HOSTNAME=host_name }

 [PACKETSIZE={ nn | 64 }]

 [COUNT={ nn | 3 }]

 [HOPS={ nn | 10 }]

 [FROMHOP={ nn | 1 }]

 [WAIT={ time | 3 }]

 [TYPE={ SYNC | ASYNC }]

 [GETNAME={ YES | NO }]

 MDO=mdo_name

TRACEROUTE is used in the diagnosis of connectivity and performance related
problems on a TCP/IP network. It is used to find breaks in the route from a host
to a remote host, or to verify that a network path to a remote host exists,
displaying times for hops along the path.

Operands:

ADDRESS=ip_address

Specifies the IP address of the destination host.

HOSTNAME=host_name

Specifies the name of the destination host.

PACKETSIZE={ nn | 64 }

Specifies the length of the packets to send to the host. This value must be in
the range of 40 to 2048 bytes. The default value is 64.

COUNT={ nn | 3 }

Specifies the number of times to execute the trace. This value must be in
the range of 1 to 10. The default value is 3.

HOPS={ nn | 10 }

Specifies the maximum number of devices to locate on the route to the
host. This value must be in the range of 1 to 256. The default value is 10.

FROMHOP={ nn | 1 }

Specifies the number of hops to the first device for which data is to be
returned. This value must be in the range of 1 to 256. The default value is 1.

WAIT={ time | 3 }

&SOCKET TRACEROUTE

694 Network Control Language Reference Guide

Specifies the time in seconds to wait for a response from any one host on
the route to the destination host. The default value is 3 seconds.

TYPE={ SYNC | ASYNC }

Indicates whether this is a synchronous (SYNC) or asynchronous (ASYNC)
socket request.

If TYPE=ASYNC is specified, WAIT cannot be specified.

If TYPE=ASYNC is specified, the verb returns control immediately, and a
notification message is queued to the dependent environment when each
hop of the TRACEROUTE completes:

N00101 NOTIFY: TCP/IP EVENT: TRACEROUTE RESOURCE: RC=rc RSN=rsn ERR=errno

VERRIN=vendor_info RESULT=**result_type** **addr/name**

where:

■ **result_type** is PARTIAL (intermediate result) or FINAL (final result).

■ **addr/name** is set to the destination specified on the TRACEROUTE
request (that is, either ADDRESS=ip_address or
HOSTNAME=host_name).

The return MDO is available in $INT.USERMDO after &INTREAD receives the
message.

GETNAME={ YES | NO }

If the default value YES is used, the names of the hosts on the route to the
destination are resolved.

MDO=mdo_name

Specifies the name of the MDO that contains the response from the
traceroute. This MDO is mapped by the $NMTCPTC map.

Examples: & SOCKET TRACEROUTE

& SOCKET TRACEROUTE HOSTNAME=TESTMVS1 MDO=MDO1 HOPS=15 WAIT=5

Return Codes:

0

Traceroute successful.

4

HOPS parameter is too low.

8

Traceroute failed; see &ZFDBK for reason code, &ZSOCERRN and
&ZSOCVERR for further error information (see page 1304).

&SOCKET TRANSFER_ACCEPT

Chapter 2: Verbs and Built-in Functions 695

Notes:

The information returned is set into the following NCL variables:

■ &ZSOCHNM contains the host name.

■ &ZSOCFHNM contains the full name of the host.

■ &ZSOCHADR contains the IP address of the host.

Some interfaces may not support TRACEROUTE. In this case, &ZFDBK is set to 37
and &ZSOCERRN to 7 (EUNSUPP). The &ZTCPSUPP function is used to test
whether TRACEROUTE is supported.

&SOCKET TRANSFER_ACCEPT

Accepts a socket ID from a donor NCL process.

&SOCKET TRANSFER_ACCEPT ID=socket_id

TRANSFER_ACCEPT is used to accept a socket from a donor NCL process. The
TRANSFER_ACCEPT should be performed upon receipt of a notification message
(see below) from the donor NCL process, indicating that it has been targeted to
receive a socket.

Operands:

ID=socket_id

(Mandatory) Specifies the identifier of the socket to be used for
communication.

Examples: &SOCKET TRANSFER_ACCEPT

&INTREAD ARGS TYPE=ANY

&IF &1 EQ N00101 &THEN +

 &DO

 &NSOC = &REMSTR (=) &7

 &SOCKET TRANSFER_ACCEPT ID=&NSOC

 &DOEND

Return Codes:

0

Transfer successful.

8

Transfer failed; see &ZFDBK for reason code (see page 1304).

&SOCKET TRANSFER_REQUEST

696 Network Control Language Reference Guide

Notes:

An &SOCKET TRANSFER_REQUEST issued by another process causes a
notification message to be queued to the request queue of the target process.

The information returned is set into the NCL variables, &ZSOCID. This variable
will contain the socket number to be used for communications.

Notification Message Format:

&SOCKET TRANSFER_ACCEPT should be issued upon receipt of the following
message, queued to the internal environment of this process, indicating that it
has been targeted for a transfer request:

N00101 NOTIFY: TCP/IP EVENT: TRANSFER RESOURCE: ID=socket_id +

 NCLID=ncl_id

More information:

&SOCKET TRANSFER_REQUEST (see page 696)

&SOCKET TRANSFER_REQUEST

Transfers the socket ID from the current NCL process to another NCL process
identified by NCL ID.

&SOCKET TRANSFER_REQUEST ID=socket_id NCLID=ncl_id

To transfer ownership of a socket from one process to another.

Operands:

ID=socklet_id

(Mandatory) Specifies the identifier of the socket to be transferred.

NCLID=ncl_id

(Mandatory) Nominates the NCL process to which ownership of the socket
is being transferred. The notification message (see below) will be queued to
the internal environment of the process to indicate that it has been targeted
for a transfer request.

Examples: &SOCKET TRANSFER_REQUEST

&SOCKET TRANSFER_REQUEST ID=&NSOC NCLID=&NID

&SOCKET TRANSFER_REQUEST

Chapter 2: Verbs and Built-in Functions 697

Return Codes:

0

Transfer successful

8

Transfer failed; see &ZFDBK for reason code, &ZSOCERRN and &ZSOCVERR
for further error information (see page 1304).

Notification Message Format:

&SOCKET TRANSFER_REQUEST issues the following message and queues it to
the request queue of an NCL process that it has targeted for a transfer request:

N00101 NOTIFY: TCP/IP EVENT: TRANSFER RESOURCE: ID=socket_id NCLID=ncl_id

This request is completed after the target NCL process executes the &SOCKET
TRANSFER_ACCEPT verb.

&APPC START NOTIFY=YES is a useful means to start a process and find out the
NCL ID (this does not require an APPC conversation).

There should be no asynchronous requests outstanding when &SOCKET
TRANSFER_REQUEST is issued.

More information:

&SOCKET TRANSFER_ACCEPT (see page 695)

&STR

698 Network Control Language Reference Guide

&STR

Returns a string that is the sum of the supplied text.

&STR text text ... text

To return a string made up of nominated text.

&STR is a built-in function and must be used to the right of an assignment
statement.

The assigned data commences at the first non-blank following the &STR
keyword and includes any following data up to and including the last non-blank
character.

&ASISTR differs from &STR in that &STR does not retain blanks that follow the
&STR keyword.

Operands:

text text ... text

One or more words or variables to be assigned into the variable to the left
of the assignment character (=).

Examples: &STR

&SYSMSG = &STR X11103 INVALID DATA ENTERED

&1 = &STR &1 MYTEXT &2

Notes:

&STR is ideal for constructing error messages to be displayed using full-screen
panels.

The total size of the constructed variable or constant cannot exceed the
maximum size for a variable, that is, 256 characters. (If it exceeds the maximum,
it will be truncated to 256 characters.)

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &STR is sensitive to the
presence of DBCS data (see page 1292).

More information:

&ASISTR (see page 217)

&SUBSTR

Chapter 2: Verbs and Built-in Functions 699

&SUBSTR

Returns a string that is a section of a nominated variable or constant.

&SUBSTR data i [j]

&SUBSTR provides a means of isolating part of a string or variable. &SUBSTR is a
built-in function and must be used to the right of an assignment statement.

Operands:

data

A variable or constant from which the extraction of data is to be performed.

i

The position within the data at which the extraction is to start. The value of i
must be greater than 0. The first character in a variable is counted as 1. If i
exceeds the length of the variable, then a null value is extracted.

j

The length of data to be extracted. If j is omitted or exceeds the length
remaining in the variable, the remaining length is used. j must be 0 or
greater. If 0 is specified, then a null value is extracted.

Examples: &SUBSTR

&A = ABCDEF

&B = &SUBSTR &A 3 2 -* &B is set to CD

&C = &SUBSTR &A 4 -* &C is set to DEF

Used in calculating a number as a percentage.

&PC = (&CURR * 10000) / &INIT

&A = &LENGTH &PC

&A = &A - 1

&B = &SUBSTR &PC &A

&A = &LENGTH &PC

&A = &A - 2

&PC = &SUBSTR &PC 1 &A

&PC = &CONCAT &PC . &B %

&WRITE Percentage is &PC

&TBLSTR

700 Network Control Language Reference Guide

Notes:

The process of variable substitution eliminates null variables from a statement.
Therefore care should be taken to ensure any expected variables are supplied
on the &SUBSTR statement or invalid results can occur.

If &CONTROL DBCS or DBCSN or DBCSP is in effect, &SUBSTR is sensitive to the
presence of DBCS data (see page 1293).

&TBLSTR

Returns a string with trailing blanks deleted.

&TBLSTR string

&TBLSTR is a built-in function and must be used to the right of an assignment
statement.

It is possible for user variables to contain trailing blanks. These blanks can have
been added by the use of other built-in functions such as &SUBSTR and
&SETLENG.

&TBLSTR will remove any trailing blanks from the data and returns this value.

If the data consists entirely of blanks then a null value is returned.

Operands:

string

Data or a variable containing data from which the trailing blanks are to be
removed.

Examples: &TBLSTR

&1 = &TBLSTR &INPUT

&A = &TBLSTR &A

Notes:

To remove both leading and trailing blanks the &NBLSTR function is used. To
remove only leading blanks the &LBLSTR function is used.

&TBLSTR

Chapter 2: Verbs and Built-in Functions 701

More information:

&ASISTR (see page 217)
&NBLSTR (see page 471)
&LBLSTR (see page 408)

&TRANS

702 Network Control Language Reference Guide

&TRANS

Performs character translation within a string.

&TRANS { C'x1 y1.... xn yn | X'xx1 yy1.... xxn yyn |

 UPPER | LOWER | PRINT |

 NLUPPER [=lc] | NLLOWER [=lc] }

 string

&TRANS is a built-in function that translates occurrences of nominated
characters, which is specified either in character form or as a hexadecimal value,
to an alternative character or hexadecimal value. The translation occurs when
the source string is assigned to the target variable, which is specified to the left
of the &TRANS function. The source string is unchanged. Translation occurs
after substitution of any variables in the source string. The source string is
therefore assumed to start one blank position following the end of the
translation control argument. Any additional blanks will be treated as part of the
source string and will be translated if applicable, as shown in the second
example.

Operands:

C'x1 y1 … xn yn

Indicates that all occurrences of the character xm in the source string are to
be replaced by the character ym that is paired with xm in the translate
control string.

X'xx1 yy1 … xxn yyn

Indicates that all occurrences of the character whose hexadecimal value is
xxm in the source string are to be replaced by the character whose
hexadecimal value is yym that is paired with xxm in the translate control
string.

UPPER

Translates any lowercase characters to uppercase.

LOWER

Translates any uppercase characters to lowercase.

PRINT

Translates non-printable characters to blanks.

&TRANS

Chapter 2: Verbs and Built-in Functions 703

NLUPPER [=lc]

Uses the language code of the user to decide the character set that is used
for the translation. A predefined language code can optionally be specified,
for example, NLUPPER=GR.

When the language code (either that of the user or the supplied value) does
not match one of the supported language codes (see page 1269), the
language code of the system is used to perform the translation. When the
language code of the system is not one of the supported values, the value
UK is used.

NLLOWER [=lc]

Uses the language code of the user to decide the character set that is used
for the translation. A predefined language code can optionally be specified,
for example, NLLOWER=GR.

When the language code (either that of the user or the supplied value) does
not match one of the supported values, the language code of the system is
used to perform the translation. When the language code of the system is
not one of the supported values, the value UK is used.

string

Data which is to be translated.

Examples: &TRANS

&A = ABC

&A1 = ABD

&B = &TRANS C'A1B2C3' &A &A1 -* (single blank after

 -* translate argument)

 -* Result &B = 123 12D

&A = ABC

&A1 = ABD

&B = &TRANS C'A1B2C3 %' &A &A1 -* (two blanks after translate

 -* argument

 -* Result &B = %123%12D

&A = ABC

&B = &TRANS X'C1C2C3C4' &A -* Result &B = BBD

&A = john smith

&B = &TRANS UPPER &A -* Result &B = JOHN SMITH

Notes:

Two adjacent single quotes must be used if a quote forms part of the translate
control string.

&TRANS

704 Network Control Language Reference Guide

This function is particularly useful for screening data that is to be displayed on a
panel using the preparse facility.

&TYPECHK

Chapter 2: Verbs and Built-in Functions 705

&TYPECHK

Returns one of a supplied list of data types based on supplied variables.

&TYPECHK (type1, type2) &var1 [&var2 &varn]

Allows you to test one or more variables against a list of type attributes.

&TYPECHK is a built-in function and must be used to the right of an assignment
statement. The statement returns a value after assignment that represents the
first matching type attribute that was found or else a null value.

The first supplied value is tested against each of the type values specified in the
list until a match is found. If the variable's type attribute does not match any in
the list, then a null value is returned. If a match is found, then that type is
returned.

If more than one source value is supplied, then &TYPECHK produces one of the
following results:

■ If all values match the type of the first value, then that type is returned.

■ If any of the values have a different type attribute from the first value, then
a null value is returned.

Operands:

type

One or more type values against which the source values are to be tested. A
single type value is coded on its own, or multiple values is coded enclosed in
parentheses. Valid values and value meanings for type are:

■ ALPHA, an alphabetic character value

■ ALPHANUM, an alphanumeric character value

■ ALPHANUMNAT, an alphanumeric or national character value

■ DATE1, a date in the format of &DATE1 system variable

■ DATE2, a date in the format of &DATE2 system variable

■ DATE3, a date in the format of &DATE3 system variable

■ DATE4, a date in the format of &DATE4 system variable

■ DATE5, a date in the format of &DATE5 system variable

■ DATE6, a date in the format of &DATE6 system variable

■ DATE7, a date in the format of &DATE7 system variable

&TYPECHK

706 Network Control Language Reference Guide

■ DATE8, a date in the format of &DATE8 system variable &TYPECHK

■ DATE9, a date in the format of &DATE9 system variable

■ DATE10, a date in the format of &DATE10 system variable

■ DATE11, a date in the format of &DATE11 system variable

■ DATE12, a date in the format of &DATE12 system variable

■ DATE13, a date in the format of &DATE13 system variable

■ DATE14, a date in the format of &DATE14 system variable

■ DATE16, a date in the format of &DATE16 system variable

■ DATE17, a date in the format of &DATE17 system variable

■ DOMAIN, a valid NCL domain ID

■ DSN, a valid data set name (with or without member name in z/OS)

■ HEX, a hexadecimal value

■ IPADDR, a valid IP address, in the format A.B.C.D, where each of A, B, C,
and D have a valid range of 0 to 255

■ MIXED, a string containing valid DBCS data

■ MSGLVL, a valid AOM message level value

■ NAME, a valid PDS member name (that is, starts with an alphabetic or
national character and all other characters are alphanumeric or national
characters)

■ NAME12, a variable, up to 12 characters, conforming to member name
rules

■ NAME256, a variable, up to 256 characters, conforming to member
name rules

■ NULL, a null value

■ NUM, a numeric value

■ REAL, a real number

■ ROUTCDE, a valid AOM message route code

■ SIGNNUM, a signed number in the range -2,147,483,647 to
+2,147,483,647

■ TIME1, a time value with the format of the &ZTIME1 system variable

■ TIME2, a time value with the format of the &ZTIME2 system variable

■ TIME3, a time value with the format of the &ZTIME3 system variable

■ Y, Y or YES

&TYPECHK

Chapter 2: Verbs and Built-in Functions 707

■ N, N or NO

&var

This operand is a system or user variable. Multiple variables is coded.

Examples: &TYPECHK

&1 = ABC

&A = &TYPECHK (NUM,ALPHA) &1

Result: &A = ALPHA

&1 = +111

&A = &TYPECHK (NUM,SIGNNUM) &1

Result: &A = SIGNNUM

&1 = 1234567890

&A = &TYPECHK (SIGNNUM,NUM) &1

Result: &A = SIGNNUM

&1 = 12345678901

&A = &TYPECHK (SIGNNUM,NUM) &1

Result: &A = NUM (Because the number exceeds the maximum for NCL
arithmetic).

&1 = 123

&2 = ABC

&A = &TYPECHK (NUM,HEX) &1 &2

Result: &A is set to NULL, because &1 and NUM match but NUM does not match
&2.

&VARTABLE

708 Network Control Language Reference Guide

Notes:

By using &TYPECHK to test variables before using them in arithmetic functions,
you can avoid the procedure being terminated with an invalid arithmetic
function error condition due to invalid input.

The NUM type applies to variables containing a number with no leading sign.
This number can, however, be too large for arithmetic operations. To determine
whether you can use a numeric variable in arithmetic, check its type attribute
for SIGNNUM or REAL. SIGNNUM is returned if the number is a positive or
negative integer that is used in arithmetic.

ALPHA means that the variable contains alphabetic characters only, and no
national characters. ALPHANUM means that the variable can contain alpha and
numeric characters, but not necessarily a mixture.

When working with full-screen procedures, Panel Services provides facilities
that automatically perform validation of data entered by the operator.

Note: For more information, see the Network Control Language Programming
Guide.

If &TYPECHK is used to test a list of variables which include NULL values, then
NCL variable substitution logic does not let it recognize the existence of those
null variables.

&VARTABLE

&VARTABLE statements add, maintain, monitor, or delete tables of variables
(vartables), and vartable entries.

&VARTABLE ADD

 ID=tablename

 KEY=fieldname

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [ADJUST=n | COUNTER=n]

 [FIELDS=fieldlist { VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] |

 MDO=mdoname }]

&VARTABLE

Chapter 2: Verbs and Built-in Functions 709

&VARTABLE ALLOC

 ID=tablename

 [SCOPE={ PROCESS | REGION |

 SYSTEM | AOM }]

 [AGE={ NO | NEW | ALL | UPDATE | GET }]

 [DATA={ 1 | n | MAPPED }]

 [DELOLD={ YES | NO }]

 [KEYFMT={ CHAR | UCHAR | NUM }]

 [KEYLEN=keylen]

 [LIMIT={ 0 | n }]

 [USERCORR={ NO | YES }]

&VARTABLE DELETE

 ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [KEY=fieldname]

 [FIELDS=fieldlist VARS=varlist]

&VARTABLE FREE

 ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

&VARTABLE GET

 ID=tablename

 KEY=fieldname

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [AGE={ YES | NO }]

 [DELETE={ YES | NO }]

 [FIELDS=fieldlist { VARS=(var1, var2, ..., varn) |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] |

 MDO=mdoname }]

 [OPT={ KEQ | KGE | KLE | KGT | KLT | FIRST |

 LAST | GEN | IGEN | OLDEST | NEWEST }]

&VARTABLE PUT | UPDATE

 ID=tablename

 KEY=fieldname

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [ADJUST=n | COUNTER=n]

 [FIELDS=fieldlist { VARS=(var1, var2, ..., varn)

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] |

 MDO=mdoname }]

&VARTABLE QUERY

 ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [FIELDS=fieldlist VARS=varlist]

&VARTABLE ADD

710 Network Control Language Reference Guide

&VARTABLE RESET

 ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [OLDEST=n | NEWEST=n]

&VARTABLE ADD

Allows an NCL procedure to add a vartable entry to an existing vartable.

&VARTABLE ADD ID=tablename KEY=fieldname

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM}]

 [ADJUST=n | COUNTER=n]

 [FIELDS=fieldlist { VARS=(var1, var2, ... varn) |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] | MDO=mdoname }]

Operands:

ID=tablename

(Mandatory) Indicates the name of the table to which you wish to add a
variable entry. The table must have been previously allocated, although not
necessarily by this procedure (particularly if SCOPE=REGION is specified).

KEY=fieldname

(Mandatory) Indicates the name of the NCL variable that contains the value
of the key to assign to this table entry. Do not code an ampersand (&) unless
the name of the variable containing the key is stored in the variable
specified on the KEY= operand. For example:

■ KEY=KEYFIELD means extract the contents of NCL variable &KEYFIELD,
and use those contents as the key value.

■ KEY=&KEYFLDNM means extract the contents of NCL variable
&KEYFLDNM, and use those contents as the name of an NCL variable
that contains the key value. If &KEYFLDNM contained KF, the contents
of variable KF would be used as the key value.

If the table was allocated with KEYFMT=CHAR, the nominated key value is
padded with blanks, if shorter than the declared key length of this table, or
an error response will be set, and the entry not added if the value is longer.
KEYFMT=UCHAR performs an upper case translation before using the
supplied key value.

If the table was allocated with KEYFMT=NUM, the key value must be a valid,
signed number, that is, it must satisfy an &TYPECHK of SIGNNUM.

&VARTABLE ADD

Chapter 2: Verbs and Built-in Functions 711

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table. Allowed values
are:

PROCESS

(Default) Indicates the table is visible only to the NCL process that
allocates it. This includes any nested or higher-level executed
procedures.

REGION

Indicates the table is visible to all NCL procedures executing in the
current region. This includes any procedures executing in another
window, if you have more than one window open.

SYSTEM

Indicates the table is visible to all NCL procedures executing in the same
system.

AOM

Indicates that this verb refers to a mirrored vartable. The entry is also
added to the mirrored copy if AOM is started.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

ADJUST=n | COUNTER=n

These parameters let you set or adjust the counter field of the new entry.
Only one is coded, and they are mutually exclusive with the use of COUNTER
or ADJUST as field list values (see below). If none of these parameters are
specified, the counter field is initialized to 0. n must be an integer,
optionally signed, that is valid for NCL arithmetic.

COUNTER=n sets the counter field of the new entry to the value of n.

ADJUST=n adds the value of n to the counter field of the new entry (n can be
negative).

Because the counter field of a new entry is initialized to 0, ADJUST=n on an
ADD operation is the same as COUNTER=n.

&VARTABLE ADD

712 Network Control Language Reference Guide

FIELDS=fieldlist { VARS=(var1, var2, ... varn) |

VARS=prefix* [RANGE=(start, end)] |

ARGS [RANGE=(start, end)] |

MDO=mdoname }]

These parameters let you specify the information you wish to store in the
new table entry, and the NCL variables that the information is to be
extracted from. If specified, the FIELDS and VARS operands must have the
same number of entries in their lists. If VARS=, ARGS or MDO= is specified
and the FIELDS= operand is not specified, the equivalent of FIELDS=DATA* is
assumed.

FIELDS=fieldlist nominates the information you want to store. fieldlist is a
list of names in one of the following formats:

name

(name)

(name,name,...)

where each name is one of the following (you cannot duplicate any of these
in the list):

DATAn

Indicates you are supplying a data value for the nth data field in this
entry. n must be from 1 to the value specified on the DATA= parameter
of the &VARTABLE ALLOC statement for this table (the maximum is
999). You can have several DATAn entries, as long as each has a unique
number n.

DATA*

Indicates you are supplying data for all the data fields in this entry, from
1 to the number specified when the table was allocated (the DATA=
parameter on &VARTABLE ALLOC). The accompanying variable name in
the VARS= list must be in the format prefix* and the suffixes generated
to access the variables are 1 to n.

MDO

Indicates that the entire entry is to be updated from an MDO. An MDO
name must be located in the corresponding position in the VARS list.

.COUNTER

Indicates you are supplying an initial value for the counter field in this
entry. Mutually exclusive with .ADJUST and COUNTER= or ADJUST=.

.ADJUST

&VARTABLE ADD

Chapter 2: Verbs and Built-in Functions 713

Indicates you are supplying an initial value for the counter field in this
entry. Mutually exclusive with .COUNTER and COUNTER= or ADJUST=.

&VARTABLE ADD

714 Network Control Language Reference Guide

.USERCORR

Indicates you are supplying a user correlator check value. Since a new
entry cannot have a value to check against, the supplied value is ignored
(but must be numeric).

AOM tables can have the following additional field names specified:

.AOMID

Indicates the AOM ID value. The associated variable must be null, or
contain a value from 1 to 12 characters. The value will be folded to
uppercase.

.AOMATTR

Is the AOM attribute string.

VARS=(var1,var2,...,varn) nominates the NCL variables that contain the
information for each entry in the fieldlist. There is a one-to-one
correspondence from each entry in the variables list to the same entry in
fieldlist. Thus the first entry in variables list nominates the variable
containing the data for the first entry in fieldlist. The variables list must be in
one of the following formats:

varname

(varname)

(varname,varname,...)

where varname is a valid NCL variable name, without the ampersand (&),
unless you want to refer to the variable containing the data indirectly (see
discussion under KEY=). If DATA* or D* was specified in the FIELDS list, the
matching variable name must be specified as prefix*.

VARS | ARGS | MDO defines the source data structures for the ADD
operation against the vartable.

The FIELDS keyword is optional, and if not specified, defaults to
FIELDS=DATA*.

If the FIELDS operand is specified, then the VARS operand must be specified,
and must be a list of variables that are the target of the ADD operation. The
list must contain one of the following:

■ The names of known VARTABLE fields (such as COUNTER and ADJUST).

■ An operand of the form DATAn. n is any integer within the range 1 to
999 for a DATA=MAPPED vartable. Otherwise n is in the range1 to the
data limit (as determined by the DATA operand on the &VARTABLE
ALLOC statement).

■ The operand DATA* (meaning all data fields).

&VARTABLE ADD

Chapter 2: Verbs and Built-in Functions 715

■ The operand MDO (meaning the entire data object in the vartable
entry).

Each entry in the VARS list must parallel an entry in the FIELDS list and must
be one of the following:

■ An NCL token name.

■ A generic name (for example ABC*) if it parallels the DATA* entry in the
FIELDS list.

■ An MDO name (for example ABC.) if it parallels the MDO operand (or
DATA* operand) in the FIELDS list.

When the FIELDS operand is omitted (or specified as FIELDS=DATA*) the
source variables is specified by the usual NCL syntax (that is, as ARGS
[RANGE=], VARS=varslist, VARS=prefix [RANGE=], or MDO=mdoname).

If an MDO is nominated as the source data structure it is placed intact into
the vartable as the vartable entry. Mapping Services will maintain the
mapping for a subsequent GET operation.

Examples: &VARTABLE

&K = KEY001

&D = DATA001

&VARTABLE ADD ID=MYTABLE KEY=K FIELDS=DATA1 VARS=D

This example will add an entry to the private (SCOPE=PROCESS) vartable called
MYTABLE. The entry will have a key value of KEY001, and a data1 content of
DATA001.

&VARTABLE ADD

716 Network Control Language Reference Guide

Return Codes:

 System variable &ZFDBK is set after an &VARTABLE ADD statement to indicate
the result of the operation:

0

The entry was added successfully.

1

The entry was added successfully. The table was at the limit specified by the
&VARTABLE ALLOC, and DELOLD=YES was also specified on the ALLOC. The
oldest entry was deleted to make room for this entry.

4

An entry with the nominated key value already exists.

12

The supplied key value was longer than the table key length.

16

No table of this name exists in this scope.

24

The table is already at the limit specified by &VARTABLE ALLOC. The entry
could not be added.

28

Variable specified for .AOMID is longer the 12 characters.

32

SCOPE=AOM table has been disabled due to a storage error.

100

Variable specified for .AOMATTR is longer than 30 characters.

101 to 130

Variable specified .AOMATTR has an invalid value at the position indicated
by 130 subtracting 100 from the &ZFDBK code.

&ZFDBK values 28, 32, 100, and 101 to 130 are possible only with AOM tables.
&ZFDBK value 1 cannot occur with AOM.

Syntax errors in a &VARTABLE ADD statement will terminate the NCL procedure.
You must always specify SCOPE=REGION or SCOPE=SYSTEM to refer to a table of
that scope.

&VARTABLE ALLOC

Chapter 2: Verbs and Built-in Functions 717

&VARTABLE ALLOC

Allows an NCL procedure to allocate a new vartable. Once allocated, other
&VARTABLE statements can refer to the table. The table is defined without
entries.

&VARTABLE ALLOC ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [AGE={ NO | NEW | ALL | UPDATE | GET }]

 [DATA={ 1 | n | MAPPED }]

 [DELOLD={ YES | NO }]

 [KEYFMT={ CHAR | UCHAR | NUM }]

 [KEYLEN=keylen]

 [LIMIT={ 0 | n }]

 [USERCORR={ NO | YES }]

Operands:

ID=tablename

(Mandatory) Names the table which other &VARTABLE statements can then
refer to. tablename must be a 1- to 12-character name; the first character
alphabetic or national, the rest alphanumeric or national.

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table. Allowed values
are:

PROCESS

(Default) The table is visible only to the NCL process that allocates it.
This includes any nested or higher-level EXECuted procedures.

REGION

Indicates the table is visible to all NCL procedures executing in the
current region. This includes any EXECuted, STARTed, or &INTCMDed
procedures in this region, and any procedures executing in another OCS
window, if you have more than one window open.

SYSTEM

Indicates that the table is visible to all NCL procedures executing in the
same system.

AOM

Indicates this statement allocates a mirrored vartable. If AOM is not
started the actual mirrored copy is not allocated. When AOM is started
the mirrored copy is built.

&VARTABLE ALLOC

718 Network Control Language Reference Guide

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

The amount of storage needed for the mirrored copy is determined by the
LIMIT parameter. This parameter is required if SCOPE=AOM is specified. If
the maximum amount of storage allowed for mirrored vartables is
exceeded, as set by the SYSPARMS AOMMIRST command, the ALLOC
command is rejected with an &ZFDBK of 24. This also happens when the
maximum allowable storage is set to zero, to disable the use of mirrored
vartables.

AGE={ NO | NEW | ALL | UPDATE | GET }

Indicates whether entries are to be aged when certain operations are
performed on them. For all specifications, an added entry is always marked
as the newest, and an ADD or PUT that adds always makes the new entry
the newest. (Ageing allows a vartable to be used as a cache, to keep
frequently-referenced entries in the table, and to allow possible automatic
deletion of old entries.)

AGE=NO or AGE=NEW

Equivalent and indicate that only entries added to the table by
&VARTABLE ADD or &VARTABLE PUT are to be regarded as the newest.
All other references leave an entry in relative age order.

AGE=ALL

Any reference to a table entry will make it the newest. This includes
GET, PUT, ADD, or UPDATE.

AGE=UPDATE

An entry updated by &VARTABLE UPDATE or &VARTABLE PUT is also
made the newest entry.

AGE=GET

An entry retrieved by &VARTABLE GET will also be made the newest
entry.

&VARTABLE GET provides facilities for retrieving the oldest or newest
entries.

DATA={ 1 | n | MAPPED }

Indicates how many data fields is stored in each table entry. A number from
1 to 16 is specified. If omitted, this field defaults to 1. Each data field can
hold up to 256 characters of data.

The number specified determines the maximum number of fields, which
correspond to NCL variables, that is placed in a single vartable entry.

&VARTABLE ALLOC

Chapter 2: Verbs and Built-in Functions 719

DATA=MAPPED

Specifies that each entry in the vartable is either an MDO, or can contain an
unrestricted number of NCL variables.

DELOLD={ YES | NO }

Indicates whether &VARTABLE ADD or &VARTABLE PUT (when adding) can
delete the oldest entry automatically when the table is full (for tables
allocated with a LIMIT that is not zero; this option has no meaning if
LIMIT=0 is specified or defaulted):

■ DELOLD=NO means that the ADD or PUT does not proceed; a &ZFDBK
value of 24 is returned.

■ DELOLD=YES means that the ADD or PUT will proceed. The oldest entry
is deleted and an &ZFDBK value of 1 is returned to warn the user.

KEYFMT={ CHAR | UCHAR | NUM }

Indicates whether the table has a numeric or character format key:

KEYFMT=CHAR

(Default) Indicates that the key is a character string. The table is ordered
for sequential retrieval, based on the character value of the key and
blank padded if required. The KEYLEN parameter is required for this
value.

KEYFMT=UCHAR

The same as KEYFMT=CHAR, except that lower case characters are
translated to upper case. The KEYLEN parameter is required for this
value.

KEYFMT=NUM

Indicates that the key is a signed number. The table will be ordered
based on the numeric value of the key (largest negative through 0 to
largest positive). Key values must always be a valid, optionally-signed
number, from -2147483648 to 2147483647. The KEYLEN parameter
cannot be specified for this value.

KEYLEN=keylen

Must be provided if KEYFMT=CHAR or UCHAR is specified or defaulted, to
indicate the key length of the entries in this table. keylen must be a number
from 1 to 256. Key values supplied when adding entries to this table are
padded with blanks to the nominated length, if shorter. If key values are
longer, an error response is returned.

&VARTABLE ALLOC

720 Network Control Language Reference Guide

LIMIT={ 0 | n }

Indicates whether the table is to have a limit on the number of entries.

LIMIT=0

(Default) Indicates that the table can have any number of entries.

Limit=n

n is from 1 to 1,000,000 indicating that no more than n entries is added
to the table. If an &VARTABLE ADD or &VARTABLE PUT operation
exceeds this limit and DELOLD=NO is specified or defaulted on the
ALLOC, the addition is not performed, and an &ZFDBK value of 24 is
returned. If DELOLD=YES is specified, the addition is performed, and the
oldest entry automatically deleted to make room.

USERCORR= { NO | YES }

An optional parameter, allowing control over the use of the USERCORR field
in table entries when performing &VARTABLE UPDATE or &VARTABLE PUT
operations.

USERCORR=NO (the default) means that use of the user correlator is
optional.

USERCORR=YES means that use of the user correlator is required when
updating table entries.

Examples: &VARTABLE ALLOC

&VARTABLE ALLOC ID=MYTABLE KEYLEN=20

This example allocates a private table called MYTABLE with a key length of 20.

&VARTABLE ALLOC ID=STABLE SCOPE=SYSTEM KEYLEN=30 LIMIT=50 USERCORR=YES

This example allocates a table called STABLE, which is visible to all NCL
procedures running in this system. The key length is 30, and update operations
require use of the user correlator. A limit of 50 entries is placed on the table.

&VARTABLE DELETE

Chapter 2: Verbs and Built-in Functions 721

Return Codes:

System variable &ZFDBK is set after an &VARTABLE ALLOC statement to indicate
the result of the operation:

0

The table was allocated successfully.

16

A table of this name already exists in this scope. A table of the same name is
allocated in each of the three scopes. For example, an NCL procedure could
allocate a table called TAB1 with a scope of PROCESS, another with a scope
of REGION, and another with a scope of SYSTEM. All statements that want
to refer to the REGION or SYSTEM level table must specify the SCOPE=
parameter.

20

16 Tables already allocated.

24

Allocation causes the total storage necessary for mirroring to exceed
AOMMAXIS.

&ZFDBK values 20 and 24 are only possible with AOM tables.

Notes:

Syntax errors in a &VARTABLE ALLOC statement will terminate the NCL
procedure.

AOM requires KEYLEN=16 and a nonzero limit value on an &VARTABLE ALLOC.

&VARTABLE DELETE

Allows an NCL procedure to delete an entry from an existing vartable. The
delete can be optionally synchronized with any concurrent updating.

&VARTABLE DELETE ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [KEY=fieldname]

 [FIELDS=fieldlist VARS=varlist]

&VARTABLE DELETE

722 Network Control Language Reference Guide

Operands:

ID=tablename

(Mandatory) Indicates the name of the table you wish to delete a vartable
entry from. The table must have been previously allocated, although not
necessarily by this procedure (particularly if SCOPE=REGION is specified).

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table you wish to delete.
Allowed values are:

PROCESS

(Default) Indicates that the table is a private table allocated by this NCL
process.

REGION

Indicates that the table has been allocated a scope of REGION.

SYSTEM

Indicates that the table has been allocated by all NCL procedures
executing in the same system.

AOM

Indicates that this statement refers to a mirrored vartable. The entry is
deleted from the mirrored copy if AOM is started.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

KEY=fieldname

(Mandatory) Indicates the name of the NCL variable that contains the value
of the key of the table entry you wish to delete. Do not code an
ampersand(&) unless the name of the variable containing the key is stored
in the variable specified on the KEY= operand. For example:

■ KEY=KEYFIELD means extract the contents of NCL variable &KEYFIELD,
and use those contents as the key value.

■ KEY=&KEYFLDNM means extract the contents of NCL variable
&KEYFLDNM, and use those contents as the name of an NCL variable
that contains the key value. If &KEYFLDNM contains KF, the contents of
variable KF are used as the key value.

&VARTABLE DELETE

Chapter 2: Verbs and Built-in Functions 723

If the table was allocated with KEYFMT=CHAR, the nominated key value is
padded with blanks, if shorter than the declared key length of this table. If
the value is longer, an error response is set and the entry not added.
KEYFMT=UCHAR performs on upper case translation before using the
supplied key value.

If the table was allocated with KEYFMT=NUM, the key value must be a valid,
signed number, that is, it must satisfy an &TYPECHK of SIGNNUM.

FIELDS=fieldlist VARS=varlist

These parameters let you specify a user correlator value for validation
against the current table contents. You must specify both these parameters,
or omit both. If specified, the two parameters must have one entry in each
list.

FIELDS=fieldlist nominates the information you want to delete. fieldlist is a
list of names in one of the following formats:

name

(name)

(name,name,...)

where each name is an unduplicated user correlator value (.USERCORR)
from a previous &VARTABLE GET supplied to check synchronization (the
value corresponds to that for the variable in the VARS list).

VARS=varlist nominates the NCL variables that contain the information for
each entry in fieldlist. There is a one-to-one correspondence between each
entry in varlist and the same entry in fieldlist. Thus the first entry in varlist
nominates the variable containing the data for the first entry in fieldlist.
varlist must be in one of the following formats:

varname

(varname)

(varname,varname,...)

where varname is a valid NCL variable name, without the ampersand (&),
unless you wish to indirectly refer to the variable containing the data (see
discussion under KEY= above).

Examples: &VARTABLE DELETE

&K = KEY001 &VARTABLE DELETE ID=MYTABLE KEY=K

This example deletes the entry with key value KEY001, in the private vartable
(SCOPE=PROCESS), called MYTABLE. If there is no entry with that key, &ZFDBK is
set to 4.

&VARTABLE FREE

724 Network Control Language Reference Guide

Return Codes:

System variable &ZFDBK is set after an &VARTABLE DELETE statement to
indicate the result of the operation:

0

The entry was deleted successfully.

4

No entry with the nominated key value exists.

8

The value of the supplied user correlator does not match the value in the
table entry.

12

The supplied key value was longer than the table key length.

16

No table of this name exists in this scope.

32

SCOPE=AOM table has been disabled due to a storage error.

&ZFDBK value 32 is only possible with AOM tables.

Notes:

Syntax errors in a &VARTABLE DELETE statement will cause the NCL procedure
to terminate.

You must always specify SCOPE=REGION to refer to a table of that scope.

&VARTABLE FREE

Allows an NCL procedure to delete an entire vartable, including entries and the
vartable definition, to free storage.

&VARTABLE FREE ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

&VARTABLE FREE

Chapter 2: Verbs and Built-in Functions 725

Operands:

ID=tablename

(Mandatory) Indicates the name of the table you wish to free. tablename
must be the name of an existing vartable, within the specified scope.

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table you wish to free.
Allowed values are:

PROCESS

Indicates the table is visible only to the NCL process that allocates it.
This includes any nested or higher-level EXECuted procedures.

REGION

Indicates the table is visible to all NCL procedures executing in the
current region. This includes any procedures executing in another
window, if you have more than one window open.

SYSTEM

Indicates that the table is visible to all NCL procedures executing in the
same system.

AOM

Indicates the statement refers to a mirrored vartable. The mirrored
copy of the vartable is also freed if AOM is started.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

Examples: &VARTABLE FREE

&VARTABLE FREE ID=MYTABLE

This example frees the private table called MYTABLE.

&VARTABLE FREE ID=RTABLE SCOPE=REGION

This example frees a table in the current region called RTABLE, if it exists.

&VARTABLE GET

726 Network Control Language Reference Guide

Return Codes:

System variable &ZFDBK is set after an &VARTABLE FREE statement to indicate
the result of the operation:

0

The table was freed successfully.

16

No table with this name exists within this scope.

20

SCOPE=AOM table was in use at the exact time the deletion of the mirrored
copy was attempted. The table remains allocated.

&ZFDBK value 20 is possible with AOM tables only. If this happens, the NCL
procedure should delay for approximately one second and try again.

Note:

Syntax errors in a &VARTABLE FREE statement will cause the NCL procedure to
terminate.

&VARTABLE GET

Allows an NCL procedure to retrieve an entry from an existing vartable. The
exact key of the record is not required.

&VARTABLE GET ID=tablename

 KEY=fieldname

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [AGE={ YES | NO }]

 [DELETE={ YES | NO }]

 [FIELDS=fieldlist { VARS=(var1, var2, ... varn) |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] |

 MDO=mdoname }]

 [OPT={ KEQ | KGE | KLE | KGT | KLT | GEN |

 IGEN | FIRST | LAST | OLDEST | NEWEST }]

Operands:

ID=tablename

(Mandatory) Indicates the name of the table you want to retrieve the entry
from. The table must have been previously allocated, although not
necessarily by this procedure (particularly if SCOPE=REGION is specified).

&VARTABLE GET

Chapter 2: Verbs and Built-in Functions 727

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table. Allowed values
are:

PROCESS

Indicates the table is a private table, visible only to the NCL process that
allocated it.

REGION

Indicates the table is visible to all NCL procedures executing in the
current region.

SYSTEM

Indicates that the table is visible to all NCL procedures executing in the
same system.

AOM

Indicates that this statement refers to a mirrored vartable. Entries
added or updated from the screening table can also be retrieved.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

AGE={ YES | NO }

(Optional) Indicates whether to make the retrieved entry the newest in the
table (AGE=YES). The default depends on the value for the AGE parameter
specified on the &VARTABLE ALLOC statement for this table. If the table has
been allocated with aging on GET, using AGE=NO on an &VARTABLE GET lets
you access entries for maintenance without aging entries.

DELETE={ YES | NO }

Indicates whether to delete the entry retrieved. DELETE=NO indicates the
entry is not deleted. DELETE=YES indicates the retrieved entry is deleted
from the table.

&VARTABLE GET

728 Network Control Language Reference Guide

KEY=fieldname

(Must not be specified if OPT=FIRST, LAST, OLDEST, or NEWEST is specified)
Indicates the name of the NCL variable that contains the value of the search
key. Do not code an ampersand (&) unless the name of the variable
containing the key is stored in the variable specified on the KEY= operand.
For example:

■ KEY=KEYFIELD means extract the contents of NCL variable &KEYFIELD,
and use those contents as the key value.

■ KEY=&KEYFLDNM means extract the contents of NCL variable
&KEYFLDNM, and use those contents as the name of an NCL variable
that contains the key value. If &KEYFLDNM contained KF, the contents
of variable KF is used as the key value.

If the table was allocated with KEYFMT=CHAR, the nominated key value is
padded with blanks, if shorter than the declared key length of this table. If
the value is longer, an error response is set. KEYFMT=UCHAR performs an
uppercase translation before using the supplied key value.

If the table was allocated with KEYFMT=NUM, the key value must be a valid,
signed number. That is, it must satisfy an &TYPECHK of SIGNNUM.

FIELDS=fieldlist VARS=varlist

Defines the source variables from the vartable to retrieve by the GET
operation. If specified, the FIELDS and VARS operands must have the same
number of entries in their lists. If VARS=, ARGS or MDO= is specified and the
FIELDS= operand is not specified, the equivalent of FIELDS=DATA* is
assumed.

FIELDS=fieldlist nominates the information you want to retrieve. fieldlist is a
list of names in one of the following formats:

name

(name)

(name,name,...)

Each name is one of the following (you cannot duplicate any of these names
in the list):

■ DATAn indicates you want to retrieve a data field from the entry. n must
be from 1 to the DATA= value specified on the &VARTABLE ALLOC
statement. You can specify several DATAn entries, as long as each has a
unique value for n.

&VARTABLE GET

Chapter 2: Verbs and Built-in Functions 729

■ DATA* indicates you want to retrieve all data fields in this entry. The
accompanying VARS= list entry must be in the format prefix*. NCL
variables suffixed from 1 to the number of allocated data fields are
returned.

■ MDO indicates you want to place the entire entry into an MDO. An
MDO name must be located in the corresponding position in the VARS
list.

Note: When MDO access is used, individual data fields cannot be
requested.

■ MAP indicates you want to retrieve the map name for the
corresponding entry. A single NCL variable must be located in the
corresponding position of the VARS list. For entries containing NCL
variables, the map name returned is always $NCL, regardless of whether
the vartable was allocated as mapped or not. For entries containing
MDOs, the map name returned is that associated with the MDO when
the entry was last updated.

■ .KEY indicates you want to retrieve that actual key value of this entry.
This value is different from the supplied search key if using an OPT of
other than KEQ. If the same variable as the search key (KEY=) is used in
the field list, its value is updated after the search key value is extracted.

■ .COUNTER indicates you want to retrieve the current value of the
system-maintained counter field for this entry.

■ .USERCORR indicates you want to retrieve the system-maintained user
correlator value for this entry. This value is used in a later &VARTABLE
UPDATE, PUT, or DELETE statement to ensure that no other updates
have taken place.

AOM tables can have the following additional field names specified:

■ .AOMID indicates the AOM ID value. The associated variable is set to the
stored AOM ID value. If the stored ID is blank, the value is null.

■ .AOMATTR is the AOM attribute string. A full 30-character string is
always returned.

■ .AOMCOUNT the AOM count for this entry. If the COUNT option is
specified, a LOOKUP statement that matches an entry increments this
counter. If GAOM is stopped, a zero value is always returned.

&VARTABLE GET

730 Network Control Language Reference Guide

VARS=(var1,var2,...,varn) nominates the target structures for the GET
operation against the vartable. Each entry in varlist corresponds to the same
entry in fieldlist. Thus the first entry in varlist nominates the variable
containing the data for the first entry in fieldlist. varlist must be in one of
the following formats:

varname

(varname)

(varname,varname,...)

varname is a valid NCL variable name, without the ampersand (&), unless
you want to refer to the variable containing the data indirectly (see the
example for the KEY operand). If DATA* or D* was specified in the FIELDS
list, the matching variable name must be specified as prefix*.

VARS | ARGS | MDO defines the target data structures for the GET
operation against the vartable.

The FIELDS keyword is optional, and if not specified, defaults to
FIELDS=DATA*.

If the FIELDS operand is specified, then the VARS operand must be specified,
and must be a list of variables to contain the source fields. The list must
contain one of the following:

■ The names of known VARTABLE fields (such as COUNTER and ADJUST).

■ An operand of the form DATAn. n is any integer within the range 1
through 999 for a DATA=MAPPED vartable. Otherwise n is in the range1
to the data limit (as determined by the DATA operand on the
&VARTABLE ALLOC statement).

■ The operand DATA* (meaning all data fields).

■ The operand MDO (meaning the entire data object in the VARTABLE
entry).

Each entry in the VARS list must parallel an entry in the FIELDS list and must
be one of the following:

■ An NCL token name

■ A generic name (for example, ABC*) if it parallels the DATA* entry in the
FIELDS list

■ An MDO name (for example, RECORD.) if it parallels the MDO operand
(or DATA* operand) in the FIELDS list

When the FIELDS operand is omitted (or specified as FIELDS=DATA*), the
target variables are specified by the usual NCL syntax (that is, ARGS
[RANGE=], VARS=varslist, VARS=prefix [RANGE=], or MDO=mdoname).

&VARTABLE GET

Chapter 2: Verbs and Built-in Functions 731

When VARS or ARGS are the target of a GET operation, but the vartable
entry was created as an MDO (and not mapped by $NCL), the target
variables are segmented from the MDO contents.

If an MDO is nominated as the target data structure, all data from the
vartable entry is placed in the single MDO. If no map name is supplied on
the GET operation, the map name specified for the MDO on the PUT
operation is supplied as the default. If the entry was created from NCL
variables and not an MDO, the $NCL map maps the resulting MDO.

OPT={ KEQ | KGE | KLE | KGT | KLT | GEN | IGEN | FIRST | LAST | OLDEST |
NEWEST }

Indicates the relationship between the supplied search key and the
matching table entry (if one is found).

KEQ

(Default) Indicates you want to retrieve the table entry with an exact
match on the supplied search key.

KGE

Indicates you want to retrieve the table entry with the lowest key value
greater than or equal to the supplied search key.

KLE

Indicates you want to retrieve the table entry with the highest key value
less than or equal to the supplied search key.

KGT

Indicates you want to retrieve the table entry with the lowest key value
greater than the supplied search key.

KLT

Indicates you want to retrieve the table entry with the highest key value
less than the supplied search key.

GEN

Indicates you want to retrieve the table entry with the lowest key value
generically equal to the search key value for its non-blank length, but
possibly with other characters after it.

IGEN

Indicates you want to retrieve the table entry with the longest
non-blank key value that matches the search argument.

FIRST

&VARTABLE GET

732 Network Control Language Reference Guide

Indicates you want to retrieve the table entry with the lowest key. If this
option is specified, you cannot specify KEY=fieldname.

LAST

Indicates you want to retrieve the table entry with the highest key. If
this option is specified, you cannot specify KEY=fieldname.

&VARTABLE GET

Chapter 2: Verbs and Built-in Functions 733

OLDEST

Indicates you want to retrieve the table entry that is the oldest, that is,
the first-added, updated, or earliest-retrieved entry (depending on the
ALLOC AGE= option). If this option is specified, you cannot specify
KEY=fieldname.

NEWEST

Indicates you want to retrieve the table entry that is the newest, that is,
the entry that was last added, updated, or retrieved (depending on the
ALLOC AGE= option). If this option is specified, you cannot specify
KEY=fieldname.

If no entry is found that matches the passed key, &ZFDBK is set to 4, and
none of the nominated variables are updated.

Examples: &VARTABLE GET

&K = KEY001

&VARTABLE GET ID=MYTABLE KEY=K FIELDS=DATA1 VARS=D

&WRITE DATA FOR KEY &K IS &D

This example retrieves the entry from the private (SCOPE=PROCESS) vartable
named MYTABLE. The field, &D, contains the returned user data in that entry.

&VARTABLE GET ID=GTABLE SCOPE=SYSTEM OPT=FIRST +

 FIELDS=(KEY,DATA1) VARS=(K,D)

&DOWHILE &ZFDBK = 0

 .

 ... process entry, key in &K, data in &D

 .

 &VARTABLE GET ID=GTABLE SCOPE=SYSTEM OPT=KGT KEY=K +

 FIELDS=(KEY,DATA1) VARS=(K,D)

&DOEND

This example illustrates a technique to read sequentially through a table. The
first GET, using OPT=FIRST, retrieves the entry with the lowest key, and the key
value is returned in &K. The second GET, using OPT=KGT, retrieves the entry
with the next higher key, and sets that key value into &K.

Use OPT=LAST and OPT=KLT for backward retrieval.

&VARTABLE GET ID=FRED SCOPE=GLOBAL OPT=KGT KEY=#OS$STARTKEY +

 FIELDS=(KEY,MDO) VARS=(#OS$NEWKEY,#OS$MDO.)

This example reads a vartable record that is mapped into an MDO, and obtains
the key of the vartable record at the same time. Note the period after the MDO
name in the VARS list.

&VARTABLE GET

734 Network Control Language Reference Guide

Return Codes:

System variable, &ZFDBK, is set after an &VARTABLE GET statement to indicate
the result of the operation:

0

The entry was retrieved successfully. Any nominated variables are updated.

4

No entry with the requested key value exists.

12

The supplied key value was longer than the table key length.

16

No table of this name exists in this scope.

32

SCOPE=AOM table has been disabled due to a storage error. &ZFDBK value
32 is possible only with AOM tables.

Notes:

Syntax errors in a &VARTABLE GET statement cause the NCL procedure to
terminate.

Always specify SCOPE=REGION to refer to a table of that scope.

&VARTABLE PUT or UPDATE

Chapter 2: Verbs and Built-in Functions 735

&VARTABLE PUT or UPDATE

The &VARTABLE PUT statement allows an NCL procedure to add or update an
entry within an existing vartable. The entry is added if there is no entry with a
matching key, or updated if an entry with a matching key already exists.

The &VARTABLE UPDATE statement allows an NCL procedure to update an entry
within an existing vartable.

&VARTABLE { PUT | UPDATE }

 ID=tablename

 KEY=fieldname

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [ADJUST=n | COUNTER=n]

 [FIELDS=fieldlist

 { VARS=(var1, var2, ... varn) |

 VARS=prefix* [RANGE=(start, end)] |

 ARGS [RANGE=(start, end)] |

 MDO=mdoname }]

&VARTABLE PUT or UPDATE

736 Network Control Language Reference Guide

Operands:

ID=tablename

(Mandatory) Indicates the name of the table you wish to retrieve the entry
from. The table must have been previously allocated, although not
necessarily by this procedure (particularly if SCOPE=REGION is specified).

KEY=fieldname

(Mandatory) Indicates the name of the NCL variable that contains the value
of the search key. Do not code an ampersand (&) unless the name of the
variable containing the key is stored in the variable specified on the KEY=
operand. For example:

■ KEY=KEYFIELD means extract the contents of NCL variable &KEYFIELD,
and use those contents as the key value.

■ KEY=&KEYFLDNM means extract the contents of NCL variable
&KEYFLDNM, and use those contents as the name of an NCL variable
that contains the key value. If &KEYFLDNM contained KF, the contents
of variable KF is used as the key value.

If the table was allocated with KEYFMT=CHAR, the nominated key value is
padded with blanks, if shorter than the declared key length of this table. An
error response will be set, and the entry not added if the value is longer.
KEYFMT=UCHAR performs an upper case translation before using the
supplied key value.

If the table was allocated with KEYFMT=NUM, the key value must be a valid,
signed number. That is, it must satisfy an &TYPECHK of SIGNNUM.

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table. Allowed values
are:

PROCESS

Indicates the table is a private table, visible only to the NCL process that
allocated it.

REGION

Indicates the table is visible to all NCL procedures executing in the
current region.

SYSTEM

Indicates that the table is visible to all NCL procedures executing in the
same system.

AOM

&VARTABLE PUT or UPDATE

Chapter 2: Verbs and Built-in Functions 737

Indicates that this statement refers to a mirrored vartable. The entry is
added to or updated in the mirrored copy if AOM is started.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

ADJUST=n | COUNTER=n

These parameters let you set or adjust the counter field for a new or
existing entry. Only one is coded, and they are mutually exclusive with the
use of COUNTER, .COUNTER, ADJUST, and .ADJUST field list values
(described below). If none of these parameters is specified, the counter field
is initialized to 0 when adding, or left as is when updating. n is any valid,
signed number that will fit into a full word.

COUNTER=n will cause the counter field of the new or updated entry to be
set to the value of n.

ADJUST=n adds n to the counter field value of the new or updated entry (n
can be negative). If the table for updating does not contain a matching key
entry, the old counter value is taken as 0.

FIELDS=fieldlist { VARS=(var1, var2, ... varn) |

VARS=prefix* [RANGE=(start, end)] |

ARGS [RANGE=(start, end)] |

MDO=mdoname }

These optional parameters let you specify the information you want to store
in the new table entry, or to replace information in an existing table entry,
specifying the NCL variables the information is to be extracted from. If
specified, the FIELDS and VARS operands must have the same number of
entries within their lists. If VARS=, ARGS or MDO= is specified and the
FIELDS= operand is not specified, the equivalent of FIELDS=DATA* is
assumed.

&VARTABLE PUT or UPDATE

738 Network Control Language Reference Guide

FIELDS=fieldlist nominates the information you want to store. fieldlist is a
list of names in one of the following formats:

name

(name)

(name,name,...)

where each name is one of the following (you cannot duplicate any of these
in the list):

■ DATAn indicates you want to update the nth user data field in this entry.
Several DATAn entries is supplied in the list, as long as each has a
unique value for n. n must be from 1 to the number of allocated data
fields (that is, to the number specified for the DATA= operand).

■ DATA* indicates you want to add or update all the allocated data fields,
extracting the values from NCL variables for the names prefix1 to
prefixn. The associated VARS= list entry must be in the format prefixn.

■ MDO indicates that the entire entry is to be updated from an MDO. An
MDO name must be located in the corresponding position in the VARS
list.

Note: When an entry contains an MDO, individual fields cannot be
accessed.

■ .COUNTER indicates you are supplying an initial or new value for the
counter field in this entry. Mutually exclusive with .ADJUST, COUNTER=,
or ADJUST=.

■ .ADJUST indicates you are supplying an adjustment amount for the
counter field in this entry. Mutually exclusive with .COUNTER,
COUNTER=, or ADJUST=.

■ .USERCORR indicates you are supplying a user correlator check value. If
updating an existing entry, the supplied value for the user correlator
must match the present value in the existing entry. If not, the update is
not performed, and &ZFDBK is set to 8. If inserting a new entry, the
value supplied for the user correlator is ignored (but must be numeric).

AOM tables can have the following additional field names specified:

■ .AOMID indicates the AOM ID value. The associated variable must be
null, or contain a value from 1 to 12 characters. The value will be folded
to uppercase.

■ .AOMATTR is the AOM attribute string

&VARTABLE PUT or UPDATE

Chapter 2: Verbs and Built-in Functions 739

VARS=varlist nominates the NCL variables that contain the information for
each entry in fieldlist. There is a one-to-one correspondence from each
entry in varlist to the same entry in fieldlist. Thus the first entry in varlist
nominates the variable containing the data for the first entry in fieldlist, and
so on. varlist must be in one of the following formats:

varname

(varname)

(varname,varname,...)

where varname is a valid NCL variable name, without the ampersand (&),
unless you wish to indirectly refer to the variable containing the data (see
discussion under KEY=).

If DATA* or D* is specified in the FIELDS= list, the associated VARS= list entry
must be in the format prefix*.

VARS | ARGS | MDO defines the source data structures for the ADD
operation against the vartable.

The FIELDS keyword is optional, and if not specified, defaults to
FIELDS=DATA*.

If the FIELDS operand is specified, then the VARS operand must be specified,
and must be a list of variables that are the target of the ADD operation. The
list must contain one of the following:

■ The names of known VARTABLE fields (such as COUNTER and ADJUST).

■ An operand of the form DATAn. n is any integer within the range 1 to
999 for a DATA=MAPPED vartable. Otherwise n is in the range1 to the
data limit (as determined by the DATA operand on the &VARTABLE
ALLOC statement).

■ The operand DATA* (meaning all data fields).

■ The operand MDO (meaning the entire data object in the VARTABLE
entry).

Each entry in the VARS list must parallel an entry in the FIELDS list and must
be one of the following:

■ An NCL token name

■ A generic name (for example ABC*) if it parallels the DATA* entry in the
FIELDS list

■ An MDO name (for example ABC.) if it parallels the MDO operand (or
DATA* operand) in the FIELDS list

&VARTABLE PUT or UPDATE

740 Network Control Language Reference Guide

When the FIELDS operand is omitted (or specified as FIELDS=DATA*) the
source variables is specified by the usual NCL syntax (that is, as ARGS
[RANGE=], VARS=varslist, VARS=prefix [RANGE=], or MDO=mdoname).

If an MDO is nominated as the source data structure it is placed intact into
the vartable as the vartable entry. Mapping Services will maintain the
mapping for a subsequent ADD operation.

Examples: &VARTABLE PUT

&K = KEY001

&D = DATA001

&VARTABLE PUT ID=MYTABLE KEY=K FIELDS=DATA VARS=D

This example adds or updates an entry in the private (SCOPE=PROCESS) vartable
called MYTABLE. The entry has a key value of KEY001 and a data content of
DATA001.

.LOOP &MSGREAD ARGS

&VARTABLE PUT ID=IDTABLE KEY=1 ADJUST=1 +

 FIELDS=DATA VARS=ZMTEXT

&GOTO .LOOP

This example builds a table containing all uniquely identified messages received
in a MSGPROC, the identifier being the first word. The data for each entry is the
last complete message text with that identifier, and the counter field contains
the count of messages with that identifier received.

This illustrates the ease with which event counting is performed. The NCL
procedure need not be concerned with whether a particular event (message,
and so on) has already been seen, as the PUT logic handles this.

Changing the scope in this example to REGION allows another NCL procedure in
the NCL region to sequentially read the table and display information to an
operator.

&VARTABLE PUT or UPDATE

Chapter 2: Verbs and Built-in Functions 741

Examples: &VARTABLE UPDATE

&K = KEY001

&D1 = DATA001A

&D2 = DATA001B

&D3 = DATA001C

&VARTABLE UPDATE ID=MYTABLE KEY=K FIELDS=DATA* +

 VARS=D* ADJUST=1

This example updates an entry in the private (SCOPE=PROCESS) vartable called
MYTABLE. The entry has a key value of KEY001, and the data fields (three
assumed) have a data content of DATA001A, DATA001B, and DATA001C. The
counter has 1 added to it.

.LOOP &MSGREAD ARGS

&VARTABLE UPDATE ID=IDTABLE KEY=1 ADJUST=1 +

 FIELDS=DATA VARS=&ZMTEXT

&GOTO .LOOP

This example updates a table containing all previously nominated uniquely
identified messages received in a MSGPROC, the identifier being the first word.
The data for each entry is the last complete message text with that identifier,
and the counter field contains the count of messages received with that
identifier.

Compare this example with the example for &VARTABLE PUT. Only message
identifiers previously entered into in the table are counted. If an entry is not
found &ZFDBK is set to 4, and the update is not performed.

Changing this example by giving the table a scope of PROCESS, another NCL
procedure in the NCL region could sequentially read the table and write the
counts, and so on, to a screen.

&VARTABLE PUT or UPDATE

742 Network Control Language Reference Guide

Return Codes:

System variable &ZFDBK is set after an &VARTABLE PUT statement to indicate
the result of the operation:

0

The entry was added or updated successfully.

1

The entry was added successfully. The table was at the LIMIT specified on
the &VARTABLE ALLOC, and the oldest entry was deleted to make room for
this entry.

8

An entry with the nominated key value already exists, and the supplied user
correlator value did not match the user correlator value in that entry.

12

The supplied key value was longer than the table key length.

16

No table of this name exists in this scope.

20

This table was allocated with USERCORR=YES specified, and no user
correlator was supplied on the &VARTABLE PUT statement.

28

This table was allocated with USERCORR=YES specified, and no user
correlator was supplied on the &VARTABLE PUT statement.

32

SCOPE=AOM table has been disabled due to a storage error.

100

Variable specified for .AOMATTR is longer than 30 characters.

101 to 130

Variable specified .AOMATTR has an invalid value at the position indicated
by 130 subtracting 100 from the &ZFDBK code.

&ZFDBK values 28, 32, 100, and 101 to 130 are possible with AOM tables only.
&ZFDBK value 1 cannot occur with AOM.

&VARTABLE PUT or UPDATE

Chapter 2: Verbs and Built-in Functions 743

System variable &ZFDBK is set after an &VARTABLE UPDATE statement to
indicate the result of the operation:

0

The entry was updated successfully.

4

No entry with the supplied key value exists.

8

An entry with the nominated key value exists, but the supplied user
correlator value did not match the user correlator value in that entry.

12

The supplied key value was longer than the table key length.

16

No table of this name exists in this scope.

20

This table was allocated with USERCORR=YES specified, and no user
correlator was supplied on the &VARTABLE UPDATE statement.

28

Variable specified for .AOMID is longer the 12 characters.

32

SCOPE=AOM table has been disabled due to a storage error.

100

Variable specified for .AOMATTR is longer than 30 characters.

101 to 130

Variable specified .AOMATTR has an invalid value at the position indicated
by 130 subtracting 100 from the &ZFDBK code.

&ZFDBK values 28, 32, 100, and 101 to 130 are possible with AOM tables only.

Notes:

Syntax errors in &VARTABLE PUT and VARTABLE UPDATE statements cause an
NCL procedure to terminate.

You must always specify SCOPE=REGION to refer to a table of that scope.

&VARTABLE QUERY

744 Network Control Language Reference Guide

&VARTABLE QUERY

Allows an NCL procedure to inquire about the existence of a given vartable, and
an option to retrieve information when the table is found.

&VARTABLE QUERY ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [FIELDS=fieldlist VARS=varlist]

Operands:

ID=tablename

(Mandatory) Indicates the name of the table about which you want to
inquire. The table need not have been previously allocated, as the return
codes in &ZFDBK indicate this.

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table about which you
want to inquire. Allowed values are:

PROCESS

Indicates the table is a private table, visible only to the NCL process that
allocated it.

REGION

Indicates the table was allocated with a scope of REGION.

SYSTEM

Indicates that the table is visible to all NCL procedures executing in the
same system.

AOM

Indicates that this statement refers to a mirrored VARTABLE. Extra
information is returned for SCOPE=AOM vartables.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

FIELDS=fieldlist VARS=varlist

These optional parameters let you specify the information you wish to
retrieve about a table, and the NCL variables where the information is
located. You must specify both these parameters, or omit both. If specified,
the two parameters must have the same number of entries within their
lists.

&VARTABLE QUERY

Chapter 2: Verbs and Built-in Functions 745

FIELDS=fieldlist nominates the information you want returned. fieldlist is a
list of names in the format:

name

(name)

(name,name,...)

where each name is one of the following (you cannot duplicate any of these
in the list):

■ .AGE indicates you want the AGE option specified on ALLOC returned.

■ .DATA indicates you want the DATA value specified on ALLOC returned.

■ .DELOLD indicates you want the DELOLD option specified on ALLOC
returned.

■ .KEYLEN indicates you want the key length of the table returned. If the
table was allocated with KEYFMT=NUM, the associated NCL variable is
set to NUM.

■ .LIMIT indicates you want the LIMIT value specified on ALLOC returned.

■ .TOTAL indicates you want the current number of entries in the table
returned.

■ .USERCORR indicates you want the USERCORR option specified on
ALLOC returned.

AOM tables can have the following additional field names specified:

■ .AOMTHIT the total number of matches that have been counted by
screening table LOOKUP statements with the TOTAL option specified.

■ .AOMTMISS the total number of no-matches that have been counted by
screening table LOOKUP statements with the TOTAL option specified.

■ .AOMTADD the total number of ADDs that have been counted by
screening table LOOKUP statements with the ADD and TOTAL option
specified.

&VARTABLE QUERY

746 Network Control Language Reference Guide

VARS=varlist nominates the NCL variables that will receive the information
for each entry in fieldlist. There is a one-to-one correspondence from each
entry in varlist to the same entry in fieldlist. Thus the first entry in varlist
nominates the variable that will receive the data for the first entry in
fieldlist, and so on. varlist must be in one of the following formats:

varname

(varname)

(varname,varname,...)

where varname is a valid NCL variable name, without the ampersand (&),
unless you wish to indirectly refer to the variable containing the data.

Examples: &VARTABLE QUERY

&VARTABLE QUERY ID=MYTABLE

This example queries the existence of a table called MYTABLE, in the current
NCL process environment. &ZFDBK is set as a result.

&VARTABLE QUERY ID=RTABLE FIELDS=(.TOTAL,.KEYLEN) VARS=(T,K)

This example queries the existence of a table called RTABLE. If found, the key
length and current number of entries are returned in NCL variables T, and K,
respectively.

Return Codes:

System variable &ZFDBK is set after an &VARTABLE QUERY statement to
indicate the result of the operation:

0

A table with the supplied name was found in the requested scope.
Information variables are set if requested.

16

No table of this name exists in this scope.

Notes;

Syntax errors in a &VARTABLE QUERY statement will terminate the NCL
procedure.

You must always specify SCOPE=REGION to refer to a table of that scope.

&VARTABLE RESET

Chapter 2: Verbs and Built-in Functions 747

&VARTABLE RESET

Allows an NCL procedure to delete all entries from an existing vartable, while
retaining the table definition. (The table is then empty as if it has been FREEd
and reALLOCated.) As an option, only the oldest or newest n entries is deleted.

&VARTABLE RESET ID=tablename

 [SCOPE={ PROCESS | REGION | SYSTEM | AOM }]

 [OLDEST=n | NEWEST=n]

Operands:

ID=tablename

(Mandatory) Indicates the name of the table you wish to reset. This must
be the name of an existing table within the requested scope.

SCOPE= { PROCESS | REGION | SYSTEM | AOM }

An optional parameter, indicating the scope of the table about which you
want to inquire. Allowed values are:

PROCESS

Indicates the table is a private table, visible only to the NCL process that
allocated it.

REGION

Indicates the table was allocated with a scope of REGION.

SYSTEM

Indicates that the table is visible to all NCL procedures executing in the
same system.

AOM

Indicates that this statement refers to a mirrored VARTABLE. This
specification precludes the use of the OLDEST and NEWEST operands.

Note: SCOPE=AOM is available only if your region includes Automation
Services products.

OLDEST=n | NEWEST=n

Indicates that, rather than emptying the table completely, only the oldest or
newest n entries are to be deleted. This option is useful for tables that are
being used as caches.

&VARTABLE RESET

748 Network Control Language Reference Guide

Examples: &VARTABLE RESET

&VARTABLE RESET ID=MYTABLE

This example will reset the private table called MYTABLE.

&VARTABLE RESET ID=STABLE SCOPE=SYSTEM OLDEST=50

This example resets a table called STABLE, which is visible to all NCL procedures
running in this product region. Only the oldest 50 entries are deleted.

Return Codes:

System variable &ZFDBK is set after an &VARTABLE RESET statement to indicate
the result of the operation:

0

The table was reset successfully.

16

No table of this name exists in this scope.

20

SCOPE=AOM table in use at the exact time the deletion of the mirrored
copy was attempted. The table remains allocated.

&ZFDBK value 20 is possible with AOM tables only. If this happens, the NCL
procedure should delay for approximately one second and try again.

Note:

Syntax errors in the &VARTABLE RESET statement terminate the NCL procedure.

&WRITE

Chapter 2: Verbs and Built-in Functions 749

&WRITE

Writes the specified text.

&WRITE [ALARM={ YES | NO }]

 [ALL={ YES | NO }]

 [COLOR=color | COLOUR=colour]

 [CR={ YES | NO }]

 [FF={ YES | NO }]

 [HLIGHT=hlight | HLITE=hlight]

 [INTENS={ HIGH | NORMAL }]

 [LF={ YES | NO }]

 [LOG={ YES | NO }]

 [{ MDO=mdoname |

 ARGS [RANGE=(start, end)] |

 VARS={ var | (var1, var2, ..., varn) } }]

 [TYPE={ REQUEST | RESPONSE }]

 [MON={ YES | NO }]

 [MSGCODE=xx]

 [NRD={ YES | NO | OPER }]

 [RC={ (n,n,...,n) | ALL | NONE }]

 [SCAN={ YES | NO }]

 [TERM={ YES | NO }]

 [USERID=userid | LUNAME=luname | NCLID=nclid | SERVER=servername]

 [AOM={ YES | NO }]

 [AOMAUTH=[YES | NO]

 [AOMID=identifier]

 [AOMJOBID=jobid]

 [AOMJOBNM=jobname]

 [AOMMINOR={ YES | NO }]

 [AOMMSGID=msgid]

 [AOMMSGLV={ IN | msglevel }]

 [AOMRC= | ROUTCDE= | RC={ 2 | NONE | ALL | list }]

 [AOMSOS={ OS | VM }]

 [AOMTIME=hhmmss]

 [AOMTYPE={ WTO | WTOR | MSG }]

 [AOMUFLGS=nn | AOMUFLGn={ YES | NO }]

 [AOMUSERI=userid]

 [AOMUSERN=usernode]

 [DATA=message-text]

The &WRITE verb lets an NCL procedure issue a message. By default, the
message is sent to the environment in which the NCL procedure is executing.

&WRITE

750 Network Control Language Reference Guide

Several operands allow the message to be sent to MONITOR class OCS users, all
OCS users, and so on. Other operands allow setting of message attributes, such
as color and alarm. Automation Services adds several additional operands, that
allow assignment of AOM routing options, and AOM attributes.

Operands:

The following operands are available to all users for message attribute
assignment and message routing. AOM-specific operands follow these.

ALARM={ YES | NO }

Specifies whether the message is to ring the terminal alarm when displayed
on an OCS window.

ALL={ YES | NO }

specifies that the message is to be written to all OCS users and dependent
environments profiled to receive general broadcast messages.

COLOR=color | COLOUR=colour

The color in which the message is to be displayed. This is ignored if the
terminal does not support extended color data streams. Color must be one
of the following:

RED GREEN BLUE TURQUOISE YELLOW PINK WHITE NONE

CR={ YES | NO }

Indicates, for LU1 type terminals, whether a carriage return function is to be
performed after writing the specified text. CR=YES, the default, indicates
that carriage return is required, CR=NO that it is not.

FF={ YES | NO }

Indicates, for LU1 type terminals, whether a form feed function is to be
performed. The form feed is actioned before any supplied text is written to
the device. If no text is supplied, a blank line will be written after the form
feed is actioned, unless LF=NO is also specified.

HLIGHT=hlight | HLITE=hlite

The extended high-lighting in which the message is to be displayed. This is
ignored if the terminal does not support extended high-lighting data
streams. hlight must be one of the following:

REVERSE USCORE BLINK NONE

INTENS={ HIGH | NORMAL }

Specifies whether the message is to be displayed on the terminal in high or
normal intensity.

&WRITE

Chapter 2: Verbs and Built-in Functions 751

LF={ YES | NO }

Indicates, for LU1 type terminals, whether a line feed function is to be
performed after writing the specified text. LF=YES, the default if the LF
operand is not specified, indicates that a line feed function is required,
LF=NO that it is not. LF=NO is used to create a strike-over mask so that
secure data is entered on the terminal. Two or three successive &WRITE
statements with LF=NO, followed by an &PROMPT statement, will
effectively obliterate the entered data. The LF operand is ignored if used to
write a message to a terminal that is not an LU1.

LOG={ YES | NO }

LOG=YES specifies that the message is to be written to the activity log.

{ MDO=mdoname |

 ARGS [RANGE=(start, end)] |

 VARS={ var | (var1, var2, ...,varn) }

MDO=mdoname specifies a mapped data object (MDO) to be delivered to
the target destination. The MDO will be embedded in the $MSG user MDO
and the $MSG.MAPNAME element set to the stem MAP name.

Specifying VARS or ARGS results in a $NCL MDO being built and delivered in
the $MSG MDO, containing the named variables or arguments.

Notes: The MDO, VARS, and ARGS operands are mutually exclusive.

RANGE=(start, end) is specified with ARGS to denote an argument range.

TYPE={ REQUEST | RESPONSE }

This operand allows messages to be written to the target's request queue or
response queue. The default is the response queue. For TYPE=REQUEST, the
target must be another NCL procedure.

MON={ YES | NO }

Specifies that the message is to be written to all OCS users and dependent
environments profiled to receive Monitor class messages.

MSGCODE=xx

Supplies a two digit hex message delivery code. This value is used as an 8-bit
mask matched against the profile of possible receiving environments. Its use
implies ALL=YES as the default generic delivery option but is overridden by
supplying other options such MON=YES, FTS=YES and so on. An OR
comparison is used and delivery is initiated when at least one or more bits
are matched. Thus the value is equivalent to an 8-bit routing code.

&WRITE

752 Network Control Language Reference Guide

The message delivery code facility allows the installation to develop and
control delivery of messages in a variety of classes designed to meet the
needs of the installation.

NRD={ YES | NO | OPER }

Specifies whether the message is to be classified as non-roll delete, that is,
whether it will remain on the operator's window until deleted rather that
being rolled over by other messages as they arrive. If NRD=NO is coded, or
allowed to default, the message will be a standard roll-delete message.

If NRD=YES is coded, the message is assigned a delete operator message
identifier or DOM ID. The value of the DOM ID is returned on completion of
the &WRITE in the &ZDOMID system variable. If the message is to be
deleted at some future time, this DOM ID must be specified as an operand
on a &NRDDEL statement. The NRD message will also be deleted when the
NCL process that issued the &WRITE statement terminates.

If NRD=OPER is coded the message is classified as non-roll delete but no
DOM ID is assigned to it and it will never be deleted by any means except
NRD cursor deletion - even when the originating process terminates.

RC={ (n,n,...,n) | ALL | NONE }

Specifies the routing codes to be used to determine the delivery of the
message. Use of this operand is supported only if products that include
Automation Services are installed. Receivers must have a match on any of
the nominated route codes (n) to qualify for receipt of the message.
RC=NONE will deliver the message to all AOM receivers who have at least
one routing code active.

SCAN={ YES | NO }

Indicates that the message can contain strings of characters, delimited by
@s, meaning that the delimited string should be highlighted at the terminal.
A scan of the message takes place and the @s removed, being replaced by
the appropriate attribute settings to turn highlighting on and off at the
terminal.

&WRITE

Chapter 2: Verbs and Built-in Functions 753

TERM={ YES | NO }

TERM=YES specifies that the message is to be written to the owning
environment. In the case of an NCL process executing directly from OCS the
message will appear on the user's OCS window. Line messages issued under
a full-screen process, for example, User Services, will not be displayed until
the full screen process terminates.

Messages issued from system procedure environments, such as LOGPROC,
AOMPROC, PPOPROC and so on. will be treated as monitor class messages
and will be generically delivered with an identifying character prefixing the
text. For example, messages from LOGPROC are delivered to all monitor
receivers with L as the prefix.

By default, messages issued from BSYS and BLOG background environments
are directed to the log. Messages from BMON are treated as specifying
MON=YES.

TERM=NO specifies that the message will not be delivered to the target
response queue.

TERM=NO is mutually exclusive with the SERVER, USERID, LUNAME and
NCLID operands.

USERID=userid

Specifies that the message is to be written to the specified user ID only. On
completion, &RETCODE is set.

LUNAME=luname

Indicates the node name of the terminal to which the message is to be sent.
The terminal is either an LU1 terminal or a terminal with an OCS
window(including the CONSOLE device).

NCLID=nclid

Specifies that the message is to be delivered to a dependent queue of the
nominated process.

SERVER=servername

This operand allows the messages to be directed at a registered server
procedure.

&WRITE

754 Network Control Language Reference Guide

DATA=message-text

The text of the message to be displayed at the terminal, written to an LU1
device or written to the activity log. Normal variable substitution will be
performed before sending the message. Text is in upper and lower case. If
no text is supplied, a blank line will be displayed or written (unless LF=NO is
specified for LU1). DATA can only be specified as the last keyword on the
statement since the data string is regarded as being everything to the right
of the DATA= keyword to the end of the statement.

These are the AOM-specific operands and are available only in regions that
include Automation Services products. The preceding operands are available to
all users.

Note: Where defaults are shown for AOM attributes, they apply only if any AOM
attributes are specified. If no AOM attributes are specified, no AOM attributes
are carried with the message.

AOM={ YES | NO }

Indicates whether the message is to be routed to all authorized AOM
message receivers or not.

AOM=NO (the default) means no AOM specific delivery will take place.
Other &WRITE operands such as MON= can cause delivery to more than one
user. In this case, other AOM operands is coded, to give the message AOM
attributes without causing automatic AOM delivery.

AOM=YES will cause the message to be delivered to authorized AOM
receivers.

If no AOM attributes are specified, all AOM receivers will receive the
message irrespective of profiled routing codes and AOM message levels. If
any other AOM attributes are specified, the message will be delivered to
AOM receivers based on user profile routing codes and message levels (that
is at least one message level in common, and at least one route code in
common, except that BC message level bypasses routing codes, and if the
message has ROUTCDE=NONE, then that matches any user profile ROUTCDE
except NONE).

A prefix of A is attached to all AOM messages produced by &WRITE, except
those sourced by NCL procedures in the AOMP environment that also have
AOM attributes specified.

AOMAUTH={ YES | NO }

&WRITE

Chapter 2: Verbs and Built-in Functions 755

Allows setting of the AOM authorized issuer attribute. This attributes
indicates whether the original issuer of the message (WTO) was
MVS-authorized. This attribute is available after &MSGREAD or &INTREAD in
the &ZMAOMAU system variable.

AOMID=identifier

Assigns the AOM ID attribute. identifier must be null, or from 1 to 12
characters in length. This value is available after &MSGREAD or &INTREAD
in the &ZMAOMID system variable.

AOMJOBID=jobid

Assigns the AOM JOBID attribute. jobid must consist of the job type, either J,
S, or T, and a 1 to 5 digit number. This value is available after &MSGREAD or
&INTREAD in the &ZMAOMJI system variable.

This attribute implies a source operating system of OS. Thus, it is invalid
with any VM attributes or AOMSOS=VM.

AOMOJBNM=jobname

Assigns the AOM JOBNAME attribute. jobname must be null, or from 1 to 8
characters. This value is available after &MSGREAD or &INTREAD in the
&ZMAOMJN system variable.

This attribute implies a source operating system of OS. Thus, it is invalid
with any VM attributes or AOMSOS=VM.

AOMMINOR={ YES | NO }

Indicates whether this message is a minor line. Minor lines are not subject
to AOM prefixing. Normally, this is used for multi-line displays, where only
the first line needs AOM prefixes. The value of this attribute is available
after &MSGREAD or &INTREAD in the &ZMAOMMIN system variable.

This attribute implies a source operating system of OS. Thus, it is invalid
with any VM attributes or AOMSOS=VM.

AOMMSGID=msgid

Assigns the AOM message ID attribute. msgid must be null, or from 1 to 12
characters. This value is available after &MSGREAD or &INTREAD in the
&ZMAOMMID system variable.

AOMMSGLV={ IN | msglevel }

Assigns the AOM message level attribute. The default, INformational, only
applies if any AOM attributes are specified.

If AOM=YES is also specified, the AOM message level is used to determine
which authorized AOM receivers will receive a copy of the message.

&WRITE

756 Network Control Language Reference Guide

AOMRC= | ROUTCDE= | RC={ 2 | NONE | ALL | list }

Allows specification of a list of routing codes. Routing code values are from
1 to 128. The default, 2, only applies if any AOM attributes are specified.

If AOM=YES is also specified, these routing codes will be used to determine
which AOM receivers will receive a copy of the message. Receivers with at
least one routing code in common, or, if ROUTCDE=NONE is specified,
receivers with at least one routing code, receive the message (subject to
MSGLEVEL screening).

A single value is specified as AOMRC=n. Multiple values, and ranges is
specified as:

■ AOMRC=(4,13,27)

■ AOMRC=(1-5,16,40-55)

ROUTCDE and RC are alternative spellings of this parameter.

The value of this operand is available in the &ZMAOMRC system variable
after &INTREAD or &MSGREAD.

AOMSOS={ OS | VM }

Allows explicit setting of the AOM source operating system attribute. The
default is the operating system that this product region is executing under,
unless an AOM operand that implies a specific operating system is specified.

Attributes that imply a specific source operating system are marked. Use of
these operands must be consistent with the value specified for AOMSOS if
coded.

The value of this operand is available after &MSGREAD or &INTREAD in the
&ZMAOMSOS system variable.

AOMTIME=hhmmss

Allows a specific AOM message time to be set. The default, if this parameter
is omitted, is the current time. hhmmss must be 6 digits, in the range
000001 to 240000.

AOMTYPE={ WTO | WTOR | MSG }

Allows setting of a specific AOM message type. The default value for this
operand depends on the operating system, or specified AOMSOS value. If
z/OS, then AOMTYPE=WTO is assumed. If z/VM, AOMTYPE=MSG is
assumed.

The value of this attribute is available after &MSGREAD or &INTREAD in the
&ZMAOMTYP system variable.

&WRITE

Chapter 2: Verbs and Built-in Functions 757

Specification of this attribute can imply a specific source operating system.
This can cause an error if incompatible operating system related attributes
are specified.

AOMUFLGS=nn | AOMUFLGn={ YES | NO }

Allows setting the 8 AOM user flag attributes. All 8 is set as a hexadecimal
value, using the AOMUFLAGS=nn operand, or the flags is set individually,
using AOMUFLGn=YES/NO.

The values of these flags are available after &INTREAD or &MSGREAD in the
&ZMAOMUFn system variables.

AOMUSERI=userid

Assigns the AOM USERID attribute. userid must be null, or from 1 to 8
characters. This value is available after &MSGREAD or &INTREAD in the
&ZMAOMUI system variable.

This attribute implies a source operating system of VM. Thus, it is invalid
with any VM attributes or AOMSOS=OS.

AOMUSERN=usernode

Assigns the AOM USERNODE attribute. usernode must be null, or from 1 to
8 characters. This value is available after &MSGREAD or &INTREAD in the
&ZMAOMUN system variable.

This attribute implies a source operating system of VM. Thus, it is invalid
with any VM attributes or AOMSOS=OS.

DATA=message-text

The text of the message to issue. Maximum length of the message is 256
characters. This is a standard &WRITE operand.

&WRITE

758 Network Control Language Reference Guide

Examples: &WRITE

&WRITE TEST MESSAGE

&WRITE ALARM=YES COLOR=RED HLITE=REVERSE DATA=ring the +

 alarm

&WRITE MON=YES LOG=YES DATA=Message to all Monitors and +

 to the log.

&WRITE LOG=YES TERM=NO DATA=message to the log only

&WRITE FF=YES LUNAME=PRINTER1 DATA=Network Report ----- +

 Page No: &PAGE

&WRITE FF=YES LF=NO

&WRITE SCAN=YES DATA=RELOAD@NCP23@NOW

AOM Examples:

&WRITE COLOR=RED AOM=YES DATA=AOM IS ALIVE

&WRITE USERID=U1234 AOMJOBNM=JOB1 DATA=job1 related msg

Note: When using &WRITE it is good practice to always include DATA= before
the message text to differentiate between the message text and other
operands. For example,

&WRITE DATA=RC=(&RETCODE)

rather than

&WRITE RC=(&RETCODE)

as RC would be interpreted as the ROUTCDE operand in the latter.

&WRITE

Chapter 2: Verbs and Built-in Functions 759

Notes:

Messages written using &WRITE ALARM=YES and &WRITE MON=YES are by
default logged unless overridden by the LOG= operand.

Generic delivery options such as MON=YES, FTS=YES is used to broadcast to OCS
operators and dependent environments. Dependent environments are by
default set to a profile that disallows any generic message receipt. Use of
&INTCMD PROFILE MONMSG=YES, and so on, allows the dependent
environment to be used for unsolicited message receipt.

Messages generated to primary environments is processed by a MSGPROC
before further processing or display. The MSGPROC associated with the primary
environments of system procedures, for example, LOGPROC, is used to process
messages before their generic delivery as monitor messages with an identifying
prefix.

The use of ALL=YES either explicitly or implicitly via MSGCODE= without other
generic delivery options is equivalent to the use of the MSG ALL command. The
receipt of these messages is controlled by the PROFILE MSG=Y | N of the
receiving environment.

If variables are used to provide the message text, the contents of the variables is
hexadecimal data.

Alarm, high-intensity, NRD, and routing code options are ignored for LU1 type
terminals.

&WRITE with AOM operands is similar to &AOMALERT ROUTE=MSG. However,
&WRITE allows sending the message to a specific user, by using the LUNAME,
USERID, and NCLID operands. &AOMALERT does not allow this.

If NRD=YES is specified, the system variable &ZDOMID contains the assigned
message DOMID, in the format domain/n. This value is used in a subsequent
&NRDDEL verb to delete the message.

Note: See also the PROFILE command used to control an environment's
message receipt options in the Online Help.

&WRITE

760 Network Control Language Reference Guide

Return Codes:

When one of the target operands of the &WRITE verb is specified (that is,
LUNAME, NCLID, SERVER, or USERID), &RETCODE is set as follows:

0

The message was delivered to the specified destination.

4

The target was a closed OCS window.

8

The LUNAME specified was not available.

12

The USERID or LUNAME specified was not in OCS mode.

16

The target was not found in the System Services domain.

24

The destination procedure was at queue limit, or the storage limit was
reached.

28

The target for a TYPE=REQ request was not an NCL procedure.

32

The contents of the source MDO exceeds the maximum allowable size.

&WTO

Chapter 2: Verbs and Built-in Functions 761

&WTO

Issues an MVS or VM WTO.

&WTO [CONSOLE={ nn | name }]

 [DESC={ NONE | list }]

 [MCSFLAG=([RESP] [,REPLY] [,BRDCST] [,HRDCPY])]

 [ROUTCDE={ NONE | list }]

 [LINETYPE={ NO | C | L | D | DE | E }]

 DATA=message text

The &WTO verb lets an NCL procedure issue an MVS WTO. Optional parameters
allow specification of routing and descriptor codes, special MCS flags, and
system console ID.

In z/VM, the &WTO verb writes a message to the GCS console.

Operands:

CONSOLE={ nn | name }

Indicates the system console ID that the message is to be queued to. It uses
the REG0 MCSFLAG to conditionally queue the WTO to the nominated
console. If this parameter is used with the ROUTCDE parameter, then the
message is queued to consoles based on routing code as well as the
specified console ID.

You can use CONSOLE=name if running on z/OS (name being a valid console
name).

DESC={ NONE | list }

Allows specification of a list of MVS descriptor codes. The list is a single
code, from 1 to 16, or a list of codes and ranges, as shown:

DESC=5 DESC=(1,7,8-12)

If no descriptor codes are specified, MVS normally supplies a default of 7.

Some MVS descriptor codes, for example, 1, 2, or 11, cause the message to
be regarded as Non-Roll-Delete (NRD), and then the message remains on
MVS (and system) consoles until deleted by an MVS DOM (which is
produced by the &DOM verb). Take care when using these descriptor codes,
as overuse could lead to system console buffer shortages.

&WTO

762 Network Control Language Reference Guide

MCSFLAG=([RESP] [,REPLY] [,BRDCST] [,HRDCPY])

Allows specification of MCSFLAG values. If only a single value is required,
MCSFLAG=flag is used. If more than one is required, the list must be
enclosed in brackets and separated by commas, for example,
MCSFLAG=(flag,flag...).

The allowable MCSFLAG options are:

RESP

Indicates that this WTO is a command response.

REPLY

Indicates that this WTO is an echo of a reply to a WTOR.

BRDCST

Indicates that this WTO is to be broadcast to all consoles, irrespective of
routing codes.

HRDCPY

Indicates that this WTO is to be a hardcopy-only WTO; that is, to be
logged to SYSLOG, but not sent to any console.

The only other MCSFLAG values that &WTO uses are the ROUTCDE/DESC
present flag, and the REG0 flag, set if CONSOLE= is specified.

ROUTCDE={ NONE | list }

Allows specification of a list of MVS routing codes. ROUTCDE values are
from 1 to 128.

A single value is specified as ROUTCDE=n. Multiple values and ranges is
specified as follows:

ROUTCDE=(4,13,27)

ROUTCDE=(1-5,16,40-55)

&WTO

Chapter 2: Verbs and Built-in Functions 763

LINETYPE={ NO| C | L | D | DE | E }

Allows specification of a multi-line WTO. The default setting (NO) generates
a single-line WTO.

Other values allow you to build up a multi-line WTO, one line at a time. The
multi-line WTO is complete when a data-end (DE) or end (E) line is sent.
&ZDOMID contains the same value after each line of a multi-line WTO. You
can write a single-line WTO during generation of a multi-line WTO.

All other &WTO operands except DATA are ignored when specified on the
second and subsequent lines of a multi-line WTO.

The DATA operand is not mandatory for LINETYPE=E.

&RETCODE is set to the WTO macro return code after an &WTO when
LINETYPE is other than NO.

DATA=message text

Specifies the text of the message to WTO. Maximum length of the message
is 126 characters.

Examples: & WTO

&WTO DATA=AOM IS HERE!!!!

&WTO CONSOLE=1 DESC=1 DATA=HELP!!!!

&WTO ROUTCDE=(1,2,11) +

 DATA=Note: Configuration file updated.

&WTO

764 Network Control Language Reference Guide

Notes:

When using &WTO, consider these recommendations:

■ Always provide a message identifier at the start of the message. This
identifier should establish some connection with the issuer of the &WTO.

■ Avoid using descriptor codes 1, 2, or 11. These descriptor codes cause the
messages to be treated as Non-Roll-Delete (NRD) and can lead to excessive
numbers of NRD messages being displayed.

■ Excessive use of &WTO can lead to console buffer shortages.

Following &WTO, the system variable &ZDOMID contains the MVS-assigned
message identification or DOMID, as an 8-hexadecimal digit value. This value is
used in a subsequent &DOM verb to delete the message. This is particularly
important if descriptor codes that make the message NRD are used (typically 1,
2, and 11).

The &WTO verb generates an MVS WTO. Thus, the message is seen and
processed like any other WTO message.

While z/VM supports the WTO macro, only the text parameter is used.

The &RETCODE variable is set to the MVS WTO return code when a multi-line
WTO is issued.

Note: For more information about MCSFLAG values, see the IBM publication
MVS Programming Authorized Assembler Services Reference.

More information:

&WTOR (see page 765)
&DOM (see page 322)

&WTOR

Chapter 2: Verbs and Built-in Functions 765

&WTOR

Issues an MVS WTOR and waits for a reply.

&WTOR[CONSOLE={ nn | name }]

 [RLEN={ 119 | nn }]

 [MCSFLAG=([RESP][,REPLY][,BRDCST][,HRDCPY])]

 [ROUTCDE={ NONE | list }]

 [WAIT={ YES | nn.nn }]

 { [VARS=prefix* [RANGE=(start,end)]] |

 [VARS={ name | (var-name-list) }] |

 [STRING] | STRING=(var-name-list)

 [ARGS [RANGE=(start,end)]] }

 DATA=message text

The &WTOR verb lets an NCL procedure issue an MVS WTOR. Optional
parameters allow specification of routing and descriptor codes, special MCS
flags, and system console ID. By default, the procedure waits indefinitely for a
reply. However, a maximum wait time is specified.

The &WTOR verb is not supported on z/VM.

Operands:

CONSOLE={ nn | name }

Indicates a system console ID that the WTOR is to be queued to. It uses the
REG0 MCSFLAG to conditionally queue the WTOR to the nominated console.
If this parameter is used with the ROUTCDE parameter, the WTOR will be
queued to consoles based on routing code as well as the specified console
ID.

RLEN={ 119 | nn }

Indicates the maximum reply length permitted. The default, and maximum
(MVS-imposed) is 119 characters. Otherwise, specify a value of 1 to 119.

&WTOR

766 Network Control Language Reference Guide

MCSFLAG=([RESP] [,REPLY] [,BRDCST] [,HRDCPY])

Allows specification of some MCSFLAG values. If only a single value is
required, MCSFLAG=flag is used. If more than one is required,
MCSFLAG=(flag,flag...) is used.

Note: Some MCSFLAG values are not meaningful for &WTOR for example,
HRDCPY.

The allowable MCSFLAG options are:

RESP

Indicates that this WTOR is a command response.

REPLY

Indicates that this WTOR is an echo of a reply to a WTOR.

BRDCST

Indicates that this WTOR is to be broadcast to all consoles, irrespective
of routing codes, and so on.

HRDCPY

Indicates that this WTOR is to be a hardcopy-only WTOR that is, is to be
logged to SYSLOG, but not sent to any console.

The only other MCSFLAG values that &WTOR uses are the ROUTCDE/DESC
present flag, and the REG0 flag, set if CONSOLE= is specified.

ROUTCDE={ NONE | list }

Allows specification of a list of MVS routing codes.

A single value is specified as ROUTCDE=n. Multiple values, and ranges is
specified as:

ROUTCDE=(4,13,27)ROUTCDE=(1-5,16,40-55)

Values: 1 to 128

&WTOR

Chapter 2: Verbs and Built-in Functions 767

WAIT={ YES | nn.nn }

Specifies how long the NCL procedure is to wait for a reply to the WTOR.

WAIT=YES, (the default) will cause the procedure to be suspended
indefinitely, pending a reply.

WAIT=nn.nn will cause the procedure to wait for up to nn seconds for a
reply. If no reply is provided by this time, the outstanding WTOR is canceled
(DOM issued) and &RETCODE will be set to 4 and the procedure resumes
execution. The valid range is 0.01 to 9999.99.

If a reply is provided, &RETCODE is set to 0.

WAIT=0 or WAIT=NO is not supported on &WTOR, as it would be senseless
to issue and immediately cancel the WTOR.

Regardless of the WAIT value used, if the procedure is flushed for any
reason, the WTOR is canceled.

VARS=

Specifies that the reply is to be tokenized into the nominated variables
before control is returned to the procedure. Each word of the reply will be
tokenized into the nominated variables from left to right. If insufficient
variables are provided, some data will be lost. Excess variables will be set to
a null value. The format of the operands that is coded with VARS= are
described below.

prefix*

Denotes that variables will be generated automatically during the
tokenization process, and that the variable names will be prefix1 ..
prefix2 and so on. The RANGE= operand is specified to indicate a
starting and ending suffix number. Prefix* cannot be used in
conjunction with other variable names.

name

The name of a variable, excluding the ampersand (&).

name(n)

As above, but n denotes the length of the data that is to be placed in
the variable.

*(n)

Denotes a skip operation, where n represents the number of units to be
skipped during the tokenization process. On VARS= statements n denotes
'skip this number of words'. An asterisk (*) by itself is the same as *(1).

&WTOR

768 Network Control Language Reference Guide

STRING

Specifies that no tokenization is to be performed. The entire text of the
reply is to be treated as a single string and returned to the procedure in &1.
No variables is nominated if STRING is specified.

STRING=(var-name-list)

Specifies that the reply is to be segmented into substrings and placed in the
nominated receiving variables. For example STRING=(A(5),B(10)) indicates
that the first 5 characters are placed in &A and the next 10 characters in &B.

ARGS

Denotes that the message received will be tokenized and placed word by
word into automatically generated variables of the from &1 through &n,
depending on how many are required to hold the message. The RANGE=
operand is coded to designate a start number and optionally, an end
number, which delimits the number of variables that will be generated.

DATA=message text

The text of the message to WTOR. Maximum length of the message is 122
characters.

Examples: &WTOR

&WTOR ARGS DATA=Reply with configuration parameters

&WTOR WAIT=10 CONSOLE=1 ARGS DATA=Reply with config. parameters

&IF &RETCODE=4 &THEN &WTO CONSOLE=1 +

 DATA=No parameters received within time limit

&WTOR

Chapter 2: Verbs and Built-in Functions 769

Notes:

When using &WTOR, consider these recommendations:

■ Always provide a message identifier at the start of the message. This
identifier should establish some connection with the issuer of the &WTOR.

■ WTOR messages are always treated as Non-Roll-Delete. For this reason,
keep to a minimum the number of WTOR messages outstanding at any one
time.

No DOMID is returned after &WTOR, as the NCL procedure is always suspended
until it is replied to, or until the WAIT interval is exceeded, in which case the
WTOR is automatically deleted.

Careless use of &WTOR can tie up many system console buffers. WTOR
messages are always Non-Roll-Delete (NRD).

The &WTOR verb generates an MVS WTOR. Thus, the message is seen and
processed like any other WTOR message.

More information:

&WTO (see page 761)

&ZAMCHECK

770 Network Control Language Reference Guide

&ZAMCHECK

Indicates whether support is enabled in your product region for a specified
access method.

&ZAMCHECK accessmethod

&ZAMCHECK is a built-in function and must be used to the right of an
assignment statement.

&ZAMCHECK is used to verify support for VTAM and XNF access methods.

The term access method refers to a communication program used to
communicate with terminals, other product regions, or another application.

Operands:

accessmethod

The value of this field is VTAM or XNF. The value returned is YES or NO. If a
name other than VTAM or XNF is specified, the result is NO.

Examples:

&A = &ZAMCHECK VTAM

&IF &A = YES &THEN &DO

 -SYSPARMS PPOACBNM=NMPPO1

 -PPO START

 &DOEND

More information:

Summary Table (see page 33)

&ZFEATURE

Chapter 2: Verbs and Built-in Functions 771

&ZFEATURE

Returns an indication of the availability of one or more features.

&ZFEATURE feature1 [feature2 featuren]

&ZFEATURE returns a value of YES or NO to indicate whether your product
region is configured with the single nominated feature or all the nominated
features. This allows NCL procedures to include feature-dependent code that
can or cannot be activated, depending on the presence of the feature.

Operands:

feature1 [feature2.... featuren]

The names of one or more features. If the region is configured with all the
nominated features, the built-in function returns a value of YES in the target
variable. If any of the nominated features is not present in the system,
&ZFEATURE returns a value of NO in the target variable.

Examples: &ZFEATURE

&A = &ZFEATURE TCPIP

&GOSUB .&A

.YES -* TCPIP feature is present, so use its facilities

 :

.NO -* TCPIP feature is not present.

Note: &ZFEATURE is used to test for the features as listed in the description of
the PROD JCL parameter in the Reference Guide.

More information:

Summary Table (see page 33)

&ZNCLKWD

772 Network Control Language Reference Guide

&ZNCLKWD

Returns a value indicating whether a given string is an NCL keyword.

&ZNCLKWD string

Provides a means of testing whether a given string is an NCL keyword.

&ZNCLKWD is a built-in function and must be used to the right of an assignment
statement.

The specified string is tested and one of the following values is assigned to the
variable to the left of the assignment statement.

YES

The string is an NCL keyword.

NO

The string is not an NCL keyword.

Operands:

string

The string to be tested.

Examples:

&A = &ZNCLKWD &INPUT

&IF &A EQ YES &THEN +

 &GOTO .INVALID

More information:

Summary Table (see page 33)

&ZOSCHK

Chapter 2: Verbs and Built-in Functions 773

&ZOSCHK

Indicates whether support is enabled in your product region for a specified
operating system (or family of operating systems) or capability.

&ZOSCHK { ANY | ALL } name [name ...]

&ZOSCHK is a built-in function and must be used to the right of an assignment
statement.

The result is Boolean (0 or 1):

■ 0 means that the test failed.

■ 1 means that the test succeeded.

Operands:

{ ANY | ALL }

This operand is mandatory. Specifying ANY means that, if any of the
following tests is true, then the result is true (1 is returned).

Specifying ALL means that all of the following tests must be true for the
result to be true.

name [name ...]

Each name that you specify here indicates an operating system (or family of
operating systems) or capability that you want to test for.

The value of this field is any of the following:

GENOS

Any OS system (for example, z/OS or MSP)

GENVM

Any VM system

GENVOS

Any VOS3 system

IBM

Any IBM system

IBM_OS

Any IBM OS system

&ZOSCHK

774 Network Control Language Reference Guide

IBM_VM

Any IBM VM system

NONIBM

Any non-IBM system

FUJITSU

Any Fujitsu system

FUJITSU_OS

Any Fujitsu OS system

FUJITSU_FSP

Any Fujitsu FSP system

HITACHI

Any Hitachi system

HITACHI_OS

Any Hitachi OS system

OS390>

z/OS and OS/390

OS/390>

z/OS and OS/390

ZOS

z/OS only

Z/OS

z/OS only

ZOS>

z/OS or later Z/OS> z/OS or later

MSP

MSP only

MSP>

MSP or later (up to and beyond MSP/EX)

MSPAE

MSP/AE only

&ZOSCHK

Chapter 2: Verbs and Built-in Functions 775

MSP/AE

MSP/AE only

MSPAE>

MSP/AE or later (up to and beyond MSP/EX)

MSP/AE>

MSP/AE or later (up to and beyond MSP/EX)

MSPEX

MSP/EX only

MSP/EX

MSP/EX only

MSPEX>

MSP/EX or later

MSP/EX>

MSP/EX or later

VOS3

Hitachi VOS3 only

VM

Any VM

GCS>

GCS or later (up to and beyond VM/ESA)

VMESA>

VM/ESA or later X

VM/ESA>

VM/ESA or later X

EXTMCS

System supports EXTMCS consoles

31BIT

System supports 31-bit addressing

XMS

System supports basic cross-memory services

&ZOSCHK

776 Network Control Language Reference Guide

ESAXMS

System supports ESA-style cross-memory services

SMF77

System supports SMF record 119 (x'77') (z/OS 1.2 and later)

IPV6

System supports IPv6 (z/OS 1.4 and later)

Notes:

The result is boolean (0 or 1):

■ 0 means that the test failed.

■ 1 means that the test succeeded. The remaining operands (at least one; as
many as desired) identify a specific operating system or capability to test
for. If an unrecognized name is used, then the test is treated as false.

Standard NCL function semantics apply. This function is used only on the right of
an assignment statement.

This function returns 0 or 1, not YES or NO.

Examples: &ZOSCHK

&RESULT = &ZOSCHK ANY GENOS MSP

&RESULT = &ZOSCHK ALL IBM VM

More information:

Summary Table (see page 33)

&ZPSKIP

Chapter 2: Verbs and Built-in Functions 777

&ZPSKIP

Sets a new string as the active panel skip data. Optionally, also restarts
processing from the primary menu.

&ZPSKIP [string | =string]

Your product region supports the ability to perform menu jumps or panel skips
as a means of abbreviating panel navigation. Panel skips is used to move rapidly
from one panel display to another without viewing each individual panel which
would normally be displayed. The panel skip data is a variable length string
wherein data for each panel is delineated by the use of a period (.). This data is
normally used to automatically satisfy &PANEL statements. The &ZPSKIP verb is
used to set a new panel skip string. In addition, the use of a leading equal sign
(=), is used to restart processing from the primary menu.

Operands:

=

An optional automatic trigger to flush current processing and re-invoke the
Primary Menu. The associated panel skip string supplied will then be used to
satisfy further panel processing.

string

The data to be stored as the current panel skip string. Periods are used to
delineate the data that is applicable to each panel. In addition, semicolons is
used as field separators to supply data to multiple fields on a panel. Neither
separator is used as part of the data, or is returned to the panel or &ZPSKIP
system variable.

A null value is used to reset any panel skip data.

&ZQUOTE/&ZQUOTE2

778 Network Control Language Reference Guide

Examples: &ZPSKIP

&ZPSKIP =U.4 -* jump to user services and then option 4

&ZPSKIP -* stop any further panel skipping

&ZPSKIP &REMCMD -* set new string for skipping forward

&ZPSKIP =M.TSO -* jump to MAI session TSO

An NCL menu procedure should always support forward panel skipping. The
&ZPSKIP verb should be used to set forward skipping. For example:

&SELECT = &SELSTR (.) &CMD -* extract first option

&REMOPT = &REMSTR (.) &CMD -* extract remainder of data

&ZPSKIP &REMOPT -* set forward skipping

Panel skipping is terminated by a panel display that signifies an error. If the
alarm is sounded or #ERRFLD highlighting is used, then panel skip data is not
used to satisfy the panel and the panel skip string is set to a null value.

Note: For more information about the &ZPSKIP and &ZPSKPSTR system
variables, see the Network Control Language Programming Guide.

More information:

Summary Table (see page 33)

&ZQUOTE/&ZQUOTE2

Places quotes around a string and places it into a variable.

&ZQUOTE text ... text

&ZQUOTE2 text ... text

&ZQUOTE provides a means of quoting a string using single or double quotes.
&ZQUOTE2 also quotes data, but uses only single quotes. For the rules used, see
Notes.

&ZQUOTE and &ZQUOTE2 are built-in functions and must be used to the right of
an assignment statement.

Operands:

text

The text to be quoted

&ZQUOTE/&ZQUOTE2

Chapter 2: Verbs and Built-in Functions 779

Return Codes:

&ZFDBK is set to indicate the success or failure of the quoting procedure:

0

Quote successful

4

The data cannot be quoted. This occurs if the string for quoting is too long
to fit within an NCL variable. The input is assigned to the output variable
without change.

Examples:

&A=&ZQUOTE ABC DEF -* results in &A set to “ABC DEF”

&B=&ZQUOTE say “Hello” -* &B is set to 'say “Hello”'

&C=&ZQUOTE say “G'day” -* &C is set to 'say “G''day”'

&D=&ZQUOTE2 say “G'day” -* &D is set to 'say “G”day”'

Notes:

&ZQUOTE and &ZQUOTE2 is used to quote a string which is later analyzed by
&SETVARS.

&ZQUOTE quotes the text according to the following rules:

■ If the data contains no double quotes (”), a double quote is placed at each
end of the text.

■ If the data contains no single quotes, a single quote is placed at each end of
the text. Otherwise a single quote is placed at each end and every
embedded single quote is replaced by two single quotes

■ If the data is null, the nominated variable is set to null.

&ZQUOTE2 uses the following rules:

■ A single quote is placed at each end of the text and every embedded single
quote is replaced by two single quotes

■ If the data is null, a null quoted string is returned (that is, '').

More information:

&SETVARS (see page 650)
&ZUNQUOTE (see page 788)

&ZSHRINK

780 Network Control Language Reference Guide

&ZSHRINK

Removes leading and trailing spaces and reduces multiple spaces within a string
to one space.

&ZSHRINK text ... text

&ZSHRINK is a built-in function and must be used to the right of an assignment
statement.

&ZSHRINK provides a means of removing spaces from the beginning or end of a
string, or removing multiple spaces from within a string.

Operands:

text

The text to be shrunk.

Notes:

The supplied text is returned with spaces removed according to the following
rules:

■ Leading and trailing spaces are removed.

■ Two or more adjacent spaces are compressed into one space.

■ If the last two characters are a space followed by a period (.), the space is
removed and the period placed following the last non-blank character.

Examples:

&A = &ZSHRINK THIS IS A TEST .

sets &A to THIS IS A TEST.

&ZSOCINFO

Obtains information about a specific socket owned by the process.

&ZSOCINFO socket_id infotype

&ZSOCINFO returns information according to the socket as identified by
socket_id and the value of infotype as explained below.

&ZSOCINFO

Chapter 2: Verbs and Built-in Functions 781

Operands:

EXIST

Returns YES if the NCL process owns a socket with the specified socket ID or
NO if the NCL process does not own a socket with the specified socket ID.

TYPE

Returns a character string representing the type of socket: TCP, TCPLISTEN,
or UDP.

PORT

Returns the port number assigned to the socket by the local host.

ADDR

Returns the IP address assigned to the socket by the local host.

PEERPORT

Returns the port number of the peer host on a TCP connection.

For a UDP socket this is the port number last referenced by a SEND_TO or
RECEIVE_FROM verb.

PEERADDR

Returns the IP address of the peer host on a TCP connection.

For a UDP socket this is the IP address last referenced by a SEND_TO or
RECEIVE_FROM verb.

PEERNAME

Returns the name of the peer host on a TCP connection (where HOSTNAME
was used to establish the connection).

RETCODE

Returns the return code from the last operation on this socket.

FDBK

Returns the reason code from the last operation on this socket.

VERRIN

Returns the vendor error information from the last operation on this socket.

ERRNO

Returns the error number value from the last operation on this socket.

&ZSOCINFO

782 Network Control Language Reference Guide

BYTESIN

Returns the number of bytes of data received by this socket.

BYTESOUT

Returns the number of bytes of data sent by this socket.

Examples:

&STYPE = &ZSOCINFO &SOCK TYPE

&WRITE DATA=SOCKET &SOCK IS &STYPE

&ZSUBST

Chapter 2: Verbs and Built-in Functions 783

&ZSUBST

Returns a string with substituted data.

&ZSUBST subchar data

&ZSUBST provides a means of substituting data in a string or variable. Normally
NCL substitution uses the ampersand (&) character to indicate the start of a
variable name. You can use the &ZSUBST built-in function to substitute a string
of data using a different character.

&ZSUBST is a built-in function and must be used to the right of an assignment
statement.

Operands:

subchar

This is the substitution character. It is:

c

Any single character

C 'c'

Any single quoted character (including a blank)-double quotes is used

X 'xx'

A hexadecimal pair representing the wanted character

data

The data to substitute. The data is in a variable. It is the data after normal
substitution that is then passed through a single substitution pass using the
nominated character instead of the ampersand.

Examples: &ZSUBST

&A = PARIS

&TEST = @A

&RESULT = &ZSUBST @ &TEST -* &RESULT will contain PARIS

&ZSYSPARM

784 Network Control Language Reference Guide

&ZSYSPARM

Obtains the value of a system parameter (SYSPARM).

&ZSYSPARM operand

NCL procedures can use the &ZSYSPARM built-in function to directly access
system parameters which have been set using the SYSPARMS command. The
value of the SYSPARMS operand specified on the built-in function is returned in
the identical format to the output for the same operand in a SHOW SYSPARMS
display. (For information about the SHOW SYSPARMS command, see the Online
Help.)

Operands:

operand

The SYSPARMS operand for which the setting information is required.

Return Codes:

&ZSYSPARM sets the &ZFDBK system variable as follows: 0 SYSPARMS operand
was valid

4

SYSPARMS operand not applicable to current operating system

8

SYSPARMS operand name is unknown to the system

Examples: &ZSYSPARM

&IPPORT = &ZSYSPARM IPPORT

Note: The operand name specified on the &ZSYSPARM built-in function must be
an exact match for a known operand.

&ZTCPERDS

Chapter 2: Verbs and Built-in Functions 785

&ZTCPERDS

Returns the short message for a TCP/IP error code.

&ZTCPERDS n

Operands:

n

A valid error code number. If the number is not a recognized error code, the
message, EUNKNOWN - UNKNOWN ERRNO is returned.

Examples: &ZTCPERDS

&B = &ZTCPERDS 40

sets the value of &B to the following:

N3AD01 - 40 - ENETUNREACH - DESTINATION NETWORK UNREACHABLE

If the number is not a recognized error number, &B is set to:

N3AD01 -xxx - EUNKNOWN - UNKNOWN ERRNO

where xxx is the error number supplied.

&ZTCPERNM

Returns the logical name of a TCP/IP error code.

&ZTCPERNM n

Operands:

n

A valid error code number. If the number is not a recognized error code, the
message, EUNKNOWN is returned.

Examples: &ZTCPERNM

&A = &ZTCPERNM 40

sets the value of &A to ENETUNREACH. If the number is not a recognized error
code, &A is set to EUNKNOWN.

&ZTCPINFO

786 Network Control Language Reference Guide

&ZTCPINFO

Obtains information about the local host or TCP/IP vendor stack.

&ZTCPINFO infotype

&ZTCPINFO returns data according to the value of infotype as explained below.

Operands:

TYPE

Returns the vendor stack type as specified on the TCPIP START command
TYPE=.

STATUS

Returns ACTIVE, STARTING, STOPPING, QUIESCING, or INACTIVE.

HOSTADDR

Returns the local host IP address.

HOSTNAME

Returns the local host alias name.

HOSTFULLNAME

Returns the local host full name.

INTERFACE

Returns descriptive interface information returned by the vendor interface.

CONNECTION

Returns connection information from the vendor interface.

SOLVE_DNR

Returns SOLVE Domain Name Resolver (DNR) information.

Examples: &ZTCPINFO

&INTF = &ZTCPINFO INTERFACE &WRITE DATA=TCPIP INTERFACE IS &INTF

Note: For more information, see the DNR and SHOW DNR command
descriptions in the Online Help.

&ZTCPSUPP

Chapter 2: Verbs and Built-in Functions 787

&ZTCPSUPP

Determines if a function is supported by the current TCP/IP vendor stack.

&ZTCPSUPP function

&ZTCPSUPP returns NO if the function is unknown or not supported, or if the
TCPIP START command has never been issued. It returns YES if the function is
supported.

Operands:

PING

Returns YES if &SOCKET PING is supported.

TRACEROUTE

Returns YES if &SOCKET TRACEROUTE is supported.

GETHOSTBYADDR

Returns YES if &SOCKET GETHOSTBYADDR is supported.

GETHOSTBYNAME

Returns YES if &SOCKET GETHOSTBYNAME is supported.

SOLVE_DNR

Returns YES if the SOLVE Domain Name Resolver (DNR) is supported.

Examples: &ZTCPSUPP

&CANPING = &ZTCPSUPP PING

&WRITE DATA=PING? &CANPING!

Note: For more information, see the DNR and SHOW DNR command
descriptions in the Online Help.

More information:

&SOCKET PING (see page 679)
&SOCKET TRACEROUTE (see page 693)
&SOCKET GETHOSTBYADDR (see page 672)
&SOCKET GETHOSTBYNAME (see page 674)

&ZUNQUOTE

788 Network Control Language Reference Guide

&ZUNQUOTE

Removes one level of quotes from a string.

&ZUNQUOTE text ... text

&ZUNQUOTE is used to reverse the quoting procedures performed by
&ZQUOTE. &ZUNQUOTE is a built-in function and must be used to the right of
an assignment statement. If the input data is null, the nominated variable will
be set to null.

Return Codes:

The system variable &ZFDBK is set to indicate the success or failure of the
unquoting procedure:

0

Unquote was successful

4

Data error occurred. For example, the string is too long for one NCL variable.
The input is copied to the output variable, without change.

Examples: &ZUNQUOTE

& A = &STR 'say “G''day”'

&B = &ZUNQUOTE &A -* &B will set to say “G'day”

&C = &ZUNQUOTE &B -* &C will be the same as &B since

-* there are no more levels of quoting

&D = &ZUNQUOTE 'say “G'day”'-* Will result in &ZFDBK=4

 -* and &D set to 'say “G'day”'

Note: For a definition of a quoted string, see description of &ZQUOTE .

More information:

&ZQUOTE/&ZQUOTE2 (see page 778)

Chapter 3: System Variables 789

Chapter 3: System Variables

About System Variables

The following table is a list of the system variables with a brief description of
their function.

The Feature/Component column indicates whether a specific feature or
component must be included in the initialization parameters at region startup
before you can use the variable.

Note: For more information about system initialization parameters, see the
Reference Guide.

Note: If any of the following products are configured in the region, the internal
Automation Services (AS) component is enabled: FT, NETSPY, OPSCICS, OPSOS,
SNA, SNAAUTO, or TCPIP.

Name Description Feature/
Component

&ALLPARMS A user variable that supplies a single string for all parameters
specified when an NCL procedure is invoked

&AOMACCT1–4 Four system variables that return, for some MVS-sourced
messages, the first four accounting fields from the JOB statement

AS

&AOMALARM Returns the alarm attribute for the current message AS

&AOMASID Returns the address space ID (ASID) that issued the current
message

AS

&AOMATEXT Returns the text of the current line of a message that has been
delivered to AOMPROC

AS

&AOMAUTH Indicates whether the issuer of a WTO/WTOR is authorized AS

&AOMAUTO Returns the value of the automation flag AS

&AOMAUTOT Returns the value of the automation token AS

&AOMBC Indicates whether the current message is a broadcast message AS

&AOMCHAR1 Returns the screen character that indicates the status of operator
console format messages

AS

About System Variables

790 Network Control Language Reference Guide

Name Description Feature/
Component

&AOMCOLOR Indicates the color attribute of the current message AS

&AOMCONNM Returns the Extended MCS console name AS

&AOMDESC Returns the descriptor codes assigned to the current message, in
list format

AS

&AOMDHEX Returns the descriptor codes assigned to the current message, in
hexadecimal

AS

&AOMDMASK Returns the descriptor codes assigned to the current message, in
&MASKCHK format

AS

&AOMDOM Indicates whether the current message is a Delete Operator
Message notification (DOM-Notify)

AS

&AOMDOMID Returns the Delete Operator Message (DOM) ID of the current
message

AS

&AOMEVCLS Returns the EVENT class value AS

&AOMHLITE Returns the highlight attribute for the current message AS

&AOMID Returns an ID assigned by the screening table to the current
message or event

AS

&AOMIJOBN Returns the job name of the address space that issued the WTO,
WTOR, or EVENT

AS

&AOMINTEN Returns the intensity attribute for the current message AS

&AOMJOBCL Returns the job class of the job that issued the WTO or WTOR AS

&AOMJOBID Returns the JES job number that issued the current message AS

&AOMJOBNM Returns the job name of the active address space that issued the
current message

AS

&AOMJSTCB Returns the hexadecimal address of the job step TCB that either
issued the current WTO or WTOR, or owns the TCB that issued
the message

AS

&AOMLDID Returns the domain ID of the last handler of this message, event,
or DOM-Notify

AS

&AOMLROUT Returns the local routing option for the message or event as set
by the screening table ROUTE or LCLROUTE operands

AS

&AOMLRSLT Returns the eight LOOKUP results from screening, in &MASKCHK
format

AS

About System Variables

Chapter 3: System Variables 791

Name Description Feature/
Component

&AOMLRSL1–8 Eight system variables that return the results of up to eight
LOOKUP statements

AS

&AOMLTCTL Indicates whether the current line of the current message is a
control line

AS

&AOMLTDAT Indicates whether the current line of the current message is a
data line

AS

&AOMLTEND Indicates whether the current message is an end line AS

&AOMLTLAB Indicates whether the current line of the current message is a
label line

AS

&AOMMAJOR Indicates whether the current line of the current message is a
major line

AS

&AOMMHEX Returns the MCS flags assigned to the current WTO or WTOR AS

&AOMMINOR Indicates whether the current line of the current message is a
minor line

AS

&AOMMMASK Returns the MCS flags assigned to the current message in
&MASKCHK format

AS

&AOMMONIT Indicates whether to deliver the current message to monitor class
message receivers

AS

&AOMMPFSP Indicates whether the Message Processing Facility (MPF) initially
suppresses the current message

AS

&AOMMSGCD Returns the message code assigned to this message AS

&AOMMSGID Returns the extracted message ID of the current message AS

&AOMMSGLV Returns the highest message level of the current message AS

&AOMMVCON Returns the ID of the system console to which the current
message was routed

AS

&AOMMVSDL Indicates whether the screening table has deleted the current
message

AS

&AOMNMCON Returns the console ID to which the current message was routed AS

&AOMNMDOM Returns the assigned DOMID associated with a DOM-notify
message

AS

&AOMNMIN Returns the number of minor lines in a multiline WTO AS

About System Variables

792 Network Control Language Reference Guide

Name Description Feature/
Component

&AOMNRD Indicates whether to display the current message as a non-roll
delete message on OCS consoles

AS

&AOMODID Returns the domain ID of the system where the message
originated, as set by the NMDID JCL parameter

AS

&AOMRCLAS Returns the ISR remote classes, as set by the screening table, in
MASKCHK format

AS

&AOMRCLS1–8 Eight system variables which provide the individual values of the
eight AOM ISR remote classes for this message or event

AS

&AOMREISS Returns the value YES if the current message was reissued on a
JES3 GLOBAL processor, otherwise its value is NO

AS

&AOMRHEX Returns the routing codes assigned to the current message, in
hexadecimal

AS

&AOMRKEY Returns the retrieval key attribute AS

&AOMRMASK Returns the routing codes assigned to the current message, in
&MASKCHK format

AS

&AOMROUTC Returns the routing codes assigned to the current message AS

&AOMROUTE Returns the routing option for the current message, as set by the
screening table

AS

&AOMRROUT Returns the remote routing option for the current message, as set
by the screening table

AS

&AOMRWTOR Indicates whether the current message is a Replied-to-WTOR AS

&AOMSALRT Indicates whether the &AOMALERT verb sources the current
message

AS

&AOMSDATA Returns the saved data from a successful LOOKUP statement AS

&AOMSINGL Indicates whether the current message is a single-line message AS

&AOMSOLIC Indicates whether the current message is a solicited message AS

&AOMSOLTP Returns the solicit type of the current message AS

&AOMSOS Identifies the type of operating system that sourced this message AS

&AOMSUBTP Returns the subtype of the current line of the current message AS

&AOMTEXT Returns the major text of the current message AS

&AOMTIME Returns the timestamp of the current message AS

About System Variables

Chapter 3: System Variables 793

Name Description Feature/
Component

&AOMTYPE Identifies the current message as a WTO, WTOR, DOM, or EVENT AS

&AOMUFLGS Returns the eight user flags in &MASKCHK format AS

&AOMUFLG1–8 Eight system variables which are user-defined flags, set by the
screening table

AS

&AOMVMMCL Returns the VM IUCV message class of a VM-sourced message AS

&AOMVMSRC Returns the AOM/VM message source AS

&AOMVMUID Returns the VM user ID that a message originated from AS

&AOMVMUND Returns the VM RSCS node that a message originated from AS

&AOMWRID Returns the WTOR reply ID of the current message AS

&AOMWRLEN Returns the length of the text that is passed in reply to a WTOR AS

&AOMWTO Indicates whether the current message is a write-to-operator
(WTO)

AS

&AOMWTOR Indicates whether the current message is a WTOR AS

&BROLINEn A series of system variables that return the current broadcast
lines

&CURSCOL
&CURSROW

System variables that return the cursor location

&DATEn A series of system variables that return the current system date in
different formats

&DAY Returns the current day of the week

&FILEID Returns the name of the file currently being processed

&FILEKEY Indicates the current position of an NCL process within a UDB

&FILERC Indicates the success or otherwise of a file processing function

&FILERCNT Provides a count of the number of records deleted by &FILE DEL
processing

&FSM Indicates if the issuing procedure has access to a real window

&INKEY Returns a value representing the key last used to enter data

&LOOPCTL Returns the current setting of the automatic loop control counter

&LUCOLS Indicates the number of columns currently allocated to this
processing window

About System Variables

794 Network Control Language Reference Guide

Name Description Feature/
Component

&LUEXTCO Indicates whether the terminal supports extended color

&LUEXTHI Indicates whether the terminal supports extended highlighting

&LUNAME Returns the name of the terminal at which the NCL procedure is
executing

&LUROWS Returns the number of rows currently allocated to this process
window

&MAI#SESS Returns the number of currently defined sessions (equivalent to
&MAINSESS)

SNAACCESS

&MAIAE Indicates the availability of the A and E primary commands SNAACCESS

&MAIAPPL Returns the name of the application acting as the PLU on the MAI
session

SNAACCESS

&MAICOLS Returns the number of columns in the current screen of an MAI
session

SNAACCESS

&MAICROWS Returns the number of rows in the current screen of an MAI
session

SNAACCESS

&MAIDISC Indicates whether MAI honors a terminal disconnect request SNAACCESS

&MAIFRLU Returns the direction of the last data stream SNAACCESS

&MAIIKEY Indicates the value of the key used to enter data SNAACCESS

&MAILOCK Indicates whether MAI honors a terminal lock request SNAACCESS

&MAILU Returns the name of the VTAM APPL being used as the secondary
LU

SNAACCESS

&MAIMNFMT Returns the current menu format as long or short SNAACCESS

&MAINSESS Returns the number of currently defined sessions (equivalent to
&MAI#SESS)

SNAACCESS

&MAIOCMD Returns the outbound data stream sent by the PLU SNAACCESS

&MAIREQ Returns the MAI logon request SNAACCESS

&MAISCANL Returns the scan limit for session commands SNAACCESS

&MAISID Returns the session ID of the session of whose behalf the script is
running

SNAACCESS

&MAISKIPP Returns the systemwide value for the session command prefix
character

SNAACCESS

About System Variables

Chapter 3: System Variables 795

Name Description Feature/
Component

&MAISKPK1 Returns the session command function key 1 SNAACCESS

&MAISKPK2 Returns the session command function key 2 SNAACCESS

&MAISMODE Returns the mode in which the script procedure is running SNAACCESS

&MAITITLE Returns the title that is displayed at the top of the MAI-FS main
menu

SNAACCESS

&MAIUNLCK Indicates whether the data stream just received unlocks the
keyboard

SNAACCESS

&MAIWNDOW Indicates the visibility of the MAI-FS session SNAACCESS

&NDBERRI Returns additional information about an NDB warning or error
condition

&NDBRC Indicates the success or otherwise of an &NDBxxx NCL statement

&NDBRID Returns the record ID of the current or new record

&NDBSQPOS Returns the relative position in an &NDBSCAN-built sequence

&NEWSAUTH Indicates whether a user is authorized for NEWS functions SNA

&NEWSRSET Indicates whether the user is authorized for NEWS reset (delete)
functions

SNA

&NMID Returns the ID of this system

&OCSID &OCSIDO Indicates the OCS ID name for the current window

&PANELID Indicates the name of the current panel

&PARMCNT Returns the count of the number of variables entered when a
procedure was invoked

&RETCODE Returns the current system return code

&ROUTECODE Returns the routing codes assigned to the current message, in
&MASKCHK format

AS

&SYSID Returns the current operating system identification

&TIME Returns the current time

&USERAUTH Returns the command authority of the user who initiated the
procedure

&USERID Returns the user ID of the user currently executing the procedure

&USERPW Returns the PASSWORD of the user

About System Variables

796 Network Control Language Reference Guide

Name Description Feature/
Component

&VSAMFDBK Returns the VSAM return code from a file processing operation

&ZACBNAME Returns the primary VTAM ACB name in use by the system

&ZAMTYPE Returns the name of the access method used to connect the
terminal on which the NCL procedure is executing

&ZAPPCACC Returns the number of active APPC conversations for the NCL
process

&ZAPPCCSI Returns the client/server indicator for the APPC conversation

&ZAPPCELM Returns the message from an Error Log GDS variable received
after an error, or deallocate abend

&ZAPPCELP Returns product set information from an Error Log GDS variable
received after an error, or deallocate abend

&ZAPPCID Returns the conversation ID which identifies an APPC
conversation (a unique integer)

&ZAPPCIDA Returns the APPC conversation ID for the transaction that started
the NCL process

&ZAPPCLNK Returns the link name for an APPC conversation

&ZAPPCMOD Returns the mode name for an APPC conversation

&ZAPPCPCC Returns the number of pending APPC conversations for the NCL
process

&ZAPPCQLN Returns the network qualified local LU name

&ZAPPCQRN Returns the network qualified remote LU name

&ZAPPCRM Returns the current receive map name

&ZAPPCRTS Indicates whether a request to send has been received

&ZAPPCSCM Returns the Server Connection Mode indicator

&ZAPPCSM Returns the current send map name

&ZAPPCSND Returns the APPC SEND protocol indicator

&ZAPPCSTA Returns the current state of an APPC conversation

&ZAPPCSYN Returns a character string, equivalent to that of the SYNC_LEVEL
parameter of the LU6.2 MC_GET_ATTRIBUTES verb

&ZAPPCTRN Returns the locally known transaction identifier (up to 32
characters) for an APPC conversation

About System Variables

Chapter 3: System Variables 797

Name Description Feature/
Component

&ZAPPCTYP Returns a character string providing the APPC conversation type

&ZAPPCVRB Returns the last APPC verb that was issued

&ZAPPCWR Returns a character string, equivalent to that of the LU6.2
WHAT_RECEIVED parameter

&ZAPPCWRI Returns a character string, equivalent to that of the LU6.2
WHAT_RECEIVED parameter

&ZBLANK1 Returns a single blank character

&ZBROID Returns the broadcast identifier associated with the NCL process

&ZBROTYPE Indicates the type of broadcast associated with the issuing
procedure

&ZCOLS Indicates the number of columns associated with the physical
terminal

&ZCONSOLE Returns the system console number associated with a console
user ID

&ZCURSFLD
&ZCURSPOS

Returns the name of the field where the cursor is positioned and
the offset within that field

&ZDBCS Indicates whether a terminal supports double byte character set
data streams (DBCS)

&ZDOMID Returns the deletion identifier for a non-roll delete message

&ZFDBK Returns completion information following execution of selected
NCL statements

&ZDSNQLCL Returns the value of the local data set qualifier

&ZDSNQSHR Returns the value of the shared data set qualifier

&ZGDATEn A set of system variables that return the date, in different
formats, based on GMT

&ZGDAY Returns the day of the week, based on GMT

&ZGOPS Indicates the generic type of operating system

&ZGTIMEn A set of system variables that return the time, based on GMT

&ZGTIMEZn A set of system variables that indicate the difference in time
between local (operating system) time and GMT

About System Variables

798 Network Control Language Reference Guide

Name Description Feature/
Component

&ZINTYPE (Message profile variable) Specifies whether a request message
or a response message satisfies an &INTREAD operation

&ZIREQCNT Returns the count of messages queued to dependent request
queue of an NCL process

&ZIRSPCNT Returns the count of messages queued to dependent response
queue of an NCL process

&ZJOBNAME Returns the job name

&ZJOBNUM Returns the JES2/3 job number for the last job submitted by NCL
(OS/VS only)

&ZJRNLACT Returns the ddname of the active journal data set

&ZJRNLALT Returns the ddname of the alternate (or inactive) journal data set

&ZLCLIPA Returns the IP address of the local host for a TN3270 session

&ZLCLIPP Returns the IP port of the TN3270 server for a TN3270 session

&ZLOGMODE Returns the name of the VTAM logmode table entry used when
the current terminal was connected

&ZLUNETID Returns the network ID of the currently connected terminal

&ZLUTYPE Indicates the type of device or environment

&ZLU1CHN Indicates the segment position of a message received from an
LU1 device

&ZMAIACT# or
&ZMAIACTN

Returns the number of active sessions associated with the current
window

SNAACCESS

&ZMALARM Indicates whether the message causes the terminal alarm to
sound

&ZMALLMSG Indicates whether an MSG ALL command generates the message

&ZMAOMAU Indicates whether the original WTO or WTOR issuer was
authorized

AS

&ZMAOMBC Indicates whether the current message has the AOM broadcast
attribute

AS

&ZMAOMDTA Indicates whether the current message contains AOM data AS

&ZMAOMID Returns the AOM ID value AS

&ZMAOMJI Returns the job ID of AOM MVS-sourced messages AS

About System Variables

Chapter 3: System Variables 799

Name Description Feature/
Component

&ZMAOMJN Returns the job name of AOM MVS-sourced messages AS

&ZMAOMMID Returns the AOM message ID AS

&ZMAOMMIN Indicates whether this is an AOM minor line AS

&ZMAOMMLC Indicates whether the current message is an MLWTO control line AS

&ZMAOMMLD Indicates whether the current message is an MLWTO data line AS

&ZMAOMMLE Indicates whether the current message is an MLWTO end line AS

&ZMAOMMLL Indicates whether the current message is an MLWTO label line AS

&ZMAOMMLT Indicates the type of MLWTO of the current message AS

&ZMAOMMLV Returns the highest AOM message level of the current message AS

&ZMAOMMSG Indicates whether the current message was marked for
propagation to eligible AOM receivers

AS

&ZMAOMRC Returns the AOM routing codes assigned to the current message AS

&ZMAOMRCM Returns the routing codes assigned to the current message, in
&MASKCHK format

AS

&ZMAOMRCX Returns the AOM routing codes assigned to the current message,
in hexadecimal characters

AS

&ZMAOMSOS Returns the operating system type from which the current AOM
message came

AS

&ZMAOMSYN Returns the originating system name for the current message AS

&ZMAOMTM Returns the AOM timestamp of the current message AS

&ZMAOMTYP Returns the AOM type of a message AS

&ZMAOMUFM Returns the eight AOM user flags in &MASKCHK format AS

&ZMAOMUF1–8 Eight system variables which return the AOM user-defined flags,
set in the screening table

AS

&ZMAOMUI Returns the originating user ID of an AOM message from a VM
system

AS

&ZMAOMUN Returns the VM RSCS node name that an AOM/VM message came
from

AS

&ZMAPNAME (Message profile variable) Returns the map name for the
embedded user MDO in the current $MSG MDO if present

About System Variables

800 Network Control Language Reference Guide

Name Description Feature/
Component

&ZMCOLOR
&ZMCOLOUR

Returns the color attribute of the message

&ZMDOCOMP Returns the last name segment of the fully qualified name for the
MDO component involved in the last operation

&ZMDOFDBK Returns the feedback code after any verb references an MDO

&ZMDOID Returns the identifier of the MDO involved in the last operation

&ZMDOM Indicates whether the message is a delete operator message
instruction

&ZMDOMAP Returns the map name for &ZMDOID

&ZMDOMID Returns the delete operator message identifier (DOMID) of the
message read, provided the message has the non-roll delete
message attribute (as determined by the setting of the &ZMNRD
terminal)

&ZMDONAME Returns the fully qualified name of the MDO component involved
in the last operation

&ZMDORC Returns the return code after any verb references an MDO (used
with &ZMDOFDBK)

&ZMDOTAG Returns the MDO tag value of the component involved in the last
operation

&ZMDOTYPE Returns the ASN.1 type of &ZMDOCOMP

&ZMEVONID Returns the NCL ID of the procedure which issued the &EVENT
which caused the message on the RESP queue

&ZMEVPROF Returns the EDS profile name which resulted in delivery of an
event notification.

&ZMEVRCDE Returns the route code of an incoming event message

&ZMEVTIME Returns the time that an event originated, in the format
HH.MM.SS.THT

&ZMEVUSER Returns the user ID of a user who issued the &EVENT verb which
caused the message on the RESP queue

&ZMHLIGHT
&ZMHLITE

Returns the display highlighting attribute of the message. Values
are NONE, USCORE, REVERSE, or BLINK

&ZMINTENS Returns the display intensity attribute of the message. Values are
HIGH, or LOW, or null if no message is processed

About System Variables

Chapter 3: System Variables 801

Name Description Feature/
Component

&ZMLNODE Returns the terminal name of the user to whom the log message
is to be attributed

&ZMLOGCMD Returns whether a log message is an echo to the log of a
command (available to &LOGREAD only)

&ZMLSRCID Returns the message prefix of the last handler for the message
just received

&ZMLSRCTP Returns the type of the last handler for the message just received

&ZMLTIME Returns the time stamp of a log message (available to &LOGREAD
only) (format HH.MM.SS.THT)

&ZMLUSER Returns the user ID the log message came from (available to
&LOGREAD only)

&ZMMONMSG Indicates whether the message received is a monitor class
message

&ZMMSG Indicates whether the message received is a standard message

&ZMMSGCD Indicates the hexadecimal message code attribute for this
message

&ZMNMDIDL Returns the domain ID for the previous system to handle this
message

&ZMNMDIDO The domain ID for the system where this message originated

&ZMNRD Indicates whether the message carries the non-roll delete
attribute

&ZMNRDRET Indicates whether the message is received as a result of the user
issuing an NRDRET command

&ZMODFLD Returns the name of the next modified field on a panel

&ZMOSRCID Returns the message prefix for the originator of the message just
received

&ZMOSRCTP Returns the type for the originator of the message just received

&ZMPPODTA Indicates whether any PPO message profile information is
available regarding this message

AS

&ZMPPOMSG Indicates whether the message originated from PPO AS

&ZPPOSCNT A counter of remote domains to which a PPO message was
delivered.

AS

About System Variables

802 Network Control Language Reference Guide

Name Description Feature/
Component

&ZMPPOSEV If &ZMPPODTA=YES, then this variable includes gives the severity
level of the PPO message

AS

&ZMPPOTM If &ZMPPODTA=YES, this variable gives the time when the
message was created

AS

&ZMPPOVNO If &ZMPPODTA=YES, this variable returns the VTAM message
number for the PPO message

AS

&ZMPREFXD Indicates whether the message text has been prefixed with
identifier values

&ZMPTEXT Returns the message text, prefixed according to the current
profile settings

&ZMREQID Returns either user ID or NCL ID, if &ZINTYPE=REQ

&ZMREQSRC Returns the source of the INTQ command if &ZINTYPE=REQ

&ZMSLEVEL Returns the version of System Services

&ZMSOLIC Indicates whether the message was solicited or unsolicited

&ZMSOURCE Returns the verb that last set the values for the message profile
variables

&ZMTEXT Returns the text of the message received

&ZMTYPE Returns the type of message received

&ZNCLID Returns the unique identifier of the NCL process

&ZNCLNEST Returns the EXEC nesting level of the current procedure within
the method level

&ZNCLTYPE Returns the type of the current procedure

&ZNETID Returns the value of the VTAM network identifier

&ZNETNAME Returns the network name of the primary ACB

&ZNMDID Returns the value of the domain identifier

&ZNMSUP Returns the value of the system user prefix

&ZOCS Indicates whether the NCL process is associated with an OCS
window

&ZOPS Returns the type of operating system

&ZOPSVERS Returns the version of the operating system

About System Variables

Chapter 3: System Variables 803

Name Description Feature/
Component

&ZOUSERID Returns the originating user ID for an NCL process

&ZPERRORC Returns the value of the standard panel field attribute COLOR for
error fields and messages

&ZPERRORH Returns the value of the standard panel field attribute HLITE for
error fields

&ZPINPHIC Returns the value of the standard panel field attribute COLOR for
mandatory input data fields and command fields

&ZPINPLOC Returns the value of the standard panel field attribute COLOR for
optional input data fields

&ZPINPUTH Returns the value of the standard panel field attribute HLITE for
data input fields

&ZPINPUTP Returns the value of the standard panel field attribute PAD for
data input fields

&ZPLABELC Returns the value of the standard panel field attribute COLOR for
field labels and comments

&ZPMTEXT1 Returns the text of the Primary Menu broadcast

&ZPOUTHIC Returns the value of the standard panel field attribute COLOR for
output data fields that are always present

&ZPOUTLOC Returns the value of the standard panel field attribute COLOR for
output data fields that are not always present

&ZPPFKEYC Returns the value of the standard panel field attribute COLOR for
the output fields on the left and right of the panel title and the
function key area

&ZPPI Indicates whether PPI is available

&ZPPINAME Returns the defined receiver-ID of the current NCL process if it
has one

&ZPRINAME Returns the name of the primary ACB or XNF UCE

&ZPRODNAM Returns the product name

&ZPSERVIC Returns the value of the first four bytes of the PSERVIC field of the
BIND for the current terminal

&ZPSKIP Returns the next available segment of panel skip data

&ZPSKPSTR Returns the current panel skip string in its entirety

About System Variables

804 Network Control Language Reference Guide

Name Description Feature/
Component

&ZPSUBTLC Returns the value of the standard panel field attribute COLOR for
subtitles, headings and trailers

&ZPTITLEC Returns the value of the standard panel field attribute COLOR for
the panel title

&ZPTITLEP Returns the value of the standard panel field attribute PAD for
the panel title

&ZPWSTATE Returns the state of a user's password

&ZREMIPA Returns the IP address of the remote host for a TN3270 session

&ZREMIPP Returns the remote host IP port for a TN3270 session

&ZROWS Returns the number of rows available to the physical terminal

&ZSCOPE Returns the scope of the server name if the current NCL process is
registered as a server

&ZSECEXIT Returns the type of security exit installed

&ZSERVER Returns the server name if the current NCL process is registered
as a server

&ZSNAMID Returns an integer when using the &SNAMS verbs SNA

&ZSOCCID Returns the socket ID used by the interface

&ZSOCERRN Returns the error number value associated with the last
referenced socket

&ZSOCFHNM Returns the full host name of the host referenced by some
requests

&ZSOCHADR Returns the IP address of the host referenced by some requests

&ZSOCHNM Returns the host name of the host referenced by some requests

&ZSOCID Returns the socket ID of the last referenced socket

&ZSOCPRT Returns the port number of the last referenced socket

&ZSOCTYPE Returns the type of the last referenced socket

&ZSOCVERR Returns vendor error information from the last referenced socket

&ZSSCPNAM Returns the value of the VTAM SSCP name

&ZSYSNAME Returns the SYSNAME value

&ZTCP Returns the status of the socket interface

About System Variables

Chapter 3: System Variables 805

Name Description Feature/
Component

&ZTCPHSTA Returns the value of the IP address of the local host

&ZTCPHSTF Returns the value of the full name of the local host

&ZTCPHSTN Returns the value of the short name of the local host

&ZTIMEn Returns system variables for different formats of the current time

&ZTSOUSER Indicates if the user has connected through the TSO or TSS
interface

&ZUCENAME Returns the UCE name that the product region is using to
communicate with XNF

&ZUDATEn A set of system variables that return the user's date, in different
formats, time zone adjusted

&ZUDAY Returns the user's day of the week, time zone adjusted

&ZUSERLC Returns the language code for this user

&ZUSERSLC Returns the system recognized language code for a user

&ZUSRMODE Returns a value indicating special conditions of this signed on user

&ZUTIMEn A set of system variables that return the user's time, time zone
adjusted

&ZUTIMEZn A set of system variables that indicate the difference in time
between local (operating system) time and the user's time zone

&ZUTIMEZN Returns the user's time zone name

&ZVARCNT Returns the number of variables created or modified by the last
NCL verb that used generic processing

&ZVTAMLVL Returns the VTAM release and version number, if available

&ZVTAMPU Returns the host PU name of VTAM

&ZVTAMSA Returns the subarea number of VTAM

&ZWINDOW Returns the identifier of the current window

&ZWINDOW# Returns the number of active windows

&ZWSTATE Returns a value indicating the state of the current window

&0 Returns the name of the procedure currently being executed

&00 Returns the name of the base procedure of the NCL process

&000 Returns the system global variable prefix

&ALLPARMS

806 Network Control Language Reference Guide

&ALLPARMS

A user variable that supplies a single string for all parameters specified when an
NCL procedure is invoked.

&ALLPARMS is a user variable that is a single string containing all parameters
entered when the procedure was invoked.

&ALLPARMS is created automatically when the process is invoked if any data
was supplied on the initiating command.

Examples: &ALLPARMS

If a procedure is invoked with the following command:

EXEC ROUTPROC text of command to be sent to remote location

then &ALLPARMS is set to ”text of command to be sent to remote location”.

The variable can then be used in commands such as:

ROUTE NM2 &ALLPARMS

Notes:

&ALLPARMS is set only when a procedure is invoked with parameters. If the
procedure is invoked without parameters, &ALLPARMS is set to null.
Subsequent functions such as &PAUSE which allow the operator to enter more
optional variables do not cause &ALLPARMS to be reset.

The data contained within &ALLPARMS is referenced on an individual variable
basis using &1, &2, and so on. These variables, however, remain available only
until reset by another function or assignment that specifically references that
variable. The maximum length of data that is set in &ALLPARMS is 256
characters.

Because &ALLPARMS is a user variable, it is deleted by the procedure if
necessary.

&AOMACCT1-4

Chapter 3: System Variables 807

&AOMACCT1-4

Four system variables containing, for some MVS-sourced messages, the first
four accounting fields from the JOB statement.

The system variables &AOMACCT1-4 contain the first four accounting fields
from the JOB statement of a job issuing a WTO or WTOR message. Each variable
has a maximum length of 10 characters.

Accounting information is not always available. If the message is sourced by
JES2, or the accounting control blocks could not be located, these system
variables are null. They are also null for DOM-notify or VM-sourced messages.

Examples: &AOMACCT1

&AOMREAD STRING &MSG

 .

 .

 .

&IF .&AOMACCT1 = .PROD &THEN ... process prod job

 &ELSE ... process non-prod job.

 .

 .

 .

Note: If accounting information is to be used, it should be saved in a table when
a message that carries it is detected.

More information:

&AOMJOBID (see page 829)

&AOMALARM

808 Network Control Language Reference Guide

&AOMALARM

A system variable containing the alarm attribute for the current message.

The &AOMALARM system variable is set to either NO or YES corresponding to
the value coded on the [ALARM=NO | YES] keyword operand of the GLOBAL or
MSGGROUP statements in the AOM screening table, or as altered by a SET
statement.

If the ALARM= operand is not coded in the screening table then the default
value assigned to this system variable is NO.

Example: &AOMALARM

&AOMREAD STRING &MSG

 .

 .

 .

&IF &AOMALARM = NO &THEN &WRITE ALARM=YES DATA=&MSG +

 &ELSE &WRITE DATA=&MSG

 .

The &ZMALARM system variable contains the ALARM attribute for AOM
messages delivered beyond AOMPROC.

Note: For more information, see the GLOBAL, MSGGROUP, and SET statements
in the AOM screening table.

More information:

&AOMREAD (see page 71)
&ZMALARM (see page 976)

&AOMASID

Chapter 3: System Variables 809

&AOMASID

A system variable containing the MVS address space ID (ASID) that issued the
current message, in hexadecimal format.

&AOMASID contains a four-digit hexadecimal number which is the address
space ID of the job that generated the message.

Sometimes messages are generated by a job, such as JES2, on behalf of another
job. In such an instance the value in &AOMASID is the ID of the actual address
space that issued the message, such as JES2, and not the ID of the address space
that the message actually refers to.

Examples: &AOMMSGID

.LOOP

&AOMREAD SET &TESTJOB = &SUBSTR &AOMJOBNM 1 4

&IF .&AOMMSGID = .$HASP373 &IF &TESTJOB = TEST &GOTO .CANJOB

 .

 .

 .

&GOTO .LOOP

-*Pass ASID to Worker NCL proc with request to CANCEL job.

.CANJOB

-INTQ ID=xxx CANCEL &AOMASID

&GOTO .LOOP

Note: This variable is null if the current message is VM-sourced or a
DOM-Notify.

More information:

&AOMJOBID (see page 829)
&AOMJOBNM (see page 830)

&AOMATEXT

A system variable containing the text of the current line of a message that has
been delivered to AOMPROC.

When the &AOMREAD verb is issued to get the next message for processing by
AOMPROC, the message is tokenized by using the VARS or ARGS operand.

Where access to the complete text of the original message is required,
&AOMATEXT is used.

&AOMATEXT

810 Network Control Language Reference Guide

Examples: &AOMATEXT

&AOMREAD ARGS

 .

 .

 .

&IF &AOMID EQ WRITEOCS &THEN +

 &WRITE MON=YES MSGCODE=EF DATA=&AOMATEXT

 .

 .

 .

Notes:

&AOMATEXT equals &AOMTEXT for single line WTOs and WTORs, and VM
messages. For multi-line WTOs, &AOMATEXT is always set to the current or
minor line.

The three system variables &AOMMAJOR,&AOMMINOR, and &AOMSINGL is
used to determine if the current line is a multi-line WTO and whether the
current line is a major or minor line.

In the case of reading a minor line of a multi-line WTO, &AOMATEXT contains
the actual text of the minor line.

Following is a table of the possible settings for all these variables:

&AOMMAJOR &AOMMINOR &AOMSINGL &AOMTEXT

NO NO YES CURRENT LINE

YES NO YES CURRENT LINE

NO YES NO FIRST/MAJOR LINE

In all the above cases, &AOMATEXT has the text of the current line.

The text returned includes any MVS screen characters.

More information:

&AOMCHAR1 (see page 814)
&AOMTEXT (see page 871)
&AOMMAJOR (see page 840)
&AOMMINOR (see page 842)
&AOMSINGL (see page 866)

&AOMAUTH

Chapter 3: System Variables 811

&AOMAUTH

A system variable that indicates if the issuer of a WTO/WTOR is authorized.

Any program, either authorized or unauthorized, can issue a WTO or WTOR. It
might be necessary to determine if the issuer of a WTO/WTOR is authorized
before proceeding with any processing associated with that message.

&AOMAUTH is set to YES if the program issuing the WTO/WTOR is authorized;
otherwise it is set to NO.

By examining &AOMAUTH it is possible to effectively ignore a message that was
issued from an unauthorized program (for example, a tape mount message),
which contains the same text as a critical message.

Examples: &AOMAUTH

&AOMREAD SET

 .

 .

 .

&IF &AOMAUTH = NO &THEN &AOMDEL

Notes:

In MSGPROC, the system variable &ZMAOMAU contains the same value as
&AOMAUTH.

This system variable is null for VM messages and DOM-notifications.

&AOMAUTO

812 Network Control Language Reference Guide

&AOMAUTO

A system variable that returns the value of the automation flag.

MPF lists can flag messages as eligible for automation. This system variable
contains the value YES or NO, reflecting this automation option.

Example: &AOMAUTO

&AOMREAD SET

 .

 .

 .

&IF &AOMAUTO = YES &THEN ... automate...

Notes:

This variable is useful when converting from other automation products that use
the MPF list facilities.

This system variable is null for VM messages and DOM-notifies.

More information:

&AOMAUTOT (see page 813)

&AOMAUTOT

Chapter 3: System Variables 813

&AOMAUTOT

A system variable that contains the value of the automation token.

MPF lists can flag messages as eligible for automation. An optional 1- to
8-character automation token can also be assigned. This system variable
contains the automation token value.

Example: &AOMAUTO

&AOMREAD SET

 .

 .

 .

&IF &AOMAUTO = YES &THEN &GOTO .&AOMAUTOT

Notes:

This variable is useful when converting from other automation products that use
the MPF list facilities.

This system variable is null for VM messages and DOM-notifies.

More information:

&AOMAUTO (see page 812)

&AOMBC

A system variable that indicates whether or not the current message is a
broadcast message.

This variable is set to YES if the current message is a console broadcast message;
otherwise it is set to NO.

Example: &AOMBC

& IF &AOMBC = YES &THEN &AOMCONT COLOR=WHITE

Note: Console broadcast is also indicated in the message level attribute.

More information:

&AOMMSGLV (see page 848)

&AOMCHAR1

814 Network Control Language Reference Guide

&AOMCHAR1

A system variable containing the screen character that indicates the status of
operator console format messages.

When an MVS message is to be sent to an operator console, it contains a screen
character that indicates the status of the message. This screen character
immediately precedes the message text.

Valid values for the screen character are as follows:

asteriskl (*)

The message was issued by an authorized system program with a descriptor
code of 1, 2, or 11, and requires specific operator action.

at sign (@)

The message was issued by a problem program with a descriptor code of 1,
2, or 11, and requires specific operator action.

blankl

The message does not require any specific operator action.

Example: &AOMCHAR

&IF .&AOMCHAR1 = . &THEN &AOMDEL

Notes:

When a message is parsed by &AOMREAD the first character of the message is
not tokenized into an NCL variable. The only method of obtaining the screen
character is by referring to this system variable or by sub-stringing the first
character of the &AOMTEXT or &AOMATEXT system variables.

For VM-sourced messages, this system variable is null.

More information:

&AOMREAD (see page 71)
&AOMTEXT (see page 871)
&AOMATEXT (see page 809)

&AOMCOLOR

Chapter 3: System Variables 815

&AOMCOLOR

A system variable that indicates the color attribute of the current message.

After an &AOMREAD verb is issued to get the next available message for
processing by AOMPROC, &AOMCOLOR is set to indicate the color attribute for
that message.

The &AOMCOLOR system variable is set to one of the following values
corresponding to the value coded on the [COLOR=value] keyword operand of
the GLOBAL or MSGGROUP statements in the AOM screening table, or as
altered by a SET statement.

If the COLOR operand is coded on both the GLOBAL and MSGGROUP
statements, then the value on the MSGGROUP statement takes precedence for
a particular message.

Valid values for message color are:

RED, BLUE, GREEN, WHITE, PINK, YELLOW, TURQUOISE, NONE.

Example: &AOMREAD

&AOMREAD SET

 .

 .

 .

&IF .&AOMID EQ .PRODIMS &THEN +

 &WRITE MSGCODE=04 COLOR=&AOMCOLOR DATA=&ATEXT

Notes:

In MSGPROC, the system variable &ZMCOLOR contains the same value as
&AOMCOLOR.

If the screening table does not set a color attribute, then &AOMCOLOR is set to
NONE.

More information:

&AOMINTEN (see page 827)
&AOMHLITE (see page 823)

&AOMCONNM

816 Network Control Language Reference Guide

&AOMCONNM

Returns the Extended MCS console name.

Provides the Extended MCS console name that a WTO or WTOR is directed to or
that a command was issued from.

Example: &AOMCONNM

& IF &AOMCONNM = MASTER &THEN +

 &GOSUB .MSGMAST

More information:

&AOMMVCON (see page 849)

&AOMDESC

A system variable that contains the descriptor code(s) assigned to the current
message, in list format.

The descriptor code(s) that is assigned to a message are in the range from 1 to
16. This system variable contains a list-format representation of the descriptor
codes. For example, if descriptor codes 1 and 7 are set, &AOMDESC has the
value (1,7).

Example: &AOMDESC

&AOMREAD ARGS

 .

 .

 .

&WTO DESC=&AOMDESC DATA=I saw msg: &AOMATEXT

 .

 .

 .

Note: This system variable is particularly useful for the DESC operand of the
&AOMALERT and &WTO verbs.

&AOMDHEX

Chapter 3: System Variables 817

More information:

&WTO (see page 761)
&AOMALERT (see page 40)
&AOMDMASK (see page 818)
&AOMDHEX (see page 817)

&AOMDHEX

A system variable that contains the descriptor code(s) assigned to the current
message, in hexadecimal.

The descriptor code(s) that is assigned to a message are in the range from 1 to
16. This is a two-byte (four-character) system variable containing the
hexadecimal representation of the descriptor code(s).

For example, a WTO macro specifying DESC=(3,7,9) yields a hexadecimal value
of X'2280' in &AOMDHEX.

Example: &AOMDHEX

& AOMREAD ARGS

 .

 .

 .

&CALL USERPROG &AOMDHEX

 .

 .

 .

Note: This system variable is particularly useful for passing the descriptor
code(s) to a called program.

More information:

&AOMDMASK (see page 818)
&AOMCONNM (see page 816)

&AOMDMASK

818 Network Control Language Reference Guide

&AOMDMASK

A system variable that contains the descriptor code(s) assigned to the current
message, in &MASKCHK format.

The descriptor code(s) that is assigned to a message are in the range from 1 to
16. This is a sixteen-byte system variable containing sixteen Y/N values
representing the descriptor code(s).

For example, a WTO macro with DESC=(3,7,9) would yield a sixteen-byte value
of NNYNNNYNYNNNNNNN.

Example: &AOMDMASK

& NRD = &MASKCHK **Y***Y*Y******* &AOMDMASK

Note: &AOMDMASK provides easy access to message descriptor code(s) via
NCL.

More information:

&AOMDHEX (see page 817)
&AOMDESC (see page 816)

&AOMDOM

Chapter 3: System Variables 819

&AOMDOM

A system variable that indicates whether or not the current message is a Delete
Operator Message notification (DOM-Notify).

If an AOMPROC issues &AOMCONT, REPL, or DEL with the DOM-NOTIFY=YES
option for a WTO, WTOR, or MVS-sourced EVENT, then AOM enqueues a
DOM-Notify message to the AOMPROC if either of the following happens:

■ A corresponding MVS DOM (in any format) is received.

■ AOM is stopped.

When this message is read by &AOMREAD, &AOMDOM is set to YES.

The &AOMDOMID system variable contains the domain ID of the original
message. If the message was sent to AOM receivers, as an NRD message, then
the domain ID assigned by Automation Services is also available in
&AOMNMDOM.

This system variable is accessed in an AOMPROC only, and is available after an
&AOMREAD statement is issued.

Example: &AOMDOM

& AOMREAD SET

 .

 .

 .

&IF &AOMDOM = YES &THEN ... process dom notify

Notes:

An AOMPROC can indicate an interest in a DOM by issuing
&AOMCONT/REPL/DEL with DOM-NOTIFY=YES. AOM handles the various MVS
DOM types and automatically queues the notification to the correct AOMPROC.

A value of DOM in system variable &AOMTYPE, after an &AOMREAD DOM=YES
verb is executed, also indicates that the current message is a DOM-Notify.

More information:

&AOMDOMID (see page 820)
&AOMNMDOM (see page 852)
&AOMREAD (see page 71)

&AOMDOMID

820 Network Control Language Reference Guide

&AOMDOMID

A system variable that contains the MVS-assigned Delete Operator
Message (DOM) ID of the current message.

Every WTO/WTOR message has an associated DOMID. This ID is normally used
to associate a non-roll delete WTO/WTOR message with a subsequent DOM. A
DOM is generated to delete a particular non-roll delete WTO/WTOR message
that is no longer required by the system.

For example, when an address space terminates it can generate a DOM
message to delete outstanding non-roll-delete messages that were associated
with the address space.

This DOMID is supplied in the &AOMDOMID system variable following an
&AOMREAD that returns a WTO, WTOR, or MVS-sourced EVENT.
&AOMALERT-generated WTO or EVENT messages are also assigned a DOMID. It
is also supplied when a DOM-Notify message is received by AOMPROC.

The DOMID is formatted as 8 hexadecimal digits. The first 2 are a system ID and
the last 6 are the message number.

Examples: &AOMDOMID

-* read messages and DOM-notifies.

.LOOP

&AOMREAD SET

-* if NRD001 save domid

&IF .&AOMMSGID = NRD001 &THEN &DO -* want notify

 &SAVEID = &AOMDOMID -* save domid

 &AOMCONT DOM-NOTIFY=YES -* indicate notify

 -* wanted & GOTO .LOOP

&DOEND

&IF &AOMTYPE = DOM &THEN &DO -* got dom notify

 &if .SAVEID = .&AOMDOMID &THEN &DO

 .

 . -* process notify

 .

 &GOTO .LOOP

&DOEND
Th e DOM

&AOMDOMID

Chapter 3: System Variables 821

Notes:

ID contained in this system variable is generated by MVS, and as such is useful
only for message correlation within an AOMPROC, or for use as the ID for an
&DOM verb. Automation Services generates its own internal DOMID for
messages sent to OCS consoles.

The DOMID is used to correlate a message with the arrival of the associated
DOM-NOTIFY.

Another use is to issue an MVS DOM using the &DOM verb for NRD messages
that MVS does not itself delete.

More information:

&AOMDOM (see page 819)
&DOM (see page 322)
&AOMREAD (see page 71)

&AOMEVCLS

822 Network Control Language Reference Guide

&AOMEVCLS

Returns the EVENT class value.

When an EVENT statement is executed by a screening table, or an &AOMALERT
TYPE=EVENT verb is executed, the generated event is assigned a class. This class
is a 1- to 12-character value. &AOMEVCLS returns this event class, or a null
value if no event class is specified for this event.

The meaning of event classes is user defined.

Example: &AOMDOMID

-* process events

.LOOP

&AOMREAD SET

-* if NRD001 save domid

&IF &AOMTYPE = EVENT &THEN &DO -* want notify

 &GOTO .&AOMEVCLS -* use class as label.

&DOEND

Notes:

AOM places no meaning on an event class. It is entirely user defined.

An event class is specified along with an ID value (as set in &AOMID). This is
useful for major and minor subdivision of events.

More information:

&AOMTYPE (see page 873)
&AOMID (see page 823)

&AOMHLITE

Chapter 3: System Variables 823

&AOMHLITE

Returns the highlight attribute for the current message.

The &AOMHLITE system variable is set to one of the following values taken from
the value coded on the [HLIGHT=value] keyword operand of the GLOBAL or
MSGGROUP statements in the AOM screening table, or as altered by a SET
statement.

Valid values for message highlight are:

NONE

USCORE

BLINK

REVERSE

Example: &AOMHLITE

-* process events

.LOOP

&AOMREAD SET

 .

 .

 .

&IF &AOMHLITE = NONE &THEN &GOTO .SETHLITE

 .

 .

 .

&GOTO .LOOP -* Set messages to REVERSE highlighting.

.SETHLITE

&AOMCONT HLIGHT=REVERSE

&GOTO .LOOP

More information:

&AOMINTEN (see page 827)
&AOMCOLOR (see page 815)
&AOMALARM (see page 808)

&AOMID

Returns an ID that has been assigned to the current message or event.

Enables AOM messages to be classified into groups for processing.

&AOMID

824 Network Control Language Reference Guide

Example: .&AOMID

&CONTROL NOLABEL

 .

 .

 .

&AOMREAD SET

&GOTO .&AOMID -* Use &AOMID as a branch destination

 .

 .

 .

.JESMSG -* $HASP messages

 .

 .

 .

.ACFMSGS -* ACF2 messages

 .

 .

 .

&AOMID

Chapter 3: System Variables 825

Notes:

The GLOBAL, MSGGROUP, and SET statements in the AOM screening table allow
the specification of an ID, from 1 to 12 characters in length. If a message passes
screening at a particular level then the ID specified at that level, or a default
value, is assigned.

If no screening table is active, this variable has a value of NOTABLE. AOMPROC
can contain logic to detect whether the screening table is not loaded by
checking for ID=NOTABLE.

If a screening table is active but no ID has been specified on a GLOBAL or
MSGGROUP statement, a message passing the relevant screening statements is
assigned a default ID of AOMGLOBAL or AOMMSGGROUP respectively.

Events have a default ID of AOMEVENT. Messages and events sourced by the
&AOMALERT NCL verb have a default ID of AOMALERT.

This ID attribute is also propagated to AOM receivers, and is inspected using the
&ZMAOMID system variable.

Normally a group of messages are all assigned the same ID, for example, all
$HASP messages might be assigned an ID of JESMSG. This means &AOMID is
used in AOMPROC for processing a particular group of messages.

The EVENT statement in the screening table also allows an ID value to be
assigned.

Note: For more information, see the ID operand on the GLOBAL, MSGGROUP,
SET, and EVENT screening table statements.

&AOMIJOBN

826 Network Control Language Reference Guide

&AOMIJOBN

A system variable containing the MVS job name of the address space that issued
the WTO, WTOR, or EVENT.

This system variable contains the MVS job name of the address space that
actually issued the WTO or WTOR.

This cannot be the same as the value in &AOMJOBNM, which contains the job
name that the WTO can refer to (if JES has provided it).

Example: &AOMIJOBN

& CONTROL NOLABEL

 .

 .

 .

&AOMREAD SET

&IF .&AOMIJOBN = .JES2 &THEN GOTO .JES2SRCD

Note: &AOMIJOBN will be null if the current message or event is sourced from
VM.

More information:

&AOMJOBNM (see page 830)
&AOMJOBID (see page 829)

&AOMINTEN

Chapter 3: System Variables 827

&AOMINTEN

A system variable containing the intensity attribute for the current message.

The &AOMINTEN system variable is set to one of the following values
corresponding to the value coded on the INTENS=value keyword operand of the
GLOBAL or MSGGROUP statements in the AOM screening table, or as altered by
a SET statement.

Values for message intensity are:

NORMAL

HIGH

Example: &AOMINTEN

.LOOP

&AOMREAD SET

 .

 .

 .

&IF &AOMINTEN = HIGH &THEN &GOTO .SETINTEN

 .

 .

 .

&GOTO .LOOP

-*Turn HIGH intensity off.

.SETINTEN

&AOMCONT INTENS=NORMAL

&GOTO .LOOP

More information:

&AOMALARM (see page 808)
&AOMCOLOR (see page 815)
&AOMHLITE (see page 823)

&AOMJOBCL

828 Network Control Language Reference Guide

&AOMJOBCL

A system variable that contains the job class of the job that issued the WTO or
WTOR.

This variable contains the job class that the issuing JOB had specified in the JOB
statement in the JCL, if possible.

If JES issued the message, or JOB accounting control blocks are not accessible,
this variable is null.

Example: &AOMJOBCL

.LOOP

&AOMREAD SET

&IF .&AOMJOBCL = .P &THEN &GOTO .PRODJOB

Note: Because the job class information is not available on all messages, the
value should be saved in storage, such as a VARTABLE keyed by, for example,
JOBID.

More information:

&AOMACCT1-4 (see page 807)

&AOMJOBID

Chapter 3: System Variables 829

&AOMJOBID

A system variable that contains the JES job number that issued the current
message.

This variable contains the job number associated with the current message. The
first character is a letter describing the type of job followed by a five-digit
number.

J00005 = JOB 5

T00120 = TSU 120

S03453 = STC 3453

Example: &AOMJOBID

.LOOP

&AOMREAD SET

&JTYP = &SUBSTR &AOMJOBNM 1 4

&IF &JTYP = TEST &THEN &GOTO .CANJOB

 .

 .

 .

&GOTO .LOOP

 .

 .

 .

-*Issue JES2 Cancel via SYSCMD.

.CANJOB

-SYSCMD $C&AOMJOBID

GOTO .LOOP

Note: When the job number related to a message is unavailable to AOM,
&AOMJOBID is null. This occurs for messages generated by the MASTER address
space, or by any subsystem not started by JES.

More information:

&AOMJOBNM (see page 830)

&AOMJOBNM

830 Network Control Language Reference Guide

&AOMJOBNM

A system variable that contains the job name of the active address space that
issued the current message.

AOM provides the job name of the job that issued the WTO or WTOR in this
system variable. If an overriding job name is supplied by JES, then it is used. This
means that messages originating from JES can have the job name of the target
job, rather than the JES job name.

Example: &AOMJOBNM

.LOOP &AOMREAD SET

&JOBTYPE = &SUBSTR &AOMJOBNM 1 4

&IF &JOBTYPE = TEST &THEN &GOTO .TESTJOB

 .

 .

 .

&GOTO .LOOP

 .

 .

 .

.TESTJOB

 &AOMCONT COLOR=PINK HLIGHT=REVERSE

 &GOTO .LOOP

Notes:

Care should be taken when processing $HASP messages ,as this variable can
contain the value JES2 rather than the name of the job that the message applies
to. &AOMJOBID is a more reliable way of identifying which job the message
relates to.

The name of the address space that issued a message might also be useful in
constructing another, perhaps more meaningful, message.

The &AOMIJOBN system variable always contains the job name of the issuing
address space.

More information:

&AOMJOBID (see page 829)
&AOMIJOBN (see page 826)

&AOMJSTCB

Chapter 3: System Variables 831

&AOMJSTCB

A system variable that contains the hexadecimal address of the job step TCB
that either issued the current WTO or WTOR, or owns the TCB that issued the
message.

This variable contains the hexadecimal address of the TCB that actually issued
the WTO/WTOR. Thus, it is possible to differentiate between separate
WTO/WTORs that have been issued from the same address space.

This variable is useful to &CALLed programs.

Examples: &AOMJSTCB

&CALL STATPROG &AOMATEXT &AOMJSTCB

Notes:

The ID of the address space that issued the current message is available in
hexadecimal format in the system variable &AOMASID.

It might be necessary to go one step further and determine which TCB, within a
particular address space, issued the WTO/WTOR.

Non-Roll-Delete messages is deleted by a JSTCB level DOM. AOM manages this
automatically.

More information:

&AOMASID (see page 809)

&AOMLDID

832 Network Control Language Reference Guide

&AOMLDID

A system variable that contains the Automation Services domain ID of the last
handler of this message, event, or DOM-Notify.

Since AOM traffic can arrive across an ISR link, a way is needed to identify the
system that originated this message, and the system that passed the message to
this system.

&AOMLDID contains the 4-character domain ID, as set by the NMDID JCL
parameter, of either the system that sent this message to this system, if it
originated across an ISR link, or the domain ID of this system, if sourced locally.

This allows an AOMPROC, when handling automation centrally, to identify the
sender (but not originator) of this message.

Example: &AOMLDID

&IF .&AOMLDID NE .&ZNMDID &THEN &GOTO .REMOTE

Notes:

For messages sourced locally, the value is equal to the value in the &ZNMDID
system variable.

For messages that originated from a directly linked system, the value is that
system's &ZNMDID value.

For messages that originated at least two systems away, the value is that of the
system that the message was last handled by.

A MSGPROC can use the &ZMDIDL system variable to access this value if the
message is delivered to AOM receivers.

All messages, events, and so on, including DOM-Notify messages, carry this
attribute.

More information:

&AOMODID (see page 855)

&AOMLROUT

Chapter 3: System Variables 833

&AOMLROUT

A system variable that contains the local routing option for the message or
event as set by the screening table ROUTE or LCLROUTE operands.

A routing option is used to control delivery of messages processed by AOM. Any
messages or events that arrive at an AOMPROC have this attribute, and the
value is interrogated by the &AOMLROUT system variable.

&AOMLROUT contains the routing value set for the local system. &AOMRROUT
contains the value set for ISR delivery.

Example: &AOMLROUT

&IF .&AOMLROUT = .PROCONLY &THEN &AOMDEL

Note: Because &AOMALERT can queue a message to a specific AOMPROC, it is
possible to see ROUTE values other than PROC, PROCONLY, or BOTH.

More information:

&AOMROUTE (see page 861)
&AOMRROUT (see page 862)

&AOMLRSLT

834 Network Control Language Reference Guide

&AOMLRSLT

A system variable that contains the eight LOOKUP results from screening, in
&MASKCHK format.

The screening table LOOKUP statement allows setting of eight result values.
Each is set to YES or NO, indicating success or failure of a LOOKUP.

For a WTO, WTOR, or MSG, &AOMLRSLT will contain the eight lookup results,
formatted as a string of 8 Y or N characters. For example, if a LOOKUP
statement sets result 5 true, and another sets result 8 true, then &AOMLRSLT is
formatted as:

NNNNYNNY

This format is useful with the &MASKCHK built-in function.

Example: &AOMLRSLT

&CHECK = &MASKCHK ***Y***N &AOMLRSLT

Note: Individual LOOKUP results is checked by using the &AOMLRSLn system
variables.

More information:

&AOMLRSL1-8 (see page 834)

&AOMLRSL1-8

Eight system variables that provide the results of up to eight LOOKUP
statements.

The screening table LOOKUP statement allows setting of eight result values.
Each is set to YES or NO, indicating the success or failure of a LOOKUP.

The system variables &AOMLRSL1 to &AOMLRSL8 each contains NO or YES,
indicating whether a particular LOOKUP succeeded or failed (or was not done).

Example: &AOMLRS

& IF .&AOMLRSL3 = .YES &THEN &GOTO L3WORKED

Note: If several LOOKUP results need to be checked, see the &AOMLRSLT
system variable.

&AOMLTCTL

Chapter 3: System Variables 835

More information:

&AOMLRSLT (see page 834)

&AOMLTCTL

A system variable that indicates whether or not the current line of the current
message is a control line.

A control line can occur only as the first line of a multi-line WTO message, and it
normally contains the message title.

A control line is optional, but if it occurs it must be no more than 34 characters
in length.

&AOMLTCTL is set to YES if the message has been generated as a control line;
otherwise, it is set to NO.

The line type of any line of a multi-line WTO is examined using the &AOMMINLT
built-in function.

Example: &AOMLTCTL

-* Ensure Control line stands out.

&IF &AOMLTCTL = YES &THEN &AOMCONT HLIGHT=REVERSE

 .

 .

 .

Notes:

&AOMLTCTL is used to isolate control lines. These can then be enhanced to
provide a more meaningful message title.

If not reading minor lines (&AOMREAD MINOR=NO), this system variable is of
little use. Use the &AOMMINLT built-in function instead.

The value of &AOMMAJOR is set to YES if this variable contains the value YES.

Note: For more information, see the description of the WTO macro in the
appropriate system reference manual.

&AOMLTDAT

836 Network Control Language Reference Guide

More information:

&AOMLTDAT (see page 836)
&AOMLTEND (see page 838)
&AOMLTLAB (see page 839)
&AOMMAJOR (see page 840)
&AOMMINLT (see page 70)

&AOMLTDAT

A system variable that indicates whether or not the current line of the current
message is a data line.

&AOMLTDAT is set to YES for all data lines following a control line of a multi-line
message. For control, label, end-only, and single line messages, &AOMLTDAT is
set to NO.

The &AOMMINLT built-in function allows access to the line type of any line of a
multi-line WTO.

Example: &AOMLTDAT

.LOOP

&AOMREAD SET MINOR=YES

&IF &AOMLTDAT = YES &THEN &GOTO .MULTILINE

 .

 .

&GOTO .LOOP

 .

 .

 . -* Delete Minor or Data lines from delivery.

.MULTILINE

&AOMDEL

&GOTO .LOOP

&AOMLTDAT

Chapter 3: System Variables 837

Notes:

The value of &AOMMINOR is normally set to YES if &AOMLTDAT contains a
value of YES.

If not reading minor lines (&AOMREAD MINOR=NO), this system variable is of
little use. Use the &AOMMINLT built-in function instead.

A data line can also be an end line.

Note: For more information, see the description of the WTO macro in the
appropriate system reference manual.

More information:

&AOMLTCTL (see page 835)
&AOMLTEND (see page 838)
&AOMLTLAB (see page 839)
&AOMMINOR (see page 842)
&AOMMINLT (see page 70)

&AOMLTEND

838 Network Control Language Reference Guide

&AOMLTEND

A system variable that indicates whether or not the current message is an end
line.

&AOMLTEND is set to YES if the current line of a multi-line message is an end
line else &AOMLTEND is set to NO.

Example: &AOMLTEND

...

.LOOP &AOMREAD SET MINOR=YES

 .

 .

 .

&IF &AOMMINOR = YES AND &MULTILINEMSG = YES &THEN +

 &GOTO .MULTILINE

 .

 .

 .

.MULTILINE

 -* Reset the multi-line message flag

 -* when last line is detected.

 &IF &AOMLTEND = YES &THEN &MULTILINEMSG = NO

 .

 .

 .

 &GOTO .LOOP

Notes:

An end line is the last line of a multi-line WTO. Not all multi-line WTOs have an
end line, as this is an option of the WTO macro. Sometimes the end line is also a
data line.

&AOMLTEND is used, in conjunction with &AOMLTCTL and &AOMLTDAT, to
manipulate and enhance multi-line messages.

The value of &AOMMINOR is set to YES if this variable contains a value of YES.

If not reading minor lines (&AOMREAD MINOR=NO), this system variable is of
little use. Use the &AOMMINLT built-in function instead.

Note: For more information, see the description of the WTO macro in the
appropriate system reference manual.

&AOMLTLAB

Chapter 3: System Variables 839

More information:

&AOMLTCTL (see page 835)
&AOMLTDAT (see page 836)
&AOMLTLAB (see page 839)
&AOMMINLT (see page 70)

&AOMLTLAB

A system variable that indicates whether or not the current line of the current
message is a label line.

A label line can occur as the first line of a multi-line WTO message if there is no
control line, or must immediately follow the control line or another label line. It
normally contains message heading information.

&AOMLTLAB is set to YES if the current line is a label line or NO if it is not a label
line.

Example: &AOMLTLAB

.LOOP

&AOMREAD SET MINOR=YES

&IF &AOMLTLAB = YES &THEN &GOTO .LABLINE

 .

 .

 .

Notes:

Multi-line messages can contain a control line which is usually the message title
line. Label lines are often used as headings for the data lines.

A label line is optional, but if it occurs must be no more than 70 characters in
length.

If not reading minor lines (&AOMREAD MINOR=NO), this system variable is of
little use. Use the &AOMMINLT built-in function instead.

Note: For more information, see the description of the WTO macro in the
appropriate system reference manual.

&AOMMAJOR

840 Network Control Language Reference Guide

More information:

&AOMLTCTL (see page 835)
&AOMLTDAT (see page 836)
&AOMLTEND (see page 838)
&AOMMINLT (see page 70)

&AOMMAJOR

A system variable that indicates whether or not the current line of the current
message is a major line.

This variable is set to YES if the current line is the first line of a multi-line WTO
message.

If the current message is a single line WTO, as indicated by a value of YES in
&AOMSINGL, then &AOMMAJOR is set to NO.

Example: &AOMMAJOR

.LOOP

&AOMREAD SET MINOR=&MULTI

&IF &AOMMAJOR = YES &GOTO .MULTILINE

 .

 .

 .

&MULTI=NO

&GOTO .LOOP

 .

 .

 .

.MULTILINE

&MULTI = YES

 .

 .

 .

&GOTO .LOOP

&AOMMHEX

Chapter 3: System Variables 841

Notes:

The &AOMMINLN and &AOMMINLT built-in functions is used while holding the
major line to access all the other lines of a multi-line WTO. If &AOMREAD
MINOR=NO is issued after reading a major line, the minor lines are not
presented individually.

This variable is used, in conjunction with &AOMMINOR and &AOMSINGL, to
manipulate message flow for multi-line WTOs.

This system variable indicates the start of a multi-line message. Based on other
criteria, you might then decide to enter a loop where you read individual lines
(using &AOMREAD MINOR=YES).

More information:

&AOMMINOR (see page 842)
&AOMSINGL (see page 866)
&AOMATEXT (see page 809)
&AOMTEXT (see page 871)

&AOMMHEX

A system variable that contains the MCS flag(s) assigned to the current WTO or
WTOR.

This variable is a four character expansion of a two-byte field showing the MCS
flag(s) settings of a message.

This variable is passed to a user program for interrogation using the &CALL verb.

Example: &AOMMEX

&CALL MYPROG &AOMMHEX

 .

 .

 .

Note: For an explanation on MCS flag settings, see the IBM Supervisor Services
and Macro Instructions or System Macros and Facilities manuals.

More information:

&AOMMMASK (see page 843)

&AOMMINOR

842 Network Control Language Reference Guide

&AOMMINOR

A system variable that indicates whether or not the current line of the current
message is a minor line.

This variable is set to YES if the current line is the second or subsequent line of a
multi-line WTO. It is set to NO if a single line WTO or WTOR is received or if the
current line is a major line for a multi-line WTO.

Example: &AOMMINOR

.LOOP

&AOMREAD SET MINOR=YES

&IF &AOMMINOR = YES &THEN &GOTO .DELMINOR

 .

 .

 . -* If minor line received delete from delivery

 . -* to minimize message flow.

 .

.DELMINOR

&AOMDEL

&GOTO .LOOP

Notes:

This variable is used, in conjunction with &AOMMAJOR and &AOMSINGL, to
perform complex manipulation of multi-line messages.

If using &AOMREAD MINOR=NO, no minor lines are ever presented as the
current line. In this case, the &AOMMINLN and &AOMMINLT built-ins are used
to access the minor lines.

More information:

&AOMMAJOR (see page 840)
&AOMSINGL (see page 866)

&AOMMMASK

Chapter 3: System Variables 843

&AOMMMASK

A system variable that contains the MCS flags assigned to the current message
in &MASKCHK format.

This is a sixteen-character variable containing the MCS flag settings for a
message in &MASKCHK format.

For example, if MCSFLAG=1, then &AOMMMASK contains
YNNNNNNNNNNNNNNN

Example: &MASKCHK

& MCSFLAGON = &MASKCHK YNNNNNNNNNNNNNNNN &AOMMMASK

Note: The MCS flag(s) settings are also available in expanded hexadecimal
format in &AOMMHEX.

More information:

&AOMMHEX (see page 841)

&AOMMONIT

844 Network Control Language Reference Guide

&AOMMONIT

A system variable that indicates whether or not the current message is also to
be delivered to monitor class receivers.

&AOMMONIT is set to YES if the message is to be delivered to Monitor class
users, otherwise NO, if delivery is to AOM receivers only.

AOM messages are normally only delivered to users who are profiled to receive
AOM messages. There is instances when it is desirable to deliver messages to all
MON class OCS users. The decision to also send an AOM message to MON class
OCS users is initially made in the screening table by specifying MONITOR=YES at
either the GLOBAL or MSGGROUP level.

This system variable is used to check that the screening table specification for
the current message is still valid before the message is delivered to OCS
consoles.

Example &AOMMONIT:

.LOOP

&AOMREAD SET &MSGPRF = &SUBSTR &AOMMSGID 1 3

&GOTO .&MSGPRF

 .

 .

 . -* Ensure VTAM messages are sent to Monitor class Users.

 .

.IST

&IF &AOMMONIT = NO &AOMCONT MONITOR=YES

&GOTO .LOOP

Note: Messages destined for monitor users would normally be identified within
the screening table, but there might be specific conditions that require message
analysis within AOMPROC before delivery can continue.

More information:

&AOMROUTE (see page 861)

&AOMMPFSP

Chapter 3: System Variables 845

&AOMMPFSP

A system variable that indicates whether or not the current message was
initially suppressed by the Message Processing Facility (MPF).

This system variable contains the value YES if the current message was
suppressed by MPF and in turn was processed by the screening table because
GLOBAL MPFSUPP=YES was specified.

Before a message is processed by the screening table it may have been
suppressed by MPF. Messages suppressed by MPF are not delivered to system
consoles.

The AOM screening table does not normally process messages that have been
suppressed by MPF. If MPFSUPP=YES is specified on the GLOBAL screening table
statement, then MPF suppressed messages are processed by the screening
table.

Example: &AOMMPFSP

-* Set MPF suppressed messages to reverse highlighting.

&IF &AOMMPFSP = YES &THEN &AOMCONT HLIGHT=REVERSE

Notes:

By using this variable MPF suppressed messages is singled out for special
processing.

Note: For more information, see the MPFSUPP operand on the GLOBAL
screening table statement.

&AOMMSGCD

846 Network Control Language Reference Guide

&AOMMSGCD

A system variable that indicates the message code assigned to this message, as
set by the screening table.

As well as route codes and message levels, further restrictions on message
delivery is performed by setting specific message codes.

A users profile is set with a message code mask to restrict message delivery to
that user.

For more information about user profiles, see the Security Guide.

Default setting of 00 is assigned if message code is not set by AOM screening
table.

Example: &AOMMSGCD

.LOOP &AOMREAD SET

&IF &AOMMSGCD NE 00 &THEN &GOTO .MSGRESTRICT

 .

 .

 .

Note: Message code masks provide a method of selective message delivery.

More information:

&AOMROUTC (see page 860)

&AOMMSGID

Chapter 3: System Variables 847

&AOMMSGID

A system variable containing the extracted message ID of the current message.

&AOMMSGID provides an easy mechanism for identifying messages.

Some examples of the possible contents of this variable are, $HASP150,IEC450I,
or IST097I.

The screening table SET statement can alter the value of the MSGID, if, for
example, messages that do not follow standard MVS or VM message naming
rules are encountered.

Example: &AOMMSGID

.LOOP &AOMREAD SET

&GOTO .&AOMMSGID

 .

 .

 .

.$HASP150

 .

 .

 .

&GOTO .LOOP

Notes:

&AOMMSGID is always taken from &AOMTEXT. For a multi-line WTO the
contents of &AOMMSGID are obtained from the first or major line.

In VM, &AOMMSGID is derived from the first word of the message text.

The value in &AOMMSGID is normalized. This means that for unauthorized
messages, which are normally indicated by a plus sign (+) in position 1, the plus
sign (+) is removed. &AOMAUTH is used to determine if the message is
authorized.

The maximum length of this system variable is 12 characters.

More information:

&AOMTEXT (see page 871)

&AOMMSGLV

848 Network Control Language Reference Guide

&AOMMSGLV

A system variable that contains the highest message level of the current
message.

Message levels is used to limit the messages that is delivered to a specific AOM
authorized environment.

The possible values in &AOMMSGLV, in order of decreasing severity, are: WTOR,
R, I, CE, E, BC and IN.

Example: &AOMMSGLV

&IF &AOMMSGLV = I &THEN &AOMCONT COLOR=RED HLIGHT=REVERSE

Notes:

Message levels is selected/modified in the AOM screening table.

Authorized AOM receivers can profile their environment to receive one or more
message levels.

More information:

&AOMROUTC (see page 860)

&AOMMVCON

Chapter 3: System Variables 849

&AOMMVCON

A system variable that indicates the ID of the system console to which the
current message was routed.

&AOMMVCON contains the system console ID of the console to which the
current message is being routed. This is a console acquired by your product
region for AOM.

The &AOMMVCON value can range from 0 to 255. It is null for VM-sourced
messages.

Example: &AOMMVCON

.LOOP

&AOMREAD SET &IF &AOMMVCON GT 2 &GOTO .PERIPHCONS

 .

 .

 .

Notes:

Messages with a non-zero &AOMMVCON value are always regarded as solicited.
The GLOBAL statement in the screening table must specify SOLICIT=YES to allow
delivery of solicited messages to AOMPROC.

If using Extended MCS consoles, this variable can contain zero, but the message
could still be directed at a console. This is because the target console cannot
have a 1-byte ID.

More information:

&AOMNMCON (see page 851)
&AOMCONNM (see page 816)

&AOMMVSDL

850 Network Control Language Reference Guide

&AOMMVSDL

A system variable that indicates whether the screening table has deleted the
current message.

&AOMMVSDL is set to YES if the message was deleted, else it is set to NO.
Messages being processed by the AOM screening table travel along two
separate paths. One path is for delivery to Automation Services, and the other is
for delivery to system consoles.

This system variable is used to determine if the message has appeared on
system consoles or if it was deleted by the screening table.

Example: &AOMMVSDL

&IF &AOMMVSDL = YES &THEN &MVSSTATS = &MVSSTATS + 1

 .

 .

 .

Notes:

As indicated by the example, &AOMMVSDL is used to keep statistics on the
number of messages suppressed by the AOM screening table. For this figure to
be accurate, any messages deleted from the path must flow through to
Automation Services.

For messages sourced by AOM/VM, this system variable is null.

More information:

&AOMMVCON (see page 849)
&AOMNMCON (see page 851)

&AOMNMCON

Chapter 3: System Variables 851

&AOMNMCON

A system variable that contains the Automation Services console ID to which the
current message was routed.

&AOMNMCON contains the Automation Services console ID of the console to
which the current message is being routed.

The possible values are 0 to 255. For VM-sourced messages, &AOMNMCON is
null.

Example: &AOMNMCON

...

&IF &AOMNMCON GT 0 &THEN &GOTO .CONSTATS

 .

 .

 .

-* Maintain statistics on solicited traffic

-* from AOM consoles.

.CONSTATS &CONSTATS = &CONSTATS + 1

 .

 .

 .

Notes:

Any messages delivered to a specific Automation Services console are regarded
as solicited. The GLOBAL statement in the screening table must specify
SOLICIT=YES to allow delivery of solicited messages to AOMPROC.

Note: For more information, see the SHOW CONSOLES command in the
Reference Guide.

More information:

&AOMMVCON (see page 849)

&AOMNMDOM

852 Network Control Language Reference Guide

&AOMNMDOM

Returns the internal DOM identifier associated with a DOM-notify message.

If an AOMPROC executes an &AOMCONT, &AOMDEL or &AOMREPL verb with
the DOM-NOTIFY=YES operand specified, a DOM-Notify message is enqueued to
that AOMPROC, when an eventual MVS DOM is received. If the message had the
NRD=YES attribute, this system variable contains the assigned DOMID that was
assigned to the message.

&AOMNMDOM is set following the &AOMREAD that receives the DOM-Notify
message when the MVS DOM is received.

Example: &AOMNMDOM

&AOMREAD SET

&IF &AOMDOM EQ YES &THEN &DO

 . -*process &AOMDOMID and &AOMNMDOM...

 .

 .

 .

&DOEND

 .

 .

 .

Notes:

This system variable is null unless the current message being processed by an
AOMPROC is a DOM-Notify. It is also null if the original message was not
NRD=YES, since no DOMID was assigned.

The AOMPROC need not issue the DOM (using &NRDDEL); AOM does this
automatically.

More information:

&AOMDOMID (see page 820)
&AOMCONT (see page 53)
&AOMREPL (see page 75)
&AOMDEL (see page 61)

&AOMNMIN

Chapter 3: System Variables 853

&AOMNMIN

A system variable that contains the number of minor lines in a multi-line WTO.

&AOMNMIN contains the number of minor lines in a multi-line WTO message
when any line of the message is current. It is used as the upper bound in a loop
that reads all the minor lines (using &AOMREAD MINOR=YES), or accesses minor
lines using the &AOMMINLN built-in function.

Example: &AOMNMIN

&AOMREAD SET MINOR=NO

&IF &AOMMAJOR = YES &THEN &DO

 &I = 1

 &DOWHILE &I LE &AOMNMIN

 &LINE&I = &AOMMINLN &I

 &I = &I + 1 &DOEND

&DOEND

 .

 .

 .

Note: This system variable is null when the current message is not part of a
multi-line WTO.

More information:

&AOMREAD (see page 71)
&AOMMINLN (see page 69)
&AOMMINLT (see page 70)

&AOMNRD

854 Network Control Language Reference Guide

&AOMNRD

A system variable that indicates whether or not the current message is to be
displayed as a non-roll-delete message on OCS consoles.

&AOMNRD is set to YES or OPER for a non-roll-delete message, otherwise NO.

A non-roll-delete message is a message that remains on the OCS screen until
some action is performed that enables the message to be deleted. For example,
a tape mount message rolls off the screen when the tape is mounted.

Example: &AOMNRD

.LOOP

&AOMREAD SET

&IF .&AOMNRD = .YES &THEN &GOTO .NRDMSG

 .

 .

 .

-* Change all NRDs to roll-delete.

.NRDMSG

&AOMCONT NRD=NO

 .

 .

 .

 &GOTO .LOOP

Notes:

For every NRD=YES message, there is an associated Delete-Operator-Message ID
(DOMID), which is a correlation number generated with the message. A DOM is
issued against the NRD message to mark it as deletable when the required
action has been performed or when the job or step terminates.

NRD=OPER messages do not have associated DOMIDs. When an OCS user
deletes the message from the screen, it is not recallable; the system retains no
memory of the message.

More information:

&AOMDOM (see page 819)
&AOMDOMID (see page 820)

&AOMODID

Chapter 3: System Variables 855

&AOMODID

A system variable that contains the domain ID of the Automation Services
system where the message originated, as set by the NMDID JCL parameter.

In an ISR-connected AOM environment, an AOMPROC can tell where a message
came from by referencing this variable. The &AOMODID system variable
contains the domain ID of the message originator system.

If the message was sourced by the local system, the value is the same as the
&ZNMDID system variable. Otherwise, it contains the domain ID of the
originator, regardless of how many ISR links it traveled across to arrive here.

Example: &AOMODID

.LOOP

&AOMREAD SET

&IF &AOMODID NE &ZNMDID &THEN &GOTO .REMOTE

 .

 .

 .

Notes:

This system variable is set for all messages read by &AOMREAD. This includes
DOM-notify, event, and so on.

The ISR connected system that actually delivered the message is determined by
the &AOMLDID system variable.

More information:

&AOMLDID (see page 832)

&AOMRCLAS

856 Network Control Language Reference Guide

&AOMRCLAS

A system variable that contains the ISR remote classes, as set by the screening
table, in MASKCHK format.

If an AOMPROC needs to know or analyze the remote classes that are assigned
to a message, the &AOMRCLAS system variable provides a formatted list of the
eight classes, each being indicated as a single character, Y or N.

For example, if RMTCLASS=(1,6,8) is applied to a message, then &AOMRCLAS is
set to YNNNNYNY.

Example: &AOMRCLAS

.LOOP

&AOMREAD SET

&IF &AOMRCLAS = YYYYYYYY &THEN &AOMCONT RMTCLASS=5

Notes:

Remote classes determine which ISR links a message or event is automatically
delivered to.

The eight individual classes can also be referenced using the &AOMRCLAS1 to 8
system variables.

More information:

&AOMRCLS1-8 (see page 857)

&AOMRCLS1-8

Chapter 3: System Variables 857

&AOMRCLS1-8

Eight system variables providing the individual values of the eight AOM ISR
remote classes for this message or event.

If an AOMPROC needs to know or analyze the remote classes that are assigned
to a message, the system &AOMRCLS1....&AOMRCLS8 variables provide access
to the individual values. Each is set to YES or NO.

For example, if RMTCLASS=(1,6,8) is applied to a message, then &AOMRCLS1 is
YES, &AOMRCLS2 is NO, and so on.

Example: &AOMRCLS4

.LOOP

&AOMREAD SET &IF &AOMRCLS4 = YES &THEN &AOMCONT RMTCLASS=7

Notes:

Remote classes determine which ISR links a message or event is automatically
delivered to.

The eight classes can also be referenced in MASKCHK format using the
&AOMRCLAS system variable.

More information:

&AOMRCLAS (see page 856)

&AOMREISS

System variable that has the value YES if the current message was reissued on a
JES3 GLOBAL processor, or across a sysplex, or on a VOS3/JSS4 global processor.
Otherwise its value is NO.

Used to test for JES3 reissued messages on a GLOBAL processor

Example: &AOMREISS

&IF &AOMREISS = YES &THEN +

 -EXEC GLOBAUTO

This system variable is useful only in a multi-CPU environment.

Note: For more information, see the REISSUED screen table criterion.

&AOMRHEX

858 Network Control Language Reference Guide

&AOMRHEX

A system variable that contains the routing code(s) assigned to the current
message, in hexadecimal.

The routing codes(s) that is assigned to a message are in the range from 1 to
128. This is a sixteen-character system variable containing the hexadecimal
representation of the routing code(s).

For example, &AOMRHEX contains E020000000000000 for ROUTCDE=(1,2,3,11),
which is equal to binary 1110000000100000....

Example: &AOMRHEX

& CALL STATPROG &AOMRHEX

Note: &AOMRHEX is HEX packed before passing to a user program via &CALL by
using the built-in function &HEXPACK.

More information:

&AOMRKEY (see page 859)
&AOMROUTC (see page 860)

&AOMRKEY

A system variable that returns the retrieval key attribute.

If AOMPROC wishes to use the retrieval key attribute of a message, this system
variable contains the value. The value is 1 to 8 characters. Where not available,
this system variable returns a null value.

Example: &AOMRKEY

&IF .&AOMRKEY NE .&THEN +

 &GOSUB .TRACK_RKEY

The value of the retrieval key is determined by the WTO issuer.

Note: For more information, see RKEY screening table criterion.

More information:

&AOMMSGID (see page 847)

&AOMRKEY

Chapter 3: System Variables 859

&AOMRKEY

A system variable that contains the routing code(s) assigned to the current
message, in &MASKCHK format.

The routing codes(s) that can be assigned to a message are in the range from 1
to 128. This is a 128-character system variable containing 128 Y/N values
representing the routing code(s).

For example, ROUTCDE=(1,2,3,11) yields a 128-byte value of
YYYNNNNNNNYNNNNN....N.

Example: &AOMRMASK

&ROUTECODE = &MASKCHK YYYNNNNNNNYNNNNN &AOMRMASK

Note: &AOMRMASK can be used to identify invalid route codes.

More information:

&AOMRHEX (see page 858)
&AOMROUTC (see page 860)

&AOMROUTC

860 Network Control Language Reference Guide

&AOMROUTC

A system variable that contains the routing code(s) assigned to the current
message.

&AOMROUTC is set with the routing code(s) of the current message enclosed in
parentheses, for example, (1,3,11).

Example: &AOMROUTC

.LOOP &AOMREAD SET

&GOTO .&AOMID

 .

 .

 .

.PREPMSG

&WRITE RC=&AOMROUTC NRD=OPER +

 DATA=PLEASE PREPARE PRINTER 1 +

 FOR SPECIAL PRINT - AWZ001

&AOMCONT

&GOTO .LOOP

Note: As is seen from the example, &AOMROUTC is formatted so it is inserted
directly into an &WRITE, &WTO, &WTOR, or &AOMALERT statement.

More information:

&AOMRHEX (see page 858)
&AOMRKEY (see page 859)

&AOMROUTE

Chapter 3: System Variables 861

&AOMROUTE

A system variable that contains the routing option for the current message, as
set by the screening table.

A message processed in the AOM screening table can go down two paths. One
path relates to system console delivery while the other relates to Automation
Services delivery.

The delivery of a message to Automation Services is specified by the ROUTE
operand in the screening table. See the description of the GLOBAL, SET, and
MSGGROUP screening table statements.

&AOMROUTE contains the local delivery ROUTE option.

Example: &AOMROUTE

.LOOP

&AOMREAD SET

&GOTO .&AOMID

 .

 .

 .

.SPECMSG &IF &AOMROUTE = PROC &THEN &AOMCONT COLOR=RED

 .

 .

 .

&GOTO .LOOP

Notes:

If &AOMROUTE contains BOTH, then the message has already been delivered to
relevant OCS screens.

This system variable always contains the same value as the &AOMLROUT
system variable.

More information:

&AOMLROUT (see page 833)
&AOMRROUT (see page 862)

&AOMRROUT

862 Network Control Language Reference Guide

&AOMRROUT

A system variable that contains the remote routing option for the current
message, as set by the screening table.

A message processed in the AOM screening table can go down two paths. One
path relates to system console delivery, while the other relates to Automation
Services delivery.

The delivery of a message to Automation Services is specified by the ROUTE
operand in the screening table. See the description of the GLOBAL, SET, and
MSGGROUP screening table statements in the relevant chapter. For ISR delivery,
the routing option to be used at the other end of a link can also be set.

&AOMROUTE contains the remote delivery ROUTE option.

Example: &AOMRROUT

.LOOP

&AOMREAD SET

&GOTO .&AOMID

 .

 .

 .

.SPECMSG

&IF &AOMRROUT = NO &THEN &AOMCONT RMTROUTE=PROCONLY

 .

 .

 .

&GOTO .LOOP

Note: If &AOMRROUT contains NO and is not overridden, no automatic ISR
delivery occurs.

More information:

&AOMLROUT (see page 833)
&AOMROUTE (see page 861)

&AOMRWTOR

Chapter 3: System Variables 863

&AOMRWTOR

A system variable that indicates whether or not the current message is a
Replied-to-WTOR.

The AOM screening table can process a WTOR message by issuing the
outstanding reply text.

If a WTOR has been replied to by the screening table and the message was
allowed to continue through to AOMPROC, this variable is set to YES. In all other
cases, it is set to NO.

Example: &AOMRWTOR

.LOOP

&AOMREAD SET &IF &AOMRWTOR = YES &THEN &GOTO .REPLIEDTO

 .

 .

 .

-* Set message with under score to denote replied-to-wtor

.REPLIEDTO

&AOMCONT HLIGHT=USCORE

&GOTO .LOOP

Note: If the WTOR statement in the screening table does not have the
CONTINUE option coded, WTORs which have been replied to are not delivered
to Automation Services and are not seen by AOMPROC.

&AOMSALRT

864 Network Control Language Reference Guide

&AOMSALRT

A system variable that indicates whether or not the current message was
sourced by the &AOMALERT verb.

If an AOMPROC needs to know whether or not a particular message is sourced
by the &AOMALERT verb, this system variable is used. Thus, AOMPROC can
prevent critical actions being taken because of counterfeit messages.

&AOMSALRT contains YES if the current message was sourced by an
&AOMALERT verb. In all other cases, it is set to NO.

Example: &AOMSALRT

.LOOP

&AOMREAD SET

&IF &AOMSALRT = YES &THEN &GOTO .LOOP -* ignore

 .

 .

 .

Note: There is no way to alter the setting of this system variable. It is always set
to YES for messages sourced by &AOMALERT, and to NO for all messages
originating from the operating system.

More information:

&AOMALERT (see page 40)

&AOMSDATA

Chapter 3: System Variables 865

&AOMSDATA

A system variable that contains the saved data from a successful LOOKUP
statement.

The AOM screening table allows the DATA1 field of a mirrored VARTABLE to be
saved when a match is found by a LOOKUP statement. This system variable
contains the saved value.

Example: &AOMSDATA

.LOOP

&AOMREAD SET

&IF &AOMID = QPROC &THEN &AOMCONT NCLID=&AOMSDATA

 .

 .

 .

Note: An AOMPROC can maintain any useful data it likes in the DATA1 field of a
mirrored VARTABLE, for use in any way it sees fit. The example above keeps the
NCL IDs of secondary AOMPROCs. The key could have been a MSGID.

More information:

&VARTABLE (see page 708)

&AOMSINGL

866 Network Control Language Reference Guide

&AOMSINGL

A system variable that indicates whether or not the current message is a single
line message.

Set to YES for a single line WTO or WTOR, and set to NO for multi-line WTOs.

Example: &AOMSINGL

.LOOP

&AOMREAD SET

&IF &AOMSINGL = NO &THEN &GOTO .MULTILINE

 .

 .

 .

.MULTILINE-* Multi-line processing

 .

 .

 .

&GOTO .LOOP

Note: &AOMSINGL is used in conjunction with &AOMMAJOR and &AOMMINOR
to manipulate or enhance multi-line WTOs.

More information:

&AOMATEXT (see page 809)
&AOMMAJOR (see page 840)
&AOMMINOR (see page 842)
&AOMTEXT (see page 871)

&AOMSOLIC

Chapter 3: System Variables 867

&AOMSOLIC

A system variable that indicates whether or not the current message is a
solicited message.

This variable is set to NO for all unsolicited messages. Any messages that have
been solicited via an operating system command cause &AOMSOLIC to be set to
YES.

Example: &AOMSOLIC

&IF &AOMSOLIC = YES &THEN &AOMDEL

Notes:

The screening table must have SOLICIT=YES on the GLOBAL statement for
solicited messages to be received by AOMPROC.

All authorized AOM users receive the messages if AOMPROC allows solicited
messages to be delivered. The user that issued the command can receive the
messages twice since the messages are routed to the AOM console assigned to
that environment as well as to AOMPROC.

The &AOMSOLTP system variable indicates the type of issuer that solicited the
message.

More information:

&AOMSOLTP (see page 868)

&AOMSOLTP

868 Network Control Language Reference Guide

&AOMSOLTP

A system variable that contains the solicit type of the current message.

This variable is set to NO for all unsolicited messages. Any messages that have
been solicited via an operating system command cause &AOMSOLIC to be set to
one of the following values:

NM

Solicited by an Automation Services user

TABLE

Solicited in response to a screening table REPLY or ISSUE statement

OTHER

Solicited by some other user

Example: &AOMSOLTP

& IF &AOMSOLIC = YES AND &AOMSOLTP = OTHER &THEN +

 &GOTO .SOLLOG

Notes:

The screening table must have SOLICIT=YES on the GLOBAL statement for
solicited messages to be received by AOMPROC.

If an AOMPROC allows solicited messages to be delivered, then all authorized
AOM users receive the messages. The user that issued the command receives
the messages twice, since the messages are routed to the AOM console
assigned to that OCS screen as well as AOMPROC.

The &AOMSOLIC system variable also indicates whether or not a message is
solicited.

More information:

&AOMSOLIC (see page 867)

&AOMSOS

Chapter 3: System Variables 869

&AOMSOS

A system variable that identifies the type of operating system that sourced this
message.

This system variable contains a value identifying the operating system that
sourced this message. The following values are possible:

OS

Sourced by z/OS, MSP, or VOS3

VM

Sourced by VM

Examples:

& IF &AOMSOS = VM &THEN &GOTO .VMPROC

Note: Because an AOMPROC can receive messages from other systems via an
ISR link, the value in this system variable is important in a mixed operating
system network.

More information:

&ZMAOMSOS (see page 989)

&AOMSUBT

870 Network Control Language Reference Guide

&AOMSUBT

A system variable containing the subtype of the current line of the current
message.

&AOMSUBTP is a two-character variable containing the hexadecimal
representation of the bit settings used by AOM to describe the current message.
Possible values for &AOMSUBTP are:

80

On for all WTOs (z/OS) or messages (z/VM)

40

On for WTOR

20

ON with 80 if a single line message

10

ON with 80 if a major line

08

ON with 80 if a minor line

04

Force routed for Automation Services console 02 - nn or master console
messages

02

Forced routing

01

Replied-to-WTOR

Notes:

&AOMSUBTP can contain one or a combination of the above settings, for
example, A0 - WTO (80), single line message (20).

&AOMSUBTP is helpful for debugging purposes.

&AOMTEXT

Chapter 3: System Variables 871

&AOMTEXT

A system variable containing the major text of the current message.

This variable contains the text of an incoming message. If the message is a
multi-line WTO/WTOR, then the text is taken from the first or major line. The
text in &AOMTEXT does not change for following minor lines. For VM-sourced
messages, &AOMTEXT contains the message text.

&AOMATEXT contains the minor line text associated with the major line in
&AOMTEXT. For the first or major line, &AOMTEXT has the same contents.

Example: &AOMTEXT

&AOMDEL

&WRITE RC=&AOMROUTC DATA=&AOMTEXT

Notes:

The three system variables &AOMMAJOR, &AOMMINOR, and &AOMSINGL is
used to determine whether or not the current line is from a multi-line WTO and
whether the current line is a major or minor line.

Following is a table of the possible settings for all these variables:

&AOMMAJOR &AOMMINOR &AOMSINGL &AOMTEXT

NO NO YES SINGLE LINE text

YES NO NO CURRENT LINE text

NO YES NO FIRST/MAJOR LINE text

&AOMSINGL is also set to YES for WTOR messages.

The text returned includes any screen character. For more information, see the
&AOMCHAR1 description.

More information:

&AOMATEXT (see page 809)
&AOMMAJOR (see page 840)
&AOMMINOR (see page 842)
&AOMCHAR1 (see page 814)
&AOMSINGL (see page 866)

&AOMTIME

872 Network Control Language Reference Guide

&AOMTIME

A system variable containing the timestamp of the current message.

&AOMTIME is set to the time that the current message was generated, in the
form hhmmss.

Examples: &AOMTIM

.LOOP

&AOMREAD SET

&GOTO .&AOMID

 .

 .

 .

&GOTO .LOOP

.PRODJOB3

&IF &AOMTIME GT &TIME3 &THEN &WRITE AOM=YES NRD=OPER +

 DATA=WARNING JOB &AOMJOBNM IS RUNNING LATE.

 .

 .

 .

&GOTO .LOOP

Note: &AOMTIME is used to compare the time difference between delivery of a
particular non-roll delete message and its associated DOM.

&AOMTYPE

Chapter 3: System Variables 873

&AOMTYPE

A system variable identifying the current message as a WTO, WTOR, DOM, or
EVENT.

This variable is set to either WTO, WTOR, EVENT, or DOM, indicating that the
current message is a WTO (or VM MSG), WTOR, screening table, or &AOMALERT
generated EVENT, or MVS DOM-NOTIFY message.

Example: &AOMTYPE

.LOOP

&AOMREAD SET

&GOTO .&AOMTYPE

 .

 .

 .

.WTO

&AOMCONT

&GOTO .LOOP

-* Give WTOR to 'worker' procedure for analysis and reply.

.WTOR

-INTQ ID=&WRK1 &AOMWRID &AOMWRLEN &AOMATEXT

&AOMCONT

&GOTO .LOOP

Note: This variable can have a value of DOM only if a previous MVS-sourced
message was released from an AOMPROC by &AOMCONT/REPL/DEL
DOM-NOTIFY=YES.

More information:

&AOMWTO (see page 881)
&AOMWTOR (see page 882)
&AOMDOM (see page 819)

&AOMUFLGS

874 Network Control Language Reference Guide

&AOMUFLGS

A system variable containing the eight user flags in &MASKCHK format.

&AOMUFLGS contains a string of eight characters which match the settings of
the eight user flags (&AOMUFLG1-8) with Y or N. For example:

YNNNYNNY

The built-in function &MASKCHK is used to test the settings.

Example: &AOMUFLGS

&USRFLAG3 = &MASKCHK **Y***** &AOMUFLGS

&IF &USRFLAG = EQ &THEN &FLAG3 = ON

Notes:

&AOMUFLG1-8 are user definable flags set in the screening table.

The user flag mask is available to AOM message receivers in the system variable
&ZMAOMUFM.

More information:

&AOMUFLG1-8 (see page 875)

&AOMUFLG1-8

Chapter 3: System Variables 875

&AOMUFLG1-8

These are eight system variables which are user-defined flags, set by the
screening table.

The default for the system variables &AOMUFLG1.....&AOMUFLG8 is NO. Each is
set to YES by the screening table or reset via &AOMCONT or &AOMREPL.

Example: &AOMUFLG1

.LOOP

&AOMREAD SET

&IF &AOMUFLG1 = YES &THEN &GOTO .SPECPROC

 .

 .

 .

&GOTO .LOOP

.SPECPROC -* Special message processing

 .

 .

 .

&AOMCONT ROUTCDE=15

&GOTO .LOOP

Note: The user flag mask is available to AOM message receivers in the system
variable &ZMAOMUFM.

More information:

&AOMUFLGS (see page 874)

&AOMVMMCL

876 Network Control Language Reference Guide

&AOMVMMCL

The VM IUCV message class of a VM-sourced message.

Messages sourced by AOM/VM contain the VM *MSG IUCV message class.

Classes 1 to 8 are IUCV message types; class 30 is a programmable operator
facility message type. Valid values are:

1

Message sent using CP MESSAGE and CP MSGNOH

2

Message sent using CP WARNING

3

Asynchronous CP messages, CP responses to a CP command executed by
the programmable operator facility virtual machine, and any other console
I/O initiated by CP

4

Message sent using CP SMSG command

5

Any data directed to the virtual console by the virtual machine (WRTERM,
LINEDIT, and others)

6

Error messages from CP (EMSG)

7

Information messages from CP (IMSG)

8

Single Console Image Facility (SCIF) message from CP

30

Message coming from Automation Services

&AOMVMSRC

Chapter 3: System Variables 877

Example: &AOMVMMCL

.LOOP

&AOMREAD SET

&IF &AOMVMMCL = 30 &THEN &GOTO .PROPMSG

 .

 .

 .

&GOTO .LOOP

.PROPMSG -* Special PROP-sourced message processing.

 .

 .

&AOMCONT ROUTCDE=15

&GOTO .LOOP

Note: &AOMVMMCL normally has the value '30'.

More information:

&AOMVMSRC (see page 877)

&AOMVMSRC

The AOM/VM message source.

Messages generated by AOM/VM can come from either the PROP IUCV
connection or the GCS machine that Automation Services is running on.

Messages that come from the PROP connection have a source of PROP.

Messages that come from the GCS connection have a source of GCS. These are
always solicited command responses.

Example: &AOMVMSRC

.LOOP

&AOMREAD SET

&IF &AOMVMSRC = GCS &THEN &AOMDEL

 .

 .

 .

Note: Because the GCS IUCV connection is used only to obtain responses to
SYSCMD DEST=GCS, these messages are not normally seen by an AOMPROC
unless the screening table is processing solicited responses.

&AOMVMUID

878 Network Control Language Reference Guide

More information:

&AOMVMMCL (see page 876)

&AOMVMUID

The VM user ID that a message originated from.

Messages generated by AOM/VM contain the user ID that originated the
message. This user ID is the virtual machine name that issued the CP MSG
command. For messages that originate from CP, the user ID is CP.

Example: &AOMVMUID

.LOOP

&AOMREAD SET

&IF &AOMVMUID = USER1 &THEN +

 &SYSCMD DEST=GCS MSG USER1 WHATS WRONG?

 .

 .

 .

Note: The user ID system variable is useful for replying to the originating user
when a problem is solved.

More information:

&AOMVMUND (see page 879)

&AOMVMUND

Chapter 3: System Variables 879

&AOMVMUND

The VM RSCS node that a message originated from.

Messages generated by AOM/VM contain the name of the RSCS node that the
message originated from. For CP-generated messages in the local system, this
has a value of CP.

In a networked VM system, this field is useful for identifying the original source
of a message.

Example: &AOMVMUND

.LOOP

&AOMREAD SET

&IF &AOMVMUND NE VM1 &THEN &GOTO .REMOTEVM

 .

 .

 .

Note: If VM RSCS networking is not used, this field is not useful.

More information:

&AOMVMUID (see page 878)

&AOMWRID

880 Network Control Language Reference Guide

&AOMWRID

A system variable containing the WTOR reply ID of the current message.

&AOMWRID contains a number, normally from 00 to 99, which is the reply ID of
the current message. It is 3 or 4 digits long.

This variable is used from AOMPROC to automate replies.

Example:

.LOOP

&AOMREAD SET

&GOTO .&AOMTYPE

 .

 .

 .

&GOTO .LOOP

-* Pass WTOR to 'worker' procedure for analysis and reply.

-* Reply Command is SYSCMD R &AOMWRID,GO

.WTOR

&AOMCONT NCLID=&WRK1

&GOTO .LOOP

Note: If the current message is not a WTOR, &AOMWRID is null.

More information:

&AOMTYPE (see page 873)
&AOMWRLEN (see page 881)

&AOMWRLEN

Chapter 3: System Variables 881

&AOMWRLEN

A system variable containing the length of the text that is passed in reply to a
WTOR.

This system variable contains the maximum length of data that is used for a
reply to a WTOR.

When automating replies from AOMPROC this variable is used to ensure the
reply is not rejected because the text is too long.

Example: &AOMWRLEN

 .

 .

 .

&RLEN = &LENGTH &RTEXT

&IF &RLEN GT &AOMWRLEN &THEN &GOTO .ERROR

 .

 .

 .

Note: If the current message is not a WTOR, &AOMWRLEN is null.

More information:

&AOMWRID (see page 880)
&AOMTYPE (see page 873)

&AOMWTO

A system variable that indicates whether or not the current message is a Write
to Operator (WTO).

For messages generated by a z/OS system, this system variable is set to YES if
the current message was generated by the WTO macro; otherwise, it is set to
NO. For messages sourced by AOM/VM, &AOMWTO is always YES.

Example: &AOMWTO

&IF &AOMWTO EQ YES &THEN &GOTO .WTOPROCESS

 .

 .

 .

.WTOPROCESS

&AOMCONT &GOTO .AOMREAD

&AOMWTOR

882 Network Control Language Reference Guide

More information:

&AOMDOM (see page 819)
&AOMNRD (see page 854)
&AOMRWTOR (see page 863)
&AOMTYPE (see page 873)
&AOMWTOR (see page 882)

&AOMWTOR

A system variable that indicates whether or not the current message is a Write
to Operator with Reply (WTOR).

This system variable is set to YES if current message was generated by the
WTOR macro; otherwise, it is set to NO.

Example: &AOMWTOR

&IF &AOMWTOR = YES &GOTO .REPLYWTOR

 .

 .

 .

More information:

&AOMDOM (see page 819)
&AOMNRD (see page 854)
&AOMRWTOR (see page 863)
&AOMTYPE (see page 873)
&AOMWTO (see page 881)

&BROLINEn

Chapter 3: System Variables 883

&BROLINEn

A series of system variables that contain the current broadcast lines.

The system supports a maximum of four broadcast lines for use by the EASINET
feature. They are:

■ &BROLINE1

■ &BROLINE2

■ &BROLINE3

■ &BROLINE4

The text of these broadcast lines is set using Broadcast Services.

The &BROLINE1, &BROLINE2, &BROLINE3, and &BROLINE4 system variables is
included in any full-screen panel. When this panel is displayed, the current
broadcast text associated with that line (if any) is displayed in place of the
&BROLINEn variable.

If the panel is displayed by the EASINET component, use of any one of these
variables signifies that the panel is to receive updated broadcasts as they are
dispatched from Broadcast Services.

Examples: &BROLINEn

&BROLINE1

&BROLINE2

Notes:

The &BROLINEn variables is positioned without restriction on the panel. The
maximum text that is displayed for a broadcast line is 78 characters. Therefore,
the &BROLINEn variables are normally aligned at the left hand side of the panel.
If there is insufficient room for the text, it is truncated.

The &BROLINEn variables apply to both general and specific broadcasts.

Under EASINET, a broadcast causes immediate redisplay of any candidate panel
that contains any of the &BROLINE variables, if the panels are displayed by
EASINET. Users logged on to a region have these variables refreshed at the next
panel display.

Note: For more information, see the #OPT statement, described in the chapter
“Designing Interactive Panels (Panel Services)” in the Network Control Language
Programming Guide and the $EASILOGON panel in the panels data set.

&CURSCOL and &CURSROW

884 Network Control Language Reference Guide

More information:

About Broadcast Services (see page 1109)

&CURSCOL and &CURSROW

System variables that provide the cursor location.

These two system variables is used to determine the cursor row and column
coordinates as at the last operator input from a panel displayed using the
&PANEL statement.

&CURSROW is set to the number of the row that contained the cursor. When
operating in split screen mode, the row is relative to the current window,
regardless of where it commences on the physical screen.

&CURSCOL is set to the number of the column that contained the cursor. When
operating in split screen mode, the column is relative to the current window,
regardless of where it commences on the physical screen.

Note: If the last entry was caused by the INWAIT timer expiring, the value
returned in

&CURSCOL/&CURSROW is indeterminate.

Examples: &CURSCOL and &CURSROW

&IF &CURSROW > 3 AND &CURSCOL > 6 &THEN +

 &GOSUB .XRACTSEL

&IF .&SYSMSG NE . AND &CURSROW EQ 3 &THEN +

 &GOSUB .MSGHELP

These variables are designed to be used in conjunction with the CURSOR
operand of the #OPT statement (of Panel Services) to effect precise cursor
positioning to locations other than input fields.

Note: For information about using these facilities, see the Network Control
Language Programming Guide.

&DATEn

Chapter 3: System Variables 885

&DATEn

This is a set of system variables which provide different formats of the current
system date.

&DATE1 to &DATE17 (excluding &DATE15) supply the current system date in a
variety of formats, as listed below:

■ &DATE1—date as YY.DDD

■ &DATE2—date as DAY DD-MON-YYYY

■ &DATE3—date as DD-MON-YYYY

■ &DATE4—date as DD/MM/YY

■ &DATE5—date as MM/DD/YY

■ &DATE6—date as YY/MM/DD

■ &DATE7—date as YYMMDD

■ &DATE8—date as YYYYMMDD

■ &DATE9—date as nnnnnn

■ &DATE10—date as YYYYMMDDHHMMSSpHHMM

■ &DATE11—date as YYYYMMDDHHMMSS.FFFFFFpHHMM

■ &DATE12—date as DD/MM/YYYY

■ &DATE13—date as YYYY/MM/DD

■ &DATE14—date as MM/DD/YYYY

■ &DATE16—date as YYYY.DDD

■ &DATE17—date as YYYYDDD

where:

DAY

Is the day of the week as follows:

■ MON Monday

■ TUE Tuesday

■ WED Wednesday

■ THU Thursday

&DATEn

886 Network Control Language Reference Guide

■ FRI Friday

■ SAT Saturday

■ SUN Sunday

DD

The day of the month as a 2-digit number

DDD

The Julian day within the year as a 3-digit number

MM

The month of the year as a 2-digit number

MON

The month of the year as follows:

■ JAN January

■ FEB February

■ MAR March

■ APR April

■ MAY May

■ JUN June

■ JUL July

■ AUG August

■ SEP September

■ OCT October

■ NOV November

■ DEC December

nnnnnn

The number of days from 1 January 0001 with no leading zeros

YYYY

The current year as a 4-digit number

YY

The current year as a 2-digit number

&DATEn

Chapter 3: System Variables 887

p

Plus or minus relative to Greenwich Mean Time (GMT)

FFFFFF

The time accurate to 10-6

HHMMSS

The current time

HHMM

The GMT offset

Examples: &DATEn

&IF &DATE1 GT 98.001 &THEN +

 &END

&WRITE DATA=TODAY'S DATE IS &DATE2

&TODAY = &SUBSTR &DATE3 1 6

&IF &TODAY EQ 25-DEC &THEN +

 &GOTO .XMASDAY

Notes:

The current day is provided in the system variable &DAY.

&DATE6, &DATE7, &DATE8, and &DATE9 are useful where records are to be
stored in chronological order.

See the &DATECONV function for the rules that apply to choice of century when
converting from a form of the date that expresses the year in two digits (YY) to
the form of the year in four digits (YYYY).

Each access to &DATE11 causes the system to re-fetch and synchronize time
with the operating system, to format the result to microsecond accuracy. Use of
this time should be avoided, to reduce unnecessary overheads, if such accuracy
is not required.

More information:

&ZGDAY (see page 960)

&DAY

888 Network Control Language Reference Guide

&DAY

Provides the current day of the week.

&DAY provides a system variable for the current day of the week in the form
DDD, where DDD is set to one of the following values:

MON

Monday

TUE

Tuesday

WED

Wednesday

THU

Thursday

FRI

Friday

SAT

Saturday

SUN

Sunday

Example: &DAY

&IF &DAY EQ SUN &THEN -EXEC SUNDAY&ELSE +

 -EXEC EVERYDAY

Notes:

The current date, based on the operating system time, is provided in different
formats by the system variables &DATE1 to &DATE17.

The current date, based on GMT, is provided in different formats by the system
variables &ZGDATE1 to &ZGDATE17.

&FILEID

Chapter 3: System Variables 889

&FILEID

Contains the name of the file currently being processed.

This is the file most recently actioned by either &FILE OPEN, &FILE PUT, &FILE
ADD, &FILE SET, &FILE GET or &FILE DEL

Example: &FILEID

&FILE OPEN ID=FILE1 FORMAT=DELIMITED

&WRITE DATA=OPENED FILE : &FILEID

Note: When a file is closed, the contents of &FILEID revert to the name of the
file most recently processed before closing the current file. If no other files are
currently open, &FILEID is set to null.

More information:

&FILE (see page 341)

&FILEKEY

Indicates an NCL process's current position within a UDB.

This variable is set to the value of the full key of the last record read from the
UDB identified by the last &FILEID statement issued by an NCL process. It can
therefore be used to refer to the explicit key of each record read from a UDB
when a file is being read using partial keys.

&FILEKEY reflects the private position of a process within its currently active file
(which is the last file referenced on an &FILE statement).

Example: &FILEKEY

&FILE OPEN ID=HELPDESK FORMAT=DELIMITED -* open our file

&FILE SET ID=HELPDESK KEY='&1' -* set required key

&FILE GET ID=HELPDESK OPT=KGT VARS=TXT -* read that record

&IF &FILERC = 0 &THEN +

 &WRITE DATA=READ FOR RECORD &FILEKEY

Note: If the &FILEKEY variable can contain non-printable characters, it is
recommended that it not be used directly as a parameter when invoking other
procedures. In this case, use &HEXEXP to produce a character representation of
the key, and pass this value.

&FILERC

890 Network Control Language Reference Guide

More information:

&FILE (see page 341)

&FILERC

Indicates the success or otherwise of a file processing function.

A return code is set after the execution of the &FILE ADD, &FILE DEL, &FILE GET,
&FILE OPEN, and &FILE PUT file processing statements. This return code is
placed in the &FILERC system variable, which can then be tested to determine
whether the operation was successful. The meaning of the various return codes
is as follows:

For &FILE ADD:

0

Record added successfully.

1

Record added; truncation has occurred.

4

Record already exists (not replaced).

8

Error occurred; &VSAMFDBK is set.

16

NCL or Mapping Services processing error; &SYSMSG is set.

For &FILE DEL:

0

Record deleted successfully.

4

Record not found.

8

Error occurred; &VSAMFDBK is set.

16

NCL or Mapping Services processing error; &SYSMSG is set.

&FILERC

Chapter 3: System Variables 891

For &FILE GET:

0

Record retrieved successfully.

4

Record not found or end of data.

8

Error occurred; &VSAMFDBK is set.

16

NCL or Mapping Services processing error; &SYSMSG is set.

For &FILE OPEN:

0

Procedure is restricted to read only access.

4

Procedure is restricted to read and update access without delete authority.

8

Procedure is not restricted. Read, update and delete are authorized. If no
authorization exit (NCLEX01) is in effect, then this value is set if the file is
available for processing.

12

No access is authorized.

16

Specified file ID is not available for processing.

For &FILE PUT:

0

Record added or replaced successfully.

1

Record added; truncation has occurred.

4

Reserved for future use.

&FILERC

892 Network Control Language Reference Guide

8

Error occurred; &VSAMFDBK is set.

16

NCL or Mapping Services processing error; &SYSMSG is set.

Example: &FILERC

& FILE OPEN ID=HELPDESK FORMAT=DELIMITED

&IF &FILERC EQ 16 &THEN +

 &ENDAFTER &WRITE DATA=NOT AVAILABLE

&FILE SET ID=HELPDESK KEY='PROB005'

&FILE GET ID=HELPDESK OPT=KEQ VARS=TXT

&IF &FILERC NE O &THEN +

 &WRITE DATA=RECORD NOT FOUND

&FILERC

Chapter 3: System Variables 893

Notes:

Simplify the testing for &FILERC and branching to the appropriate processing
routine by using direct branching. For more information, see the Network
Control Language Programming Guide.

For example:

&FILE GET ID=HELPDESK OPT=KEQ VARS=TXT

&GOTO

.GET&FILERC

.GET0

&ENDAFTER &WRITE DATA=RECORD RETRIEVED SUCCESSFULLY

.GET4

&ENDAFTER &WRITE DATA=RECORD NOT FOUND

.GET8

&ENDAFTER &WRITE DATA=ERROR VSAM CODE=&VSAMFDBK

The &VSAMFDBK system variable is also set on completion of a file processing
operation, and is used to determine the exact cause of a VSAM-related error.

The values set in &FILERC after an &FILE OPEN statement are determined by the
NCL file ID authorization exit NCLEX01. NCLEX01 is invoked the first time each
new &FILE OPEN statement is referenced in a procedure. The name of the
invoked exit is determined by the SYSPARMS command NCLEX01 operand. If no
exit is in effect, only values of 8 (to authorize full access) and 16 (to indicate that
the specified file is not available for processing) are set.

When &FILERC returns 16, &SYSMSG contains a message explaining the error. A
value of 16 is also set for Mapping Services processing errors. This should occur
only when in mapped processing mode.

Note: For more information, see the examples in the distribution library.

More information:

&VSAMFDBK (see page 929)

&FILERCNT

894 Network Control Language Reference Guide

&FILERCNT

Provides a count of the number of records deleted by &FILE DEL processing.

NCL File Processing allows records to be deleted from a User DataBase (UDB)
using the &FILE DEL statement, including support for the deletion of groups of
records with a single statement. The deletion of groups of records is termed
'generic' deletion.

Generic deletion is triggered by use of the OPT=KEQALL or OPT=KGEALL
operands on the &FILE DEL statement.

The &FILERCNT system variable provides a count of the number of records
deleted during a generic process.

Example: &FILERCNT

&WRITE DATA=&FILERCNT RECORDS DELETED.

&FILERCNT remains unchanged until the next &FILE DEL or &FILE CLOSE
statement.

Notes:

If no active file exists, &FILERCNT is set to 0.

If a non-generic deletion of a single record is performed, &FILERCNT is set to 1.

&FSM

Chapter 3: System Variables 895

&FSM

Indicates if the issuing procedure has access to a real window.

Indicates whether the executing NCL process is directly associated with a real
window, and therefore can issue an &PANEL statement. Any NCL procedure
executing in an NCL processing environment that is associated with a real
terminal window finds that &FSM returns a value of YES.

Any NCL procedure executing in an NCL processing environment which does not
have an associated real terminal window (for example, the system background
environments or ROF sessions) finds that &FSM returns a value of NO.

Example: &FSM

&IF &FSM = YES &THEN +

 &DO

 &PANEL MSGDISPLAY

 &END

 &DOEND

&WRITE DATA=&MSG1

&WRITE DATA=&MSG2

 .

 .

 .

&INKEY

896 Network Control Language Reference Guide

&INKEY

The &INKEY system variable contains a value representing the key last used to
enter data.

&INKEY is a system variable that is used to determine the last method of input
to a procedure from either a full-screen panel or an LU1 type device.

&INKEY is set as follows:

■ ENTER—Enter or Return key pressed.

■ PF01 to PF24—program function key 1 through 24 pressed.

■ PA1 to PA3—program attention key 1 through 3 pressed.

■ Null—panel INWAIT or &PROMPT WAIT time period expired, no input made.

Program function key values (PFnn) and attention keys(PAnn) do not apply to an
LU1 type terminal.

Program attention keys (PA1 to PA3) are available only to a procedure running
with the &CONTROL PAKEYS option.

Typically, NCL procedures test &INKEY to determine the next action to take.

By default, certain function keys are allocated for use by the system and so are
intercepted before reaching the NCL procedure. An example is F4, which is
typically a return-to-menu key.

The &CONTROL PFKSTD, PFKALL, and NOPFK options allow the procedure to
control the level of function key interception performed by the system. For
example, &CONTROL PFKSTD indicates that function keys F3 and F4 are passed
to the NCL procedure, but F2 and F9 continue to perform screen split and swap
functions.

The &CONTROL PFKMAP option is used if function keys 13 through 24 are
assigned the same functions as function keys 1 through 12. If this option is in
effect, the NCL procedure is only required to cater for function keys 1 through
12. For instance, if a user presses the F13 key, NCL places the value PF01 in
&INKEY; F15 results in PF03; and so on.

&INKEY

Chapter 3: System Variables 897

Examples: &INKEY

&IF .&INKEY EQ . &THEN +

 &GOTO .TIMEOUT

&IF &INKEY EQ PF01 &THEN +

 &PANEL HELP

Notes:

If the panel has been defined with the #OPT control statement specifying a time
interval on the INWAIT operand, and this time period has elapsed, &INKEY is set
to null. Thus, it is possible for the procedure to determine whether validation is
bypassed, and so on. &INKEY is also null if the time interval in the WAIT operand
of an &PROMPT statement expires. Under these circumstances, some care must
be taken in subsequent &IF statements that reference &INKEY, as it can have a
null value and result in a syntax error. We recommend that you balance an &IF
statement by using of an additional character that avoids such syntax errors
when &INKEY is null, for example:

&IF X&INKEY EQ XPF01 &THEN +

 &GOTO .HELP-DISPLAY

An alternative method of determining this is the use of &CONTROL PANELRC to
supply return codes to the invoking procedure on return from an &PANEL or
&PROMPT statement. In this case, a return code of 12 in &RETCODE indicates
that the INWAIT or WAIT time period has expired.

For function key entry, &INKEY is always four characters. Numbers below 10
always have a leading zero, for example: PF04.

The &INKEY value remains set until the next &PANEL statement.

If the full-screen environment associated with the NCL process is terminated
(for example, by issuing &PANELEND), &INKEY returns a null value.

Note: For more information, see the $EASINET NCL procedure in the distribution
library and the &CONTROL statement.

&LOOPCTL

898 Network Control Language Reference Guide

&LOOPCTL

Returns the current setting of the automatic loop control counter.

&LOOPCTL is a system variable that is used to determine the value of the system
loop control counter current for the executing process. The system default value
for &LOOPCTL is 1000, and this value decrements by one for each time a loop is
executed. On exit from a loop, the counter returns to the default value. If the
counter reaches0, then the process is terminated, on the assumption that it is
looping uncontrollably.

Example: &LOOPCTL

&IF &LOOPCTL LT 10 &THEN +

 &GOTO .GIVEUP

Notes:

The &LOOPCTL verb is used to reset the loop control counter. You might need to
do this if you expect to loop validly for a significant number of iterations during
standard processing.

If your procedure has varying processing to perform, resulting in possible very
lengthy iterations, you can check the decrementing value of &LOOPCTL and take
action to avoid abnormal termination of the procedure.

More information:

&LOOPCTL (see page 430)

&LUCOLS

Chapter 3: System Variables 899

&LUCOLS

Indicates the number of columns currently allocated to this processing window.

NCL procedures displaying output might want to determine the width of the
processing window. In this way, procedures is developed that cater for differing
screen sizes.

The &LUCOLS system variable is tested to determine the number of display
columns available to a processing window.

The system supports split screen operation with a maximum of two operational
windows. When using split screen operation, the number of display columns
available to the procedure might be less than the physical width for the screen.
The &LUCOLS system variable always reflects the number of display columns for
that window.

Example: &LUCOLS

&IF &MINWIDTH GT &LUCOLS &THEN +

 &GOTO .NOGOOD

Note: The dimensions of the physical terminal (regardless of the window
dimensions) is determined from the &ZCOLS and &ZROWS system variables.

More information:

&LUROWS (see page 903)
&ZCOLS (see page 949)

&LUEXTCO

900 Network Control Language Reference Guide

&LUEXTCO

Indicates if the terminal supports extended color.

&LUEXTCO is a system variable that is used to determine if the terminal from
which the NCL procedure is executing supports extended color facilities. If the
terminal does support extended color &LUEXTCO is set to YES, if not &LUEXTCO
is set to NO.

If the NCL procedure is executing in an environment which is not associated
with a terminal (for example, a background environment), &LUEXTCO is set to a
question mark (?).

&LUEXTCO applies only to IBM terminals which support full seven-color facilities
or Fujitsu seven-color or three-color terminals.

&LUEXTCO is used within an NCL procedure to determine the type of processing
possible for a particular terminal.

Example: &LUEXTCO

&IF &LUEXTCO EQ YES &THEN +

 &GOTO .7COLOR

Notes:

Testing of device attributes from within an NCL procedure displaying full-screen
panels is not normally required as Panel Services automatically suppresses the
generation of color data streams if not applicable to the device to which the
panel is being sent. It is necessary if an NCL process is to display different panels
depending on the terminal characteristics.

&LUEXTCO is set only if the BIND parameters for the terminal correctly indicate
that the terminal supports READ PARTITION QUERY. If set, the system
interrogates the terminal at connection time and determines which extended
facilities are supported. Alternatively, the TERMINAL command is used to
temporarily indicate that the terminal supports color.

More information:

&LUEXTHI (see page 901)

&LUEXTHI

Chapter 3: System Variables 901

&LUEXTHI

Indicates if the terminal supports extended highlighting.

&LUEXTHI is a system variable that is used to determine if the terminal from
which the NCL procedure is executing supports extended highlighting. If the
terminal does support extended highlighting &LUEXTHI is set to YES; if not,
&LUEXTHI is set to NO.

If the NCL procedure is executing in an environment which is not associated
with a terminal (for example, a background environment), &LUEXTHI is set to a
question mark (?).

&LUEXTHI is used within an NCL procedure to determine the type of processing
possible for a particular terminal.

Example: &LUEXTHI

&IF &LUEXTHI EQ YES &THEN +

 &GOTO .BLINK

Notes:

Testing of device attributes from within an NCL procedure displaying full-screen
panels is not normally required as Panel Services automatically suppresses the
generation of extended highlighting data streams if not applicable to the device
to which the panel is being sent.

&LUEXTHI is set only if the BIND parameters for the terminal correctly indicate
that the terminal supports READ PARTITION QUERY. If set, the system
interrogates the terminal at connection time and determines which extended
facilities are supported. Alternatively, the TERMINAL command is used to
temporarily indicate that the terminal supports extended highlighting.

More information:

&LUEXTCO (see page 900)

&LUNAME

902 Network Control Language Reference Guide

&LUNAME

Provides the name of the terminal at which the NCL procedure is executing.

&LUNAME provides a system variable for the name of the terminal at which the
user is currently logged on or, in the case of the EASINET procedure, it provides
the name of the terminal where the procedure is executing.

Example: &LUEXTHI

&IF &LUNAME EQ TERM1 &THEN +

 &GOTO .OK

The value returned from &LUNAME is a 1 to 8 character value.

Certain system environments use virtual user IDs and terminals names. The
following values are returned for system environments:

BG-MON

background monitor

BG-LOG

background logger

BG-SYS

background system environment

AOM-PROC

AOMPROC procedure

CNM-PROC

CNMPROC procedure

LOG-PROC

LOGPROC procedure

PPO-PROC

PPOPROC procedure

CONSOLE

logical console associated with the sysoper user ID

&LUROWS

Chapter 3: System Variables 903

CONS#nn

system console number nn

REMOTE

ROF user

Note: Other optional features that generate internal system environments
allocate additional pseudo terminal names, which appear on a SHOW SESS
command display as xxx-PROC, where xxx is the first three letters of the
associated system level NCL procedure name.

&LUROWS

Indicates the number of rows currently allocated to this process window.

NCL procedures displaying multi-page output might want to determine the
number of lines in the processing window. In this way, procedures is developed
that cater for differing screen sizes.

It is good practice to write procedures that cater for the largest screen size (for
example: 62 lines for a 3290) and that automatically adjust if used on a smaller
screen.

The &LUROWS system variable is tested to determine the number of display
lines available to a processing window.

When using split screen operation, the number of display lines available to the
procedure might be less than the physical number for the screen. The
&LUROWS system variable always reflects the number of display lines (rows) for
that window.

When using &LUROWS, the NCL procedure must cater for any fixed overhead
associated with a particular panel. For example, a panel can have a title on the
top, followed by a line of column headings, and the third line blank. Data then
commences on line 4 of the panel. The procedure must therefore allow for
these three lines before attempting to calculate the number of display lines
available for data.

Examples: &LUROWS

&IF &CNT LT &LUROWS &THEN +

 &GOTO .NEXTLINE

&MAI#SESS

904 Network Control Language Reference Guide

Notes:

When subtracting fixed panel overhead from &LUROWS, the NCL procedure
must allow for &LUROWS having a value as low as when the window is not
visible.

The dimensions of the physical terminal (regardless of the window dimensions)
is determined from the &ZCOLS and &ZROWS system variables.

More information:

&LUCOLS (see page 899)
&ZROWS (see page 1030)

&MAI#SESS

Returns the number of currently defined sessions. This is equivalent to
&MAINSESS.

&MAIAE

Indicates the availability of the A and E primary commands. Is YES or NO.

&MAIAPPL

Returns the name of the application acting as the PLU on the MAI session.

Returns the name of the VTAM application acting as the PLU on the MAI session
(that is, the application logged on to).

Example: &MAIAPPL

&IF &MAIAPPL = TSO &THEN &GOTO .TSO

&APPL = &SUBSTR &MAIAPPL 1 3

&IF &APPL = TSO &THEN &GOTO .TSO

Note: The value of &MAIAPPL can change during the session if the application
performs a VTAM CLSDST/PASS operation to pass the MAI session to another
application. For instance, &MAIAPPL might contain TSO at session start, then
change to TSO0003 during the logon process.

&MAICCOLS

Chapter 3: System Variables 905

&MAICCOLS

Returns the number of columns in the current MAI session's screen.

Provides screen size information to the script procedure.

Example: &MAICCOLS

& BUFFSIZE = &MAICROWS * &MAICCOLS

Note: Screen size is changed by the application issuing ERASE WRITE or ERASE
WRITE ALTERNATE.

&MAICROWS

Returns the number of rows in the current MAI session's screen. Provides
screen size information to the script procedure.

Example: &MAICROWS

& BUFFSIZE = &MAICROWS * &MAICCOLS

More information:

&MAICCOLS (see page 905)

&MAIDISC

Indicates whether MAI will honor a terminal disconnect request. Is YES or NO.

&MAIFRLU

906 Network Control Language Reference Guide

&MAIFRLU

Returns the direction of the last data stream.

Returns the direction of the last data stream as one of the following values:

PLU

The data stream last received was sent by the PLU, that is, the application.

SLU

The data stream last received was sent by the SLU, that is, the terminal.

Example: &MAIFRLU

&IF &MAIFRLU = SLU &THEN &GOTO .TERMINAL

Notes:

An &MAIFRLU issued when there is no data outstanding returns a null value.
Data is outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL, or another &MAIREAD is issued.

&MAIFRLU is most often used after an &MAIREAD ANY has been satisfied, so
that the procedure can determine which data stream has been received.

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)
&MAIDEL (see page 437)

&MAIINKEY

Indicates the value of the key used to enter data.

Returns the value of the key used to enter data when a data stream is received
from the SLU (terminal), as follows:

ATTN

the ATTN key

CLEAR

the CLEAR key

&MAIINKEY

Chapter 3: System Variables 907

CARD

operator ID card

ENTER

the Enter key

MAG

magnetic card

NONE

no AID generated

PA1 to PA3

Program Attention Key 1 to 3

PF1 to PF24

Program Function Key 1 to 24

REQ

test request

SEL

selector pen attention

SF

inbound structured field

TRIG

trigger action

Example: &MAIINKEY

&IF &MAIINKEY = PF3 &THEN &GOTO .END

Notes:

When used to test the key used to enter data, an &MAIINKEY returns a null
value if there is no outstanding data. Data is outstanding from the time an
&MAIREAD is satisfied until an &MAICONT, &MAIDEL or another &MAIREAD is
issued.

&MAIINKEY is sensitive to the setting of the &CONTROL PFKMAP option.

If &CONTROL PFKMAP is in effect, F3 to F24 are mapped into F1 to F12. For
example, receipt of PF13 results in &MAIINKEY being set to a value of PF1.

&MAILOCK

908 Network Control Language Reference Guide

More information:

&MAICONT (see page 431)
&MAIREAD (see page 447)
&MAIDEL (see page 437)

&MAILOCK

Indicates whether or not MAI will honor a terminal lock request. Is YES or NO.
This represents the setting of the MAITLOCK system parameter.

&MAILU

Returns the name of the VTAM APPL being used by MAI as the secondary
Logical Unit on the session.

Example: &MAILU

&IF &MAILU = MFMST &THEN &GOTO .MASTER

Note: Whenever MAI starts a session, it opens a VTAM ACB whose name is
either chosen from a series or is specified by the user or an MAI exit. &MAILU
returns the name of the VTAM ACB used for this session.

&MAIMNFMNT

Returns the current menu format as long or short.

&MAINSESS

Returns the number of currently defined sessions. This is equivalent to
&MAI#SESS.

&MAIOCMD

Chapter 3: System Variables 909

&MAIOCMD

Returns the command code contained in the first byte of the outbound data
stream sent by the PLU. The following command codes is returned:

WRITE

WRITE

EW

ERASE/WRITE

EWA

ERASE/WRITE ALTERNATE

RM

READ MODIFIED

RMA

READ MODIFIED ALL

RB

READ BUFFER

WSF

WRITE STRUCTURED FIELD

EAU

ERASE ALL UNPROTECTED TO ADDR

&MAIREQ

Returns the MAI logon request.

Returns the value of the Logon Request field of the MAI Logon Details panel
used to start the session.

Example: &MAIREQ

&IF &MAIREQ = TSOA &THEN &GOTO .TSOA

&MAISCANDL

Returns the scan limit for session commands.

&MAISID

910 Network Control Language Reference Guide

&MAISID

Returns the session ID of the session on whose behalf the script is running.

Returns the session ID of the session on whose behalf the script procedure is
running. The session ID is nominated on the Logon Details panel or allowed to
default to the MID operand value of the DEFLOGON command used to provide
the logon path.

Example: &MAISID

&IF &MAISID = TSO1 &THEN &GOTO .TSOFIRST

&MAISKIPP

Returns the system-wide value for the session command prefix character.

&MAISKPK1

Returns the session command function key 1 (for example, F12).

&MAISKPK2

Returns the session command function key 2 (for example, F24).

&MAISMODE

Chapter 3: System Variables 911

&MAISMODE

Returns the mode in which the script procedure is running.

Returns a value indicating the mode in which the script procedure is running
(that is, how it was started). One of the following values is returned:

START

Indicates that the procedure was started at session start time. Parameters
coded in the SCRIPT NCL PROC field of the Logon Details panel are passed as
&1, &2, &3, and so on.

END

Indicates that the procedure was started at forced session end time. The
procedure is driven under the following conditions: the user ends the
window from which the MAI-FS session was created, or logs off from the
product region, without logging off the application. The user is canceled by
an OCS operator; the user's reconnect time limit expires; the session with
the user's terminal is lost and session reconnect is disabled by the
installation. Parameters coded in the SCRIPT NCL PROC field of the Logon
Details panel are passed as &1, &2, &3, and so on.

SKIP

Indicates that the procedure was started by a .S session skip command
entered by the user on a screen displayed on behalf of this session or the
SCRIPT command. Words in the same input field as the .S command or in
the DATA operand of the SCRIPT command are passed as parameters &1,
&2, &3, and so on, to the procedure.

Examples: &MAISMODE

&IF &MAISMODE = END &THEN &END

&IF &MAISMODE = SKIP &THEN &GOTO .PROCESS

&GOSUB .MODE_&MAISMODE

Note: The script procedure must be able to handle being driven under all three
of the above conditions. If no processing is to be performed for any of the
conditions, the procedure should end.

&MAITITLE

Returns the title that is displayed at the top of the MAI-FS main menu.

&MAIUNLCK

912 Network Control Language Reference Guide

&MAIUNLCK

Indicates whether the data stream just received would unlock the keyboard if
sent to the terminal.

When a script procedure receives a data stream from the PLU (application), it
should not attempt to automatically reply until a data stream is received that
would unlock the keyboard if sent to the terminal. Failure to wait for the unlock
condition could result in the reply being discarded because the SNA session
state does not allow data to be sent.

&MAIUNLCK returns one of the following values:

YES

Indicates that the data stream would unlock the keyboard.

NO

Indicates that the data stream would not unlock the keyboard.

Example: &MAIUNLCK

&IF &MAIUNLCK = NO &THEN &GOSUB .WAITUNLCK

Notes:

&MAIUNLCK is normally used to determine if a reply is returned to the
application. MAI delivers to the procedure each data stream as it is received.
The script procedure might decide(using &MAIFIND) that it is time to reply to
the application. However, some applications send data to the screen in multiple
I/O operations, only unlocking the keyboard on the last one. A good example of
such an application is TSO.

During logon, TSO sends 'logon in progress' type messages, followed by any
broadcast messages, and finally the READY prompt. Multiple I/O operations is
performed to send these messages, and the script procedure sees each one as it
occurs. Even the READY prompt cannot actually unlock the keyboard. It could be
followed by another data stream that contains the data necessary to unlock the
keyboard.

A script procedure which wanted to reply after the READY prompt would find
the prompt using &MAIFIND, but might still not be able to reply unless the
prompt also unlocked the keyboard. If &MAIUNLCK returned NO on the READY
data stream, the procedure would have to wait for the next data stream to
unlock the keyboard before replying.

&MAIWNDOW

Chapter 3: System Variables 913

Most applications are far easier to handle than this. Usually one I/O operation is
used to send data to the screen, and that data stream also unlocks the
keyboard.

An &MAIUNLCK issued when there is no data outstanding returns a null value.
Data is outstanding from the time an &MAIREAD is satisfied until an &MAICONT,
&MAIDEL, or another &MAIREAD is issued. &MAIUNLCK issued while processing
an SLU data stream returns the value NO.

Note: For more information, see the examples in the BASE.INSTALL library.

More information:

&MAIFIND (see page 440)
&MAICONT (see page 431)
&MAIREAD (see page 447)
&MAIDEL (see page 437)

&MAIWNDOW

Indicates the MAI-FS session's visibility.

A value of FOREGROUND is returned when the application is currently
displayed. BACKGROUND indicates that the session is not displayed.

Example: &MAIWNDOW

&IF &MAIWNDOW =

Note: A value of BACKGROUND will be returned wherever the MAI session is not
displayed. This includes whenever an NCL &PANEL statement has taken over the
window, for example from the script itself, session help or broadcasts.

&NDBERRI

914 Network Control Language Reference Guide

&NDBERRI

Provides additional information about an NDB warning or error condition.

The &NDBERRI system variable contains up to 12 characters of additional
information when certain NDB error conditions occur. For example, if an
&NDBADD or &NDBUPD statement set &NDBRC to 104 (duplicate unique key
value detected), &NDBERRI contains the name of the field in error.

Not all error responses provide a value in &NDBERRI.

Example: &NDBERRI

& NDBADD ...

&IF &NDBRC = 104 &DO

 &WRITE DATA=DUPLICATE KEY ON ADD, FIELD = &NDBERRI

 &GOTO ERROR_EXIT

&DOEND

Notes:

This example displays the name of the field with a duplicated key value, if the
add fails with that response.

If no NDB statements have been issued by the executing NCL process,
&NDBERRI returns a null value.

&NDBERRI is always cleared when the next &NDBxxx statement is executed. For
this reason, the value should be saved in a user variable if other &NDBxxx
statements must be executed before using the saved value.

For more information about the contents of &NDBERRI for each possible
&NDBRC value, see the Network Control Language Programming Guide.

More information:

&NDBRC (see page 915)

&NDBRC

Chapter 3: System Variables 915

&NDBRC

Indicates the success or otherwise of an &NDBxxx NCL statement.

The &NDBRC system variable is set by all &NDBxxx NCL statements, to a value
that indicates whether the requested function was performed successfully
(&NDBRC set to 0), or not (&NDBRC set to a non-zero value).

The NCL procedure can test the value of &NDBRC to control processing. For
example, &NDBRC is set to 1 if an &NDBGET statement does not find a record
with the matching key or RID.

&NDBRC values fall into three categories:

OK

&NDBRC = 0

Warning

&NDBRC = 1 to 29

Error

&NDBRC > 29

Warning responses include such things as: Record not found, End-of-file, Scan
exceeded a limit.

Error responses include such things as: Invalid field name or value, Unknown
keyword in free-format text, Unknown format or sequence name.

Example: &NDBRC

&NDBADD ...

&IF &NDBRC NE 0 &GOTO ADD_ERROR

&NDBRC

916 Network Control Language Reference Guide

Notes:

This example shows how the result of an &NDBADD is determined by using
&NDBRC.

If no NDB statements have been issued by the executing NCL process, &NDBRC
is always null. Once an &NDBxxx statement has been issued, &NDBRC always
has a numeric value.

&NDBRC is always reset when the next &NDBxxx statement is executed. For this
reason, the value should be saved in a user variable if other &NDBxxx
statements must be executed before using the saved value.

Error responses (&NDBRC > 29) are not returned to an NCL procedure unless
&NDBCTL ERROR=CONTINUE is in effect. Instead, the procedure will be aborted.
&NDBOPEN and &NDBCLOSE are exceptions to this rule. They are always
treated as if &NDBCTL ERROR=CONTINUE is in effect, except for responses 34
(Already open, on &NDBOPEN), and 35 (Not open, on &NDBCLOSE).

Note: For more information about &NDBRC values, see the Network Control
Language Programming Guide.

More information:

&NDBERRI (see page 914)

&NDBRID

Chapter 3: System Variables 917

&NDBRID

Provides the record ID of the current or new record.

The &NDBRID system variable is set by some NDB NCL statements to indicate
the Record ID of a record. It is set as follows:

&NDBADD

The RID of the new record.

&NDBCLOSE

Set to 0.

&NDBCTL

Set to 0.

&NDBDEF

Set to 0.

&NDBDEL

Set to 0.

&NDBGET

The RID of the current record or 0 if retrieving key field statistics.

&NDBINFO

Set to 0.

&NDBOPEN

Set to 0.

&NDBSCAN

Set to the RID of the first record returned by the scan, or zero if no records
were selected. If the &NDBSCAN parameter RECLIMIT=1 was specified,
&NDBRID will remain set to zero even if one record passes the scan.

&NDBSEQ

Set to 0.

&NDBUPD

The RID of the updated record.

If a non-zero response is returned in &NDBRC, most statements set &NDBRID to
0. &NDBSCAN is the only exception to this rule.

&NEWSAUTH

918 Network Control Language Reference Guide

Example: &NDBRID

&NDBGET MYDB FIELD=SURNAME VALUE=SMITH

&NDBDEL MYDB RID=&NDBRID

This example deletes the first record (lowest RID) on database MYDB, with the
field SURNAME = SMITH.

Notes:

If no NDB statements have been issued by the executing NCL process, &NDBRID
is always null. Once any &NDBxxx statements have been issued, &NDBRID is
always numeric.

&NDBRID is always cleared when the next &NDBxxx statement is executed. For
this reason, the value should be saved in a user variable if other &NDBxxx
statements must be executed before using the saved value.

Returns the relative position in an &NDBSCAN-built sequence on &NDBGET and
&NDBSEQ statements.

More information:

&NDBADD (see page 476)
&NDBGET (see page 506)
&NDBSCAN (see page 527)
&NDBUPD (see page 550)

&NEWSAUTH

Indicates whether a user is authorized for NEWS functions.

An NCL procedure might want to determine whether the user who invoked it is
authorized to use NEWS functions. &NEWSAUTH is set to NO if the user ID
definition of the user does not include NEWS authorization and YES if it does.

Example: &NEWSAUTH

&IF &NEWSAUTH = YES &THEN +

 &GOTO .OK

&ELSE +

 &GOTO .REJECT

&NEWSRSET

Chapter 3: System Variables 919

&NEWSRSET

Indicates whether the user is authorized for NEWS reset (delete) functions.

An NCL procedure might want to determine whether the user who invoked it is
authorized to reset (or delete) information held on a database.

&NEWSRSET is set to NO if the user ID of the user does not include NEWS reset
authorization, and YES if it does. The meaning of NEWS reset is determined by
the NCL procedure itself, but would normally determine whether the user is
allowed to delete records from a database.

Example: &NEWSRSE

&IF &NEWSRSET = YES &THEN +

 &GOTO .OK

&ELSE +

 &GOTO .REJECT

Note: For more information, see the examples in the distribution library.

&NMID

Returns the 1- to 12-character ID of this system.

&NMID returns the 1- to 12-character ID as set by the SYSPARMS command ID=
operand. If this value has not been set by the SYSPARMS command, the default
of the primary VTAM ACBNAME is returned.

Example: &NMID

&IF &NMID EQ NMPROD &THEN +

 &GOTO .OK

&NMID

920 Network Control Language Reference Guide

Notes:

When multiple systems are running in the same network, on the same or
different machines, each should have a unique NMID. This is not enforced but is
good operational practice.

The NMID for each system should be meaningful so as to allow a functional use
in an installation's operational procedures.

Note: For more information, see the NMDID JCL parameter an d the domain ID
(DID) as specified on the NMDID initialization parameter. The DID must be
unique for every connecting system; otherwise the systems limit certain
functions across INMC links.

&OCSID and &OCSIDO

Chapter 3: System Variables 921

&OCSID and &OCSIDO

Indicates the OCS ID name for the current window.

When operating multiple Operator Console Services (OCS) windows it might be
necessary to distinguish between the windows for operational reasons. The
OCSID command allows a distinguishing ID to be assigned to a window. This ID
remains displayed in the bottom right hand corner of the window until exited.
Thus, a different ID is set in each window.

The &OCSID system variable enables an NCL procedure to test the ID of the
current OCS window. &OCSID will be set to the same 1- to 8-character ID used in
the OCSID command. If no ID has been set, &OCSID returns a null value.

The &OCSIDO system variable enables an NCL procedure to test the ID of the
other OCS window if it is operational.

&OCSID and &OCSIDO would normally be used jointly to determine
automatically, within an NCL procedure, what ID should be set for a particular
window.

Consider the case where two windows are required. They are to have different
IDs of TEST and LIVE. An NCL procedure is executed as the initial command
(INITCMD) on entry to OCS. As the entry and exit from OCS can occur in a
random fashion, the NCL procedure must be able to determine which of the two
windows TEST or LIVE is to be assigned. The example below shows how this is
achieved.

Example: &OCSID and &OCSIDO

&IF .&OCSIDO NE .LIVE &THEN +

 -OCSID LIVE

&IF .&OCSIDO EQ .LIVE &THEN +

 -OCSID TEST

Notes:

In the above example the OCSID command has been prefixed with the
suppression character (-) to eliminate the echo of the command to the terminal.
This makes the setting of the window ID transparent to the operator.

&OCSID is used in NCL procedures, such as a MSGPROC, to control the path of
execution.

&PANELID

922 Network Control Language Reference Guide

&PANELID

Indicates the name of the current panel.

To assist in documenting systems and to aid in problem reporting, an
installation can standardize on the inclusion of the name of the panel in a set
position on the screen for all full screen panels.

The &PANELID system variable provides an alternative to the inclusion of the
actual panel name within the body of the panel.

The &PANELID system variable is always set to the name of the current panel.

Example: &PANELID

&PANELID

Notes:

The panel designer should allow up to 12 characters for a maximum size panel
name.

Use of the &PANELID system variable other than in a panel yields a null value.

For testing purposes, an alternative to the inclusion of the &PANELID variable is
the use of the &CONTROL PANELID statement to force the display of panel
names in the upper left hand corner of all panels. See the &CONTROL statement
for more details.

&PARMCNT

Chapter 3: System Variables 923

&PARMCNT

Supplies the count of the number of argument variables created when a
procedure was invoked.

&PARMCNT is the count of the number of argument variables created on the
statement when a procedure is invoked.

When a procedure is invoked, arguments is passed to the procedure by
following the name of the procedure with the data to be passed.

The arguments is parsed into words and assigned into the user variables &1, &2,
to & n, and &PARMCNT is set to the count of the variables created.

Example: &PARMCNT

&IF &PARMCNT EQ 0 &THEN +

 &WRITE DATA=REQUIRED DATA OMITTED

User enters:

EXEC PROC5 NCP1 NCP4

Notes:

&PARMCNT is set to 2, representing the entry of the variable values NCP1 and
NCP4 (assigned to &1 and &2).

&PARMCNT is set only when a procedure is invoked and remains set to that
initial value for the duration of processing. Subsequent functions do not change
the value.

&PARMCNT applies only to the current nesting level. Each new nesting level
establishes its own unique &PARMCNT value.

The &ALLPARMS variable provides a single variable that is a consolidation of all
variables supplied on entry to the procedure.

More information:

&ALLPARMS (see page 806)
&CONTROL (see page 281)

&RETCODE

924 Network Control Language Reference Guide

&RETCODE

Returns the current NCL process's return code or sets a new return code value.

NCL statements can set &RETCODE as an indication of the success or otherwise
of the function. A procedure can set a value in the range 0 to 99 for &RETCODE.

&RETCODE is used to indicate the completion of a function performed by a
nested procedure.

&RETCODE used as a statement, sets the value to that specified.

A value of 100 is set by the system if the &CONTROL FINDRC option is set. This
option allows a procedure to determine the success of a request for a nested
procedure. If the requested procedure does not exist and &CONTROL FINDRC is
set, processing continues but &RETCODE is set to a value of 100. If &CONTROL
FINDRC is not set, the requesting procedure terminates.

value

A new value, in the range 0 to 99, to be placed in &RETCODE.

Example: &RETCODE

&IF &RETCODE NE 0 &THEN +

 &WRITE DATA=FUNCTION FAILED.

&RETCODE 4

&CONTROL FINDRC

-EXEC &REQUEST

&IF &RETCODE EQ 100 &THEN +

 &WRITE DATA=Requested Procedure '&REQUEST' Not Found

Notes:

A nested procedure can set a return code on the &END statement. On return to
the higher level, &RETCODE contains the return code value.

If &RETCODE has not been set, it has a default value of 0.

An alternative to using the &END statement to pass a return code is to use the
&RETURN statement, which can return variables to a higher nesting level, or
&CONTROL SHRVARS, which allows sets of variables to be shared between
procedures.

&ROUTECODE

Chapter 3: System Variables 925

More information:

&END (see page 333)
&RETURN (see page 618)
&CONTROL (see page 281)

&ROUTECODE

A system variable that contains the routing code(s) assigned to the current
message, in &MASKCHK format.

The routing codes(s) that is assigned to a message are in the range from 1 to
128. This is a 128-character system variable containing 128 Y/N values
representing the routing code(s).

For example, ROUTCODE=(1,2,3,11) yields a 128-byte value of
YYYNNNNNNNYNNNNN....N.

Example: &ROUTECODE

&ROUTECODE = &MASKCHK YYYNNNNNNNYNNNNN &AOMRMASK

&AOMRMASK is used to identify invalid route codes.

More information:

&AOMRHEX (see page 858)
&AOMROUTC (see page 860)

&SYSID

Returns the current operating system identification.

An operating system has an ID associated with it. This ID is used by the JES
sub-system to identify jobs and so on. &SYSID is used to test the current value of
this ID.

Example: &SYSID

&WRITE DATA=SYSTEM ID=&SYSID

&IF &SYSID = S001 &THEN +

 &GOTO .OK

&TIME

926 Network Control Language Reference Guide

Notes:

In z/OS and MSP installations the value returned from &SYSID is a 1- to
4-character SMF ID as set by your installation. In z/VM environments, &SYSID
returns the 8-character Virtual Machine identifier of the machine in which your
product region is executing. In VSE/SP environments, &SYSID returns a single
question mark.

&NMID is used to determine the identity of the region under which the
procedure is executing.

&TIME

Returns the current time. A system maintained variable that returns the current
time of day in the format HH.MM.SS.

Example: &TIME

&WRITE DATA=THE TIME IS &TIME, ON &DATE2

&HHMM = &SUBSTR &TIME 1 5

Note: The value returned from &TIME is always an 8 character value.

More information:

&ZTIMEn (see page 1039)
&ZGTIMEn (see page 962)
&ZGTIMEZn (see page 963)

&USERAUTH

Returns the command authority of the user who initiated the procedure.

Returns a numeric value in the range 0 to 255, indicating the command
authority level of the user who initiated the procedure.

Example: &USERAUTH

&WRITE DATA=YOUR USERID IS &USERID AND AUTHORITY IS &USERAUTH

&IF &USERAUTH NE 255 &THEN +

 &GOTO .REJECT

&USERID

Chapter 3: System Variables 927

Notes:

If an NCL process is executing on behalf of another user, for example, as a result
of a SUBMIT command, the originating user's authority is propagated.

If USER1 issues the command

-SUBMIT BSYS -START PROC1

where USER1 has authority 1, and the BSYS environment has authority 9, use of
&USERAUTH in this execution of PROC1 returns 1, not 9.

&USERID

Returns the user ID of the user currently executing the procedure.

A system maintained variable that returns the user ID of the user currently
executing the procedure.

NCL procedures execute in an NCL processing region associated with a user ID.
The user ID is a real user or alternatively the procedure can execute in the NCL
processing region of one of the special internal user IDs that support the various
system level processing regions within the system.

The internal user IDs within a system are formed from the system's domain ID
(as specified by the NMDID initialization parameter) and a suffix that represents
the particular internal environment that they support. However, the EASINET
system user is always returned as EASINET, irrespective of the domain ID.

Typical internal user IDs are those that support the various background
environments such as the background logger, the background monitor and the
background system environment.

Example: &USERID

&WRITE DATA=YOUR USERID IS &USERID AND AUTHORITY IS &USERAUTH

&IF &USERID EQ SYSPROG &THEN +

 &GOTO .ALLOW

Notes:

The SHOW USERS command displays a list of the active user IDs.

The value returned from &USERID is a 1- to 8-character value.

&USERPW

928 Network Control Language Reference Guide

&USERPW

Returns the PASSWORD of the user.

A system maintained variable that returns the PASSWORD of the user. The
password returned is that used to log on. This variable is valid only for use
within the LOGON REQUEST when starting an MAI-FS (Multiple Application
Interface-Fullscreen) session, or from within an MAI session script procedure.
For security reasons, it returns a null value if used elsewhere.

Example: &USERPW

TSO &USERID/&USERPW

Notes:

The password is stored in encrypted form, and is decrypted only when
referenced. In addition, buffers containing the password are erased
immediately after use.

The availability of &USERPW is determined by the SYSPARMS USERPW operand.
For more information, see the Reference Guide. You can choose not to allow use
of this system variable in your product region.

If a user changes their password, &USERPW returns the new value.

&VSAMFDBK

Chapter 3: System Variables 929

&VSAMFDBK

Indicates the VSAM return code from a file processing operation.

A VSAM return code (extracted from the VSAM RPL) is set after the execution of
the &FILE ADD, &FILE DEL, &FILE GET and &FILE PUT file processing statements.
This return code is placed in the &VSAMFDBK system variable, which can then
be tested to determine the exact cause of a VSAM-related error. For logical
processing errors, the variable contains the two hexadecimal characters of the
VSAM feedback, for example X'1C'. If a physical error occurs, the variable is set
to contain the characters PY and a message is written to the activity log giving
the actual error code. The meaning of the various return codes is found in your
VSAM documentation.

Although &VSAMFDBK is always set, it carries an error-related code only if the
&FILERC system variable has been set to a value of 8, indicating that an error
has occurred.

Example: &VSAMFDBK

&FILE OPEN ID=HELPDESK FORMAT=DELIMITED

&FILE GET ID=HELPDESK KEY='PROB005' VARS=TXT

IF &FILERC NE 8 &THEN +

 &GOTO .OK

&WRITE DATA=RECORD READ ERROR - VSAMFDBK = &VSAMFDBK

Notes:

The &FILERC system variable is set on completion of a file processing operation
and should be used to determine whether the operation was generally
successful.

Testing of the &VSAMFDBK system variable would normally only be performed
if a severe error were detected. However, use of the &FILE GET OPT=UPD
facility, where exclusive use of a record is requested, could result in the request
failing if the record was already being processed elsewhere. In such a case, the
user might have to test &VSAMFDBK to determine why the request failed and
then retry if the failure was because exclusive use was not possible.

More information:

&FILERC (see page 890)

&ZACBNAME

930 Network Control Language Reference Guide

&ZACBNAME

Returns the primary VTAM ACB name in use by the system.

The variable allows an NCL procedure to determine in which system it is
executing (as represented by the VTAM APPL definition that it is using).

Example: &ZACBNAME

&GOTO .&ZACBNAME

 .

 .

 .

.ERROR

 &ENDAFTER &WRITE DATA=this procedure is restricted to +

 production systems .

 .

 .

.NMCPU1 .

 -* production region on CPU 1

.

 .

.NMCPU2

 -* production region on CPU 2

&ZAMTYPE

Chapter 3: System Variables 931

&ZAMTYPE

Returns the name of the access method which is used to connect the terminal
on which the NCL procedure is executing.

Allows an NCL procedure to determine the name of the access method which is
used to connect the terminal on which it is executing.

The term access method refers to a communication program used to
communicate with terminals, other systems, or another application.

&ZAMTYPE can contain one of the following values:

INTERNAL

The procedure is executing in a background region, an ROF region or a
disconnected region

VTAM

The terminal is connected to your product region via VTAM

SSI

The terminal is connected to your product region via SSI

XNF

The terminal is connected to your product region via XNF

Example: &ZAMTYPE

&IF &ZAMTYPE = VTAM &THEN +

 D &LUNAME -* Do VTAM display of LU

&ZAPPCACC

932 Network Control Language Reference Guide

&ZAPPCACC

Returns the number of active APPC conversations for the NCL process.

An NCL process can have multiple APPC conversations active at any one time.
&ZAPPCACC returns the active conversation count. It is particularly useful when
the NCL process is acting as a server for APPC conversations with a connect
mode of ACCEPT. In this case, &ZAPPCACC can represent the number of client
conversations waiting to be processed by the server.

Example: &ZAPPCACC

&APPC SET_SERVER_MODE CONNECT=ACCEPT

&IF &ZAPPCACC NE 0 &THEN +

 &DO

 &APPC RECEIVE_AND_WAIT ID=CLIENTS

&ZAPPCCSI

Indicates whether an APPC conversation is a client or server conversation.

CLIENT conversations are those that have been initiated remotely.

SERVER conversations are those that have been initiated locally using an &APPC
ALLOCATE, &APPC ATTACH, or &APPC CONNECT statement.

Example: &ZAPPCCSI

&IF &ZAPPCCSI EQ CLIENT &THEN +

 &DO

 &APPC RECEIVE VARS=DATA

 .

 .

 .

&ZAPPCELM

Chapter 3: System Variables 933

&ZAPPCELM

Contains the message from an Error Log GDS variable received after an error, or
deallocate abend has been received.

The Error Log GDS variable is used to send implementation-specific error
information. It is sent as a consequence of issuing either of the following verbs:

&APPC SEND_ERROR LOG=

&APPC DEALLOCATE TYPE=ABEND LOG=

It is logged by the receiving system and made available to the receiving NCL
procedure in the system variable &ZAPPCELM.

Example: &ZAPPCELM

&IF &RETCODE EQ 8 &THEN +

 &DO

 &WRITE DATA=REMOTE PGM ERROR = &ZAPPCELM

 &WRITE DATA=RECEIVED FROM &ZAPPCELP

 .

 .

 .

More information:

&ZAPPCELP (see page 934)

&ZAPPCELP

934 Network Control Language Reference Guide

&ZAPPCELP

Contains any product set information from an Error Log GDS variable received
after an error or deallocate abend has been received.

This system variable identifies the software product which sent an Error Log
GDS variable as a result of issuing a either of the following verbs:

&APPC SEND_ERROR LOG=

&APPC DEALLOCATE TYPE=ABEND LOG=

The Error Log GDS variable message is contained in &ZAPPCELM. The
information that identifies the product that sent the message is contained in
&ZAPPCELP.

Example: &ZAPPCELP

&IF &RETCODE EQ 8 &THEN +

 &DO

 &WRITE DATA=REMOTE PGM ERROR = &ZAPPCELM

 &WRITE DATA=RECEIVED FROM &ZAPPCELP

 .

 .

 .

More information:

&ZAPPCELM (see page 933)

&ZAPPCID

Chapter 3: System Variables 935

&ZAPPCID

Returns an integer when using the APPC facility.

The integer returned is within the range of 1 to 2147483647, and is equivalent
to the usage of the LU6.2 verb RESOURCE parameter. It is set following
successful completion of an &APPC ALLOCATE request, or after a procedure is
first invoked as the conversation partner following an allocation request at the
remote end.

The conversation identifier is assigned on a system-wide basis to uniquely
identify a particular conversation within the local system. Local allocation
requests and attach requests (following remote allocation requests) are both
assigned unique identifiers. This means that the local and remote end of a
same-LU conversation (for example started using the LOCAL option on an
&APPC ALLOCATE request) have different conversation identifiers.

Example: &ZAPPCID

&IF &ZAPPCID NE &CONVB &THEN +

 &APPC TEST ID=&CONVB

&ZAPPCIDA

Indicates the APPC conversation ID for the transaction that started the NCL
process. It is set for conversations that were attached only.

When an NCL process is attached, and then allocates further conversations, this
system variable is used to provide the conversation identifier of the attaching
conversation.

Example: &ZAPPCIDA

&APPC SEND VARS=DATA ID=&ZAPPCIDA

&ZAPPCLNK

936 Network Control Language Reference Guide

&ZAPPCLNK

Returns a character string when using the APPC facility.

&ZAPPCLNK returns a character string, equivalent to that of the
PARTNER_LU_NAME parameter of the LU6.2 MC_GET_ATTRIBUTES verb, and
provides the link name by which the remote LU name is addressed in the form:

linkname

where linkname is the locally-known name for the remote session partner
connection, up to 12 characters long.

Example: &ZAPPCLNK

&WRITE DATA=CONVERSATION &ZAPPCID STARTED ON LINK &ZAPPCLNK

&ZAPPCMOD

Returns a character string when using the APPC facility.

&ZAPPCMOD returns a character string, equivalent to the MODE_NAME
parameter of the LU6.2 MC_GET_ATTRIBUTES verb, and provides the mode
name for the session on which the conversation is mapped.

Example: &ZAPPCMOD

&WRITE DATA=CONVERSATION &ZAPPCID STARTED USING MODE &ZAPPCMOD

&ZAPPCPCC

Returns the number of pending APPC conversations for the NCL process.

Incoming conversations requests for an NCL process that is registered as a
server can accumulate in a pending queue if the connect server mode is NOTIFY
or PENDING. &ZAPPCPCC returns the pending conversation count.

Example: &ZAPPCACC

&APPC SET_SERVER_MODE CONNECT=NOTIFY

&DOWHILE &ZAPPCACC NE 0 +

 &INTREAD TYPE=REQ VARS=MSG* RANGE=(1,7) +

 &CONVID=&MSG

&ZAPPCQLN

Chapter 3: System Variables 937

&ZAPPCQLN

Returns a character string when using the APPC facility.

&ZAPPCQLN returns a character string, equivalent to that of the
OWN_FULLY_QUALIFIED_LU_NAME parameter of the LU6.2
MC_GET_ATTRIBUTES verb, and provides the network qualified local LU name in
the form:

netid.luname

where netid is the name of the SNA NETWORK where the local LU luname is
defined. If the netid is blank or unknown, then it is omitted so that only
luname is returned.

Example: &ZAPPCQLN

&WRITE DATA=CONVERSATION &ZAPPCID STARTED BY LOCAL LU &ZAPPCQLN

&ZAPPCQRN

Returns a character string when using the APPC facility.

&ZAPPCQRN returns a character string, equivalent to that of the
PARTNER_FULLY_QUALIFIED_LU_NAME parameter of the
LU6.2MC_GET_ATTRIBUTES verb, and provides the network qualified remote LU
name in the form:

netid.luname

where netid is the name of the SNA NETWORK where the remote LU
luname is defined. If the netid is blank or unknown, then it is omitted so
that only luname is returned.

Example: &ZAPPCQRN

&WRITE DATA=CONVERSATION &ZAPPCID STARTED FROM REMOTE NODE &ZAPPCQRN.

&ZAPPCRM

938 Network Control Language Reference Guide

&ZAPPCRM

Returns the current receive map name.

If data mapping is supported by an LU6.2 connection, an APPC conversation can
specify a map name with each issuance of &APPC SEND_DATA. This map name
is used by the receiving system to interpret the contents of the data
transmitted. The system variable &ZAPPCRM is set to the map name received by
the last receive operation.

Example: &ZAPPCRM

&IF &ZAPPCRM NE PROBLEM.SITE.DATE.DATA &THEN +

 &GOTO .MAPERR

Note: When sending NCL tokens, a map name of $NCL is sent with the data by
default, to indicate that the data comprises one or more NCL tokens.

&ZAPPCRTS

Returns a character string when using the APPC facility.

&ZAPPCRTS returns a character string, equivalent to that of the LU6.2
REQUEST_TO_SEND_RECEIVED parameter (that, is either YES or NO).

Example: &ZAPPCRTS

&IF &ZAPPCRTS EQ YES &THEN +

 &GOSUB .RECV

Note: &ZAPPCRTS is either YES or NO. It is set to NO when the conversation is
started. If during conversation operation a REQUEST_TO_SEND is issued by the
conversation partner , this system variable reflects a value of YES. The YES value
persist until the local conversation enters receive state, hence allowing the
conversation partner to send, at which time the value reverts to NO, regardless
of whether the system variable was ever examined by the local procedure.

&ZAPPCSCM

Chapter 3: System Variables 939

&ZAPPCSCM

Returns a character string specifying the server connect mode for the NCL
process.

An NCL process is in the following server connect modes:

■ PENDING

■ ACCEPT

■ NOTIFY

■ REJECT

Example: &ZAPPCSCM

&IF &ZAPPCSCM EQ PENDING &THEN +

 &DO

 APPC SET_SERVER_MODE CONNECT=ACCEPT

&ZAPPCSM

Returns the current send map name.

If data mapping is supported by an LU6.2 connection, an APPC conversation can
specify a map name with each issuance of &APPC SEND_DATA. This map name
is used by the receiving system to interpret the contents of the data
transmitted. The system variable &ZAPPCSM is set to the map name sent by the
last SEND_DATA operation.

Example: &ZAPPCSM

&WRITE DATA=DATA SENT USING MAP NAME: &ZAPPCSM

Note: When sending NCL tokens, a map name of $NCL is sent with the data by
default, to indicate that the data comprises one or more NCL tokens.

&ZAPPCSND

940 Network Control Language Reference Guide

&ZAPPCSND

Contains a send indication that has not yet been received, but will be set on the
next receive operation.

APPC allows the NCL procedure to receive data on one operation, and send the
data on to the next, but only if the conversation was about to change direction.
In this case the &ZAPPCSND would indicate YES, meaning that if a subsequent
receive is issued, the what-received indicator, &ZAPPCWRI, would be set to
SEND. Otherwise it is set to NO.

Example: &ZAPPCSND

&DOWHILE &ZAPPCSND EQ NO

 &APPC RECEIVE VARS=DATA

 .

 .

 .

&DOEND

&APPC SEND VARS=DATA

&ZAPPCSTA

Chapter 3: System Variables 941

&ZAPPCSTA

Returns the current state of an APPC conversation.

See the individual &APPC request details for valid state transition sequences.

&ZAPPCSTA is used to determine the current state of an APPC conversation. The
following states are possible:

■ CONFIRM

■ CONFIRM_SEND

■ CONFIRM_DEALLOCATE

■ DEALLOCATE

■ DEFER

■ DEFER_DEALLOCATE

■ DEFER_RECEIVE

■ DEFER_SEND

■ RECEIVE

■ RESET

■ SEND

Examples: &ZAPPCSTA

&IF &ZAPPCSTA EQ DEALLOCATE &THEN +

 &APPC DEALLOCATE TYPE=LOCAL

Note: Only certain APPC verbs is issued from a given state. See the individual
&APPC request details for valid state transition sequences.

&ZAPPCSYN

942 Network Control Language Reference Guide

&ZAPPCSYN

Returns a character string, equivalent to that of the SYNC_LEVEL parameter of
the LU6.2 MC_GET_ATTRIBUTES verb.

&ZAPPCSYN returns a character string, equivalent to that of the SYNC_LEVEL
parameter of the LU6.2 MC_GET_ATTRIBUTES verb, and contains one of the
following values:

■ NONE

■ CONFIRM

This system variable indicates the SYNC_LEVEL with which the conversation was
started. A value of NONE means that the &APPC CONFIRM and CONFIRMED
requests, the PREPARE_TO_RECEIVE TYPE=CONFIRM request, and the
DEALLOCATE TYPE=CONFIRM request cannot be used.

Example: &ZAPPCSYN

&IF &ZAPPCSYN EQ CONFIRM &THEN +

 &GOSUB .CONF

&ZAPPCTRN

Returns the locally known transaction identifier (up to 12 characters) for an
APPC conversation.

&ZAPPCTRN provides the unique transaction identifier as defined in the local
system's TCT (Transaction Control Table) and used during the allocation and
attach process.

For local allocation requests, it corresponds to the value specified for the
TRANSID operand in the &APPC ALLOCATE verb.

Example: &ZAPPCTRN

&WRITE DATA=CONVERSATION &ZAPPCID STARTED FOR TRANSACTION &ZAPPCTRN

&ZAPPCTYP

Chapter 3: System Variables 943

&ZAPPCTYP

Returns a character string providing the APPC conversation type.

&ZAPPCTYP returns a character string providing the conversation typed as one
of the following values:

■ MAPPED

■ BASIC

This indicates whether the logical conversation boundary is mapped or basic.
However, NCL operation always proceeds as though the conversation is
mapped, regardless of its actual type.

Example: &ZAPPCTYP

&WRITE DATA=CONVERSATION &ZAPPCID TYPE = &ZAPPCTYP

&ZAPPCWR

944 Network Control Language Reference Guide

&ZAPPCWR

Returns a character string, equivalent to that of the LU6.2 WHAT_RECEIVED
parameter.

&ZAPPCWR returns a character string, equivalent to that of the LU6.2
WHAT_RECEIVED parameter, containing one of the following indicators:

ZERO

Nothing received

DATA_COMPLETE

Data received complete

DATA_TRUNCATED

Data was truncated

DATA_INCOMPLETE

Data was incomplete

FMH_DATA_COMPLETE

Data complete

FMH_DATA_TRUNCATED

FMH data truncated

FMH_DATA_INCOMPLETE

FMH data incomplete

SEND

send state

CONFIRM

confirm state

CONFIRM_SEND

confirm_send state

CONFIRM_DEALLOCATE

confirm_deallocate state

DEALLOCATE

deallocate state

&ZAPPCWR

Chapter 3: System Variables 945

This system variable is set following an &APPC RECEIVE_AND_WAIT or &APPC
RECEIVE_IMMEDIATE request and indicates the type of data returned by the
request.

A value of DATA_COMPLETE indicates that data was returned in the variables
supplied.

A value of DATA_TRUNCATED or DATA_INCOMPLETE indicates that data was
returned but an error has occurred that caused the data to be truncated.

A value of SEND indicates that no data was returned, but that the remote
conversation partner has entered receive state, so the local conversation has
entered send state.

A value of CONFIRM, CONFIRM_SEND, or CONFIRM_DEALLOCATE indicates that
no data was returned, but that the local conversation should issue an &APPC
CONFIRMED request, following which receive, send, or deallocate state is
entered respectively.

A value of DEALLOCATE indicates that no data was returned, but that the
remote conversation partner issued a DEALLOCATE TYPE=FLUSH, and the local
conversation should issue an &APPC DEALLOCATE TYPE=LOCAL to free all
conversation resources.

Example: &ZAPPCWR

&IF &ZAPPCWR = CONFIRM &THEN +

 &GOSUB .CONF

&ZAPPCWRI

946 Network Control Language Reference Guide

&ZAPPCWRI

Returns a character string, equivalent to that of the LU6.2 WHAT_RECEIVED
parameter.

&ZAPPCWRI returns a character string, equivalent to that of the LU6.2
WHAT_RECEIVED parameter, containing a short what received indicator as one
of the following:

■ ZERO nothing received

■ DATC data received complete

■ DATT data was truncated

■ DATI data was incomplete

■ FMHC FMH data complete

■ FMHT FMH data truncated

■ FMHI FMH data incomplete

■ SEND send state

■ CONF confirm state

■ COSE confirm_send state

■ CODE confirm_deallocate state

■ DEAL deallocate state

This system variable is set following an &APPC RECEIVE_AND_WAIT or &APPC
RECEIVE_IMMEDIATE request and indicates the type of data returned by the
request. Descriptions are as for the &ZAPPCWR system variable above.

Example: &ZAPPCWRI

& IF &RETCODE = 0 &THEN +

 &GOTO .&ZAPPCWRI

&ZAPPCVRB

Returns the last APPC verb that was issued.

&ZAPBLANK1

Returns a single blank character.

&ZBROID

Chapter 3: System Variables 947

&ZBROID

Returns the broadcast identifier associated with the NCL process.

To identify the broadcast request that resulted in the execution of this
procedure.

Examples:

See $NMBRO distributed broadcast handler.

Notes:

This variable returns a value only when used in a procedure associated with a
user broadcast.

The NSBRO command supports an ID operand that specifies a 1- to 8-character
broadcast identifier.

This value is returned by &ZBROID when the broadcast procedure is executed
on behalf of a user.

If no ID operand is used, a system value is generated.

Note: For more information, see the NSBRO command in the Online Help and
the chapter "Broadcasts" in the Reference Guide.

&ZBROTYPE

948 Network Control Language Reference Guide

&ZBROTYPE

Indicates the type of broadcast associated with the issuing procedure.

When a user receives a broadcast message an NCL procedure is invoked to
perform associated processing. This procedure ($NMBRO) must be able to
determine the type of broadcast to be processed and process accordingly. The
&ZBROTYPE system variable is primed with the type of broadcast. One of the
following values is set:

GENERAL

A general broadcast is being processed. A general broadcast is sent to all
terminals and is not specifically destined for this user only.

SPECIFIC

A specific terminal broadcast is being processed. A specific broadcast is one
that has been sent to a selective group of terminal using the wildcard
selection techniques provided by the system.

USER

A broadcast destined for this user is being processed. A user broadcast is
one that has been sent to one or more users using the wildcard selection
techniques provided by the system.

NONE

No broadcast has been set.

Example: &ZBROTYPE

& GOTO .&ZBROTYPE

 .

 .

 .

.SPECIFIC

 . .-* Specific broadcast processing

 .

.GENERAL

.

 .-* General broadcast processing

.

.USER

 .

 .-* User broadcast processing

.

Note: For more information, see the sample $NMBRO procedure in the
distribution library.

&ZCOLS

Chapter 3: System Variables 949

&ZCOLS

Indicates the number of columns associated with the physical terminal.

NCL procedures might want to determine the number of columns associated
with the physical terminal. &ZCOLS is the maximum number of columns
available at the terminal regardless of the current processing window size.

Example: &ZCOLS

&IF &ZCOLS GT 80 &THEN +

 &GOTO .MODEL5

Note: When processing with an LU1 type device, a value of 80is returned. For
VDU (screen) type devices, the actual number of columns is returned. If tested
from a procedure running under a background environment, a value of 80 is
returned.

More information:

&LUCOLS (see page 899)
&ZROWS (see page 1030)
&LUROWS (see page 903)

&ZCONSOLE

Returns the system console number associated with a console user ID.

When a product command is received from a real console, a user ID
environment is created and logically logged on to represent the console and the
privileges associated with it. An NCL process executing in the processing region
of this user ID can reference the &ZCONSOLE system variable to determine the
real console number associated with the user ID. This variable returns a null
value for any user ID that does not represent a console environment.

Example: &ZCONSOLE

&IF .&ZCONSOLE EQ . &THEN +

 &GOTO .NOCONSOLE

Note: For more information about console management, see the Reference
Guide.

&ZCURSFLD

950 Network Control Language Reference Guide

&ZCURSFLD

Indicates the field location and the offset within that field where the cursor is
positioned.

These two system variables is used to determine the field and offset within the
field where the cursor is positioned as at the last operator input from a panel
displayed using the &PANEL statement.

&ZCURSFLD is set to the field location of the cursor. &ZCURSFLD is useful for
providing context sensitive help. It contains the name of the field the cursor is in
(TYPE=INPUT and TYPE=OUTVAR fields only—output fields have no name).

&ZCURSPOS is set to the offset within the field where the cursor is positioned.

Example: &ZCURSFLD

.HELP

&IF .&ZCURSFLD EQ .COMMAND &THEN +

 &GOTO .CMDHELP

 .

 .-* General Help

 .

.CMDHELP

 .

 .-* Help for the command field

 .

-* Split the line at the cursor position

&IF .&ZCURSPOS NE . &THEN +

 &PARSE SEGMENT VARS=(PREFIX(&ZCURSPOS),SUFFIX) +

 DATA=&

&ZCURSFLD

-* &PREFIX contains the data up to the cursor position

-* &SUFFIX contains the data after the cursor position

Note: &ZCURSFLD and &ZCURSPOS are set only when &CONTROL FLDCTL is set
on. Otherwise, both are null.

&ZDBCS

Chapter 3: System Variables 951

&ZDBCS

Indicates whether a terminal supports double byte character set data streams
(DBCS).

If the system is operating with double byte character set (DBCS), support
enabled (SYSPARMS DBCS=YES), display terminals capable of operating in this
mode are supported by the system, and can enter and display data represented
by DBCS data streams. An example of DBCS implementation is the KANJI
language used in Japan. If operating with DBCS enabled, the current terminal,
that is, the terminal in whose environment the NCL procedure is executing,
might or might not be capable of DBCS operation. Also, if the terminal is capable
of DBCS operation, the implementation differs between IBM and Fujitsu
terminals.

The &ZDBCS system variable therefore allows a procedure to determine
whether the current terminal can support DBCS operation and, if so, whether it
supports the IBM or the Fujitsu implementation of DBCS.

One of the following values will be returned:

DBCS1

The terminal supports the IBM implementation of DBCS

DBCS2

The terminal supports the Fujitsu implementation of DBCS

DBCS3

The terminal supports the Hitachi implementation of DBCS

NO

The terminal does not support DBCS

&ZDBCS

952 Network Control Language Reference Guide

Example: &ZDBCS

&GOTO .&ZDBCS

 .

 .

 .

.NO

 .

 .

-* terminal does not support DBCS .

.DBCS1

 .

 .

-* terminal supports IBM DBCS .

.DBCS2

 .

 . -* terminal supports Fujitsu DBCS.

Note: When operating with DBCS support disabled (SYSPARMS DBCS=NO), the
&ZDBCS variable always returns a value of NO.

More information:

&ZSYSPARM (see page 784)

&ZDOMID

Chapter 3: System Variables 953

&ZDOMID

Returns the deletion identifier for a non-roll deletable message.

The system supports a class of messages classified as non-roll deletable. Such
messages are normally used to communicate important information to the
operator and when displayed remain visible until explicitly deleted by the
operator or by the system.

Non-roll deletable messages is sourced externally, such as from the Automation
Services component of the system when passing messages from the operating
system, or from within the system by use of the &WRITE NRD=YES statement in
an NCL procedure.

Messages generated by &WRITE NRD=YES are classified as non-roll deletable
and remain displayed either until deleted by the operator, by placing the cursor
on the message and pressing enter, or until the NCL procedure terminates.

The &NRDDEL statement allows an NCL procedure to delete a non-roll deletable
message prior to the termination of the procedure. For example, the procedure
can issue the &WRITE NRD=YES statement to advise the operator that recovery
for a critical network resource is in progress. On successful recovery the
procedure can use the &NRDDEL statement to cause the message to be deleted
from the operators screen.

&ZDOMID is a system variable that is set following &WRITE NRD=YES and
contains the identifier that must be used on the &NRDDEL statement to indicate
which non-roll deletable message is to be deleted.

Example: &ZDOMID

& WRITE NRD=YES DATA=Production IMS system has abended. +

 Restart in progress.

&SAVEDOMID=&ZDOMID

 .

 . -* Processing to restart IMS system

 .

&NRDDEL &SAVEDOMID -* Delete earlier message.

&WRITE DATA=Production IMS restarted successfully.

&ZDSNQLCL

954 Network Control Language Reference Guide

Notes:

The &WRITE statement also supports the NRD=OPER operand which requests
that a non-roll deletable message be generated which will not be deleted when
the procedure terminates. &ZDOMID is not set for such messages as there is no
deletion identifier for this type of message. Messages generated in this manner
must be deleted manually by the operator as described above.

The NRDRET command is used by the operator to redisplay non-roll deletable
messages deleted manually by positioning of the cursor.

Messages deleted by &NRDDEL cannot be recalled by the NRDRET command.

If multiple non-roll deletable messages are to be written it is the procedures
responsibility to save the value of &ZDOMID in a user variable.

The actual format of the value of &ZDOMID depends on the origin of the
domain ID. For MVS-generated messages, &ZDOMID contains the MVS-format
domain ID for the message (8 hexadecimal characters). If the message originates
from &WRITE NRD=YES, the domain ID has the format dddd/nnnnnnnn, where
dddd is the domain ID of the originating product region and nnnnnnnn is a 1- to
8-digit hexadecimal number.

Note: For more information, see the NRDRET command description in the
Online Help.

More information:

&WRITE (see page 749)
&NRDDEL (see page 556)

&ZDSNQLCL

Returns the value of the local data set qualifier as set in the DSNQLCL JCL
parameter.

Note: For more information about the DSNQLCL JCL parameter, see the
Reference Guide.

&ZDSNQSHR

Chapter 3: System Variables 955

&ZDSNQSHR

Returns the value of the shared data set qualifier as set in the DSNQSHR JCL
parameter.

Note: For more information about the DSNQSHR JCL parameter, see the
Reference Guide.

&ZFDBK

Returns completion information following execution of selected NCL
statements.

Many NCL verbs return completion information after execution that indicates
the success or result of the operation. This completion information is returned
in the &ZFDBK system variable, so that results are available from a consistent
location.

Example: &ZFDBK

&GOTO .CODE&ZFDBK

 .

 .

 .

.CODE0

 .

 .-* FDBK = 0 = Successful operation

 .

 .CODE4

 .

 .-* FDBK = 4 = operation failed.

Notes:

&ZFDBK is set as a result of the execution of a variety of NCL statements, and is
available for inspection on return from any statement that sets it. If the
contents of the variable are to be used, remember that they should be
inspected before any other statement is executed that might also set &ZFDBK.

The meaning of the values set in &ZFDBK depends upon the statement that sets
the variable. Therefore, check that statement if you need any explanation of the
&ZFDBK value returned.

&ZGDATEn

956 Network Control Language Reference Guide

&ZGDATEn

A set of system variables that return the date, in different formats, based on
Greenwich Mean Time (GMT).

&ZGDATE1 to &ZGDATE17 (excluding &ZGDATE15) are system variables that
supply the current date, based on GMT, in the following formats:

■ &ZGDATE1—date as YY.DDD

■ &ZGDATE2—date as DAY DD-MON-YYYY

■ &ZGDATE3—date as DD-MON-YYYY

■ &ZGDATE4—date as DD/MM/YY

■ &ZGDATE5—date as MM/DD/YY

■ &ZGDATE6—date as YY/MM/DD

■ &ZGDATE7—date as YYMMDD

■ &ZGDATE8—date as YYYYMMDD

■ &ZGDATE9—date as nnnnnn

■ &ZGDATE10—date as YYYYMMDDHHMMSSZ

■ &ZGDATE11—date as YYYYMMDDHHMMSS.FFFFFFZ

■ &ZGDATE12—date as DD/MM/YYYY

■ &ZGDATE13—date as YYYY/MM/DD

■ &ZGDATE14—date as MM/DD/YYYY

■ &ZGDATE16—date as YYYY.DDD

■ &ZGDATE17—date as YYYYDDD

&ZGDATEn

Chapter 3: System Variables 957

where:

DAY

Is the day of the week as follows:

MON

Monday

TUE

Tuesday

WED

Wednesday

THU

Thursday

FRI

Friday

SAT

Saturday

SUN

Sunday

DD

Is the day of the month as a two-digit number.

DDD

is the Julian day within the year as a three-digit number.

MM

Is the month of the year as a two-digit number.

&ZGDATEn

958 Network Control Language Reference Guide

MON

Is the month of the year as follows:

JAN

January

FEB

February

MAR

March

APR

April

MAY

May

JUN

June

JUL

July

AUG

August

SEP

September

OCT

October

NOV

November

DEC

December

nnnnnn

Is the number of days from 1 January 0001 with no leading zeros.

YYYY

Is the current year as a four-digit number.

&ZGDATEn

Chapter 3: System Variables 959

YY

Is the current year as a two-digit number.

Z

Is GMT.

FFFFFF

Is the time accurate to 10-6.

Example: &ZGDATEn

&FILEDATE = &ZGDATE3

Note: If microsecond accuracy is not required, avoid using &ZGDATE11 to
reduce unnecessary overhead. Each access to &ZGDATE11 causes the system to
re-fetch and synchronize time with the operating system, to format the result to
microsecond accuracy.

&ZGDAY

960 Network Control Language Reference Guide

&ZGDAY

Returns the day of the week based on GMT.

&ZGDAY provides a system variable for the day of the week, based on GMT, in
the form DDD, where DDD is set to one of the following values:

MON

Monday

TUE

Tuesday

WED

Wednesday

THU

Thursday

FRI

Friday

SAT

Saturday

SUN

Sunday

Example: &ZGDAY

&IF &ZGDAY EQ SUN &THEN -EXEC SUNDAY

&ELSE +

 -EXEC EVERYDAY

Notes:

The current date, based on the operating system time, is provided in different
formats by the system variables &DATE1 to &DATE17.

The current date, based on GMT time, is provided in different formats by the
system variables &ZGDATE1 to &ZGDATE17.

More information:

&DAY (see page 888)

&ZGOPS

Chapter 3: System Variables 961

&ZGOPS

Indicates the generic type of operating system.

When operating in mixed operating system environments it is desirable to
structure NCL procedures in such a way that they are operating system
independent. Although your product region supports most functions, regardless
of the operating system, certain facilities is restricted in some cases. The
&ZGOPS system variable allows a procedure to test the generic (as opposed to
the specific) type of operating system and restrict functions accordingly.

The &ZGOPS variable returns one of the following values:

MVS

The operating system is z/OS, MSP, or VOS3.

VM

The operating system is z/VM.

Example: &ZGOPS

 .

 .

 .

&GOTO .&ZGOPS -* Branch to operating system dependent logic.

 .

 .

 .MVS

 .

 .

 .

 .VM

 .

 .

 .

Note: &ZGOPS simplifies coding when logic depends on the general type of
operating system, as opposed to the specific operating system. For example,
z/OS, MSP, and VOS3 are generically all MVS systems. When a function is to be
coded that works on any MVS system, using &ZGOPS makes the coding easier
than using multiple tests against &ZOPS, which indicates the specific operating
system type.

&ZGTIMEn

962 Network Control Language Reference Guide

More information:

&ZOPS (see page 1018)
&ZOPSVERS (see page 1020)

&ZGTIMEn

A set of system variables that return the time, in different formats, based on
GMT.

&ZGTIME, &ZGTIME1, &ZGTIME2, &ZGTIME3, &ZGTIME10 and &ZGTIME11 are
system variables that supply the time, based on GMT, in a variety of formats.
&ZGTIME time as HH.MM.SS

&ZGTIME1

time as HH:MM:SS

&ZGTIME2

time as HH:MM:SS:TH

&ZGTIME3

time as nnnnn-an integer being hundredths of a second since midnight

&ZGTIME10

time as HHMMSS

&ZGTIME11

time as HHMMSS.FFFFFF

Example: &ZGTIME2

&FILETIME = &ZGTIME2

Note: Each access to &ZGTIME11 causes the system to re-fetch and synchronize
time with the operating system, to format the result to microsecond accuracy.
Use of this time should be avoided, to reduce unnecessary overheads, if such
accuracy is not required.

More information:

&TIME (see page 926)
&ZTIMEn (see page 1039)
&ZGTIMEZn (see page 963)

&ZGTIMEZn

Chapter 3: System Variables 963

&ZGTIMEZn

A set of system variables that indicate the difference in time between local
(operating system) time and Greenwich Mean Time (GMT).

&ZGTIMEZ, &ZGTIMEZ1, &ZGTIMEZ2, and &ZGTIMEZ3 are system variables that
indicate the difference between local time and GMT.

&ZGTIMEZ

plus or minus HH.MM

&ZGTIMEZ1

plus or minus HH:MM

&ZGTIMEZ2

plus or minus HHMM

&ZGTIMEZ3

plus or minus nnnnn, where an integer is hundredths of a second since
midnight

Example: &ZGTIMEZ

&TIMEDIFF = &ZGTIMEZ

Note: Each access to &ZGTIMEZ3 causes the system to re-fetch and synchronize
time with the operating system, to format the result to microsecond accuracy.
Unless you require this level of accuracy, you should avoid using the &ZUTIMEZ3
option, to reduce unnecessary overheads.

More information:

&TIME (see page 926)
&ZTIMEn (see page 1039)
&ZGTIMEn (see page 962)
&ZUTIMEn (see page 1049)
&ZUTIMEZn (see page 1050)
&ZUTIMEZN (see page 1051)

&ZINTYPE

964 Network Control Language Reference Guide

&ZINTYPE

(Message profile variable) Specifies whether an &INTREAD operation has been
satisfied by a request message or a response message. Valid values are:

REQ

Request message

RESP

Response message

NONE

No message

Example: &ZINTYPE

.READLOOP

 &INTREAD ARGS TYPE=ANY

 &IF &ZINTYPE = REQ &THEN +

 &GOSUB .REQUESTS

 &ELSE +

 &IF &ZINTYPE = RESP &THEN +

 &GOSUB .RESPONSES

 &GOTO .READLOOP

More information:

&INTREAD (see page 397)
&ZMREQID (see page 1009)
&ZMREQSRC (see page 1010)

&ZIREQCNT

Chapter 3: System Variables 965

&ZIREQCNT

Returns the count of messages queued to an NCL process's dependent request
queue.

The dependent request queue is the queue of messages sent to an executing
NCL process from an external source using the INTQ command. Messages on
this queue are removed by the NCL process by using the &INTREAD TYPE=REQ
or TYPE=ANY statement. The process can check for the existence of messages
on this queue that are waiting for processing by referencing the &ZIREQCNT
variable.

Example: &ZIREQCNT

.REQLOOP

 &IF &ZIREQCNT GT 0 &THEN +

 &DO

 &INTREAD ARGS TYPE=REQ

 &GOTO .REQMSG &DOEND

 &ELSE +

 &ENDAFTER &WRITE DATA=NO REQUEST MESSAGES

.REQMSG

 .

 -* Processing for requests.

 &GOTO .REQLOOP

More information:

&INTREAD (see page 397)
&ZIRSPCNT (see page 966)

&ZIRSPCNT

966 Network Control Language Reference Guide

&ZIRSPCNT

Returns the count of messages queued to an NCL process's dependent response
queue.

The dependent response queue is the queue of messages returned in reply to a
command issued using the &INTCMD statement, or sent to an executing NCL
process from an external source using the INTQ command. Messages on this
queue are removed by the NCL process by using the &INTREAD TYPE=RESP or
TYPE=ANY statement. The process can check for the existence of messages on
this queue that are waiting for processing by referencing the &ZIRSPCNT
variable.

Example: &ZIRSPCNT

.RSPLOOP

 &IF &ZIRSPCNT GT 0 &THEN +

 &DO

 &INTREAD ARGS TYPE=REQ

 &GOTO .RSPMSG

 &DOEND

 &ELSE +

 &ENDAFTER &WRITE DATA=NO RESPONSE MESSAGES

.REPMSG

 .

 .

 -* Processing for responses

 &GOTO .RSPLOOP

More information:

&INTREAD (see page 397)
&ZIREQCNT (see page 965)

&ZJOBNAME

Chapter 3: System Variables 967

&ZJOBNAME

A system variable that returns the job name.

The variable allows an NCL procedure to determine the job name under which it
is executing. In a VM/GCS system this is the GCS USERID, in other systems the
job or started task name.

Example: &ZJOBNAME

&IF &ZGOPS = MVS &THEN +

 &WRITE DATA=Started task name is &ZJOBNAME

Use of this variable is especially useful on an ABENDCMD command specified
during initialization. The following command:

ABENDCMD S &ZJOBNAME

would restart the system automatically in the event of an abend in a z/OS or
MSP system, assuming the system was run as a started task.

&ZJOBNUM

968 Network Control Language Reference Guide

&ZJOBNUM

A system variable that returns the JES2/3 job number for the last job submitted
by NCL (OS/VS only).

NCL supports the output of records directly to the JES2/3 system spool. This is
achieved using the standard file processing facilities of NCL. Direct submission to
the system internal reader is also supported. In such cases an &FILE GET
OPT=END statement is used to signal the end of a job stream and the
&ZJOBNUM system variable will then be set to the job number allocated by JES
to that job. This value remains intact until another job is submitted or the
procedure terminates.

&ZJOBNUM will return a 1- to 5-character job number. If no jobs have been
submitted, a null value is returned.

&ZJOBNUM is set only if the JES internal reader has been dynamically allocated
using the ALLOCATE command. See notes below.

Example: &ZJOBNUM
&FILE OPEN ID=MYJES FORMAT=UNMAPPED

 -* Request unmapped mode.

&FILE PUT ID=MYJES VARS=CARD

 -* Put to internal reader.

&FILE GET ID=MYJES OPT=END

 -* Signal end of JCL stream.

&WRITE DATA=THE JOB NUMBER IS &ZJOBNUM.

 -* Display submitted job no.

&FILE CLOSE ID=MYJES-* Free resources.

Notes:

The use of &FILE GET OPT=END in such cases merely signals to NCL that the
VSAM RPL is no longer required for processing. NCL in turn issues a VSAM
ENDREQ request, which signals to JES the completion of the submission. JES
then returns the number of the last job submitted.

Dynamic allocation of the internal reader is performed using the ALLOCATE
command with the SYSOUT and PGM operands. For example:

ALLOC SYSOUT=A PGM=INTRDR DD=MYJES ID=*

More information:

&FILE PUT (see page 366)
&FILE GET (see page 353)

&ZJRNLACT

Chapter 3: System Variables 969

&ZJRNLACT

Returns the ddname of the active journal data set.

This system variable is used to determine which journal is currently active.

More information:

&ZJRNLALT (see page 969)

&ZJRNLALT

Returns the ddname of the alternate (or inactive) journal data set.

This system variable is used to determine which journal is currently inactive.

More information:

&ZJRNLACT (see page 969)

&ZLCLIPA

Returns the IP address of the local host for a TN3270 session.

Identifies the IP address of a TN3270 server where the session is a TN3270
session.

Note: This information is available to the SHOW USERS command only if the
IPCHECK SYSPARMS operand has been set to REGISTER (the default) in the INIT
procedure for your product region.

Example: &ZLCLIPA

&IF .&ZLCLIPA NE . &THEN +

 &SOCKET GETHOSTBYADDR ADDRESS=&ZLCLIPA

Note: For more information, see the SHOW USERS command description in the
Online Help and the IPCHECK SYSPARMS operand description in the Reference
Guide.

&ZLCLIPP

970 Network Control Language Reference Guide

More information:

&ZLCLIPP (see page 970)
&ZREMIPA (see page 1029)
&ZREMIPP (see page 1029)

&ZLCLIPP

Returns the IP port of the TN3270 server for a TN3270 session.

Identifies the IP port of a TN3270 server.

Note: This information is available only if the IPCHECK SYSPARMS operand has
been set to REGISTER (the default) in the INIT procedure for your product
region.

Example: &ZLCLIPP

&IF .&ZLCLIPP NE . &THEN +

 &IF &ZLCLIPP NE 23 &THEN +

 &PORTDESC = &STR TELNET-&ZLCLIPP

 &ELSE +

 &PORTDESC = TELNET

Note: For more information about the IPCHECK SYSPARMS operand, see the
Reference Guide.

More information:

&ZLCLIPA (see page 969)
&ZREMIPA (see page 1029)
&ZREMIPP (see page 1029)

&ZLOGMODE

Chapter 3: System Variables 971

&ZLOGMODE

&ZLOGMODE is set to the name of the VTAM logmode table entry used when
the current terminal was connected.

Identifies the name of the logmode table entry used when the current terminal
(that is, the terminal represented by the &LUNAME variable) was connected to
your product region. Depending on installation naming and definition
conventions, a procedure can use this value to determine the attributes of the
terminal or to verify that a the correct logmode entry was used for a terminal
with known characteristics.

Examples: &ZLOGMODE

 &GOTO .&ZLOGMODE

 .

 .

 .

.M2SNAQ -* Terminal is bound as a model-2 SNA device

 .

 .

 .

.M2NSNA -* Terminal is bound as a model-2 non-SNA device

 .

 .

 .

Notes:

On IBM and Fujitsu systems, the availability of &ZLOGMODE depends upon the
release of VTAM that is being used and whether the terminal is connected on a
same domain or cross domain session.

&ZLOGMODE is not available on Hitachi systems.

&ZLOGMODE is null if the terminal is reacquired as a model-2, following a bind
failure due to mismatched bind parameters.

&ZLUNETID

972 Network Control Language Reference Guide

&ZLUNETID

Returns the network ID of the currently connected terminal.

Identifies the name of the network that owns the currently connected terminal.
Allows procedures to determine the network to which the terminal belongs.

Example: &ZLUNETID

&IF .&ZLUNETID EQ .MYNET &THEN ...

Note: The availability of &ZLUNETID is dependent on the presence of the X'0E'
control vector in the CINIT RU.

&ZLUTYPE

The &ZLUTYPE system variable indicates the type of device or region.

NCL procedures might need to vary processing depending on the type of device
in use, or NCL environment the procedure is running in. For example, the
EASINET procedure cannot use an &PANEL statement to display data on an LU1
type device. The procedure must therefore determine the type of device and
process accordingly.

&ZLUTYPE

Chapter 3: System Variables 973

The &ZLUTYPE variable returns one of the following values:

3270

The device is a full-screen type device, either LU0 or LU2. The &ZROWS and
&ZCOLS system variables is used to determine the device dimensions.

LU1

The device is a typewriter or line-by-line type terminal or printer.

ROF

The procedure is running under a Remote Operator Facility (ROF) session
which has been logged on across an INMC session.

APPC

The procedure is running under an APPC user region.

OPER

The procedure is running under a system console region.

AOMP

The procedure is executing under the background AOM region.

PPOP

The procedure is executing under the PPOPROC region.

LOGP

The procedure is executing under the LOGPROC region.

CNMP

The procedure is executing under the CNMPROC region.

BMON

The procedure is executing under the background monitor region.

BLOG

The procedure is executing under the background logger region.

BSVR

The procedure is executing under the background server region.

BSYS

The procedure is executing under the background system region.

&ZLU1CHN

974 Network Control Language Reference Guide

Example: &ZLUTYPE

& IF &ZLUTYPE EQ LU1 &THEN +

 &WRITE DATA=Enter Logon Request ==>

&IF &ZLUTYPE EQ OPER &THEN +

 &ENDAFTER &WRITE DATA=Invalid Request

Notes:

Apart from being used in the EASINET procedure, this variable offers an easy
way to detect when a procedure is operating under one of the specialized
system regions such as the system console.

The &ZNCLTYPE system variable is used to determine the type of the NCL
process.

See Also: The &ZNCLTYPE system variable.

More information:

&ZNCLTYPE (see page 1014)

&ZLU1CHN

Indicates the segment position of a message received from an LU1 device.

The &PROMPT statement allows an NCL process to receive messages from LU1
devices. Up to 256 bytes of a message is delivered to &PROMPT in a single
invocation.

If the incoming message is more than 256 bytes long, the data is segmented into
separate elements, each up to 256 bytes. These elements are delivered to
successive &PROMPT statements.

If the NCL process needs to know the position of a message within its chain of
elements, for example, to ensure that all the messages in a chain have been
received before the messages are processed, then it can reference the
&ZLU1CHN variable after completion of the &PROMPT statement.

&ZLU1CHN

Chapter 3: System Variables 975

The &ZLU1CHN value can also be used as a branching value to control the
issuing of successive &PROMPT statements. The &ZLU1CHN variable will return
one of the following values:

FIC

The message just received by &PROMPT is the first element in an incoming
chain. At least one more element in the chain is expected.

MIC

The message just received is not the first element in a chain, nor is it the
last. At least one more element is expected. MIC stands for middle in chain
and in a multi-element chain all elements except the first and the last return
this value.

LIC

The message just received is the last one of the incoming chain. No more
elements will follow as part of the chain. The next element to arrive will be
part of a separate chain.

OIC

The message received is in a chain all by itself. It is therefore both the first in
a new chain and also the last. The next element to arrive will be part of a
separate chain.

Example: &ZLU1CHN

 &PROMPT ARGS Please Enter Description ==>>

 &GOTO .&ZLU1CHN

.FIC

.MIC

 .

 . keep reading successive messages till entire chain is received

 .

 &PROMPT ARGS AUTONL=NO

 &GOTO .&ZLU1CHN

.OIC

.LIC

 .

 . process complete message

 .

Note: The chaining position indication is not related in any way to any SNA-level
chaining associated with the receipt of the data from the device; &ZLU1CHN
values indicate only whether there is more data associated with the message
being delivered and whether another &PROMPT is required for the procedure
to obtain the remaining part of the message.

&ZMAIACT# or &ZMAIACTN

976 Network Control Language Reference Guide

More information:

&PROMPT (see page 609)

&ZMAIACT# or &ZMAIACTN

Returns the number of active sessions associated with the current window.

&ZMALARM

(Message profile variable) Indicates whether the message will cause the
terminal alarm to sound. Value is YES or NO.

&ZMALLMSG

(Message profile variable) Indicates whether the message was generated by a
MSG ALL command. Value is YES or NO.

&ZMAOMAU

Indicates whether or not the original WTO or WTOR issuer was authorized.

This system variable is set only for messages containing AOM data after
&MSGREAD, &LOGREAD, or &INTREAD and indicates whether the original WTO
or WTOR message issuer was authorized. It contains the value YES or NO.

Example: &ZMAOMAU

.LOOP

&MSGREAD SET&IF .&ZMAOMDTA = .YES AND .&ZMAOMAU = .NO &THEN &DO

 &MSGDEL

 &GOTO .LOOP

&DOEND

 .

 .

 .

Note: This system variable corresponds to the &AOMAUTH system variable
available to AOMPROC.

See Also: &AOMAUTH.

&ZMAOMBC

Chapter 3: System Variables 977

More information:

&AOMAUTH (see page 811)

&ZMAOMBC

Indicates whether or not the current message has the AOM broadcast attribute.
If the current message has AOM attributes, and is flagged as a console
broadcast message, this system variable has the value YES. If it is not a
broadcast message, the value is NO. If the current message has no AOM
attributes, this system variable is null.

Example: &ZMAOMBC

-* Set broadcast msg to red.

&IF .&ZMAOMBC = .YES &THEN &MSGCONT COLOR=RED

Note: This variable is set only after &INTREAD, &MSGREAD, or &LOGREAD.

More information:

&AOMBC (see page 813)
&AOMMSGLV (see page 848)
&ZMAOMMLV (see page 985)

&ZMAOMDTA

978 Network Control Language Reference Guide

&ZMAOMDTA

Indicates whether or not the current message contains AOM data.

This system variable is set after an &LOGREAD, &MSGREAD, or &INTREAD
statement to indicate whether or not the current message contains AOM data
(attributes).

This system variable contains either YES or NO. It is always set when a message
is current. If it is NO, the only other AOM system variable that has a non-null
value is the &ZMAOMMSG system variable.

Example: &ZMAOMDTA

-* if no AOM data, just CONT.

&IF &ZMAOMDTA = NO &THEN &MSGCONT

Note: Messages can carry AOM data without being propagated to AOM
receivers. The converse is true. The &ZMAOMDTA and &ZMAOMMSG system
variables indicate which of the attributes (AOM message and/or AOM data) the
message has.

More information:

&ZMAOMMSG (see page 986)

&ZMAOMID

Chapter 3: System Variables 979

&ZMAOMID

Contains the AOM ID value.

The AOM screening table can set a twelve-character ID value. This ID is available
to AOMPROC in &AOMID. If an AOM message is onward delivered, the same ID
value is available in &ZMAOMID to message receivers.

This ID is used to trigger specific processing in, for example, a MSGPROC.

Example: &ZMAOMID

.LOOP

&MSGREAD SET

&IF .&ZMAOMID = .ID005 &THEN &MSGDEL

 .

 .

 .

Note: This variable is null if the message is not carrying AOM data
(&ZMAOMDTA is NO).

More information:

&AOMID (see page 823)
&ZMAOMDTA (see page 978)

&ZMAOMJI

980 Network Control Language Reference Guide

&ZMAOMJI

Contains the job ID of AOM messages sourced from MVS.

If the current message carries AOM data, and came from an MVS job, this
system variable contains the JES JOBID in the format J/S/Tnnnnn.

This corresponds to the &AOMJOBID system variable in AOMPROC.

Example: &ZMAOMJI

.LOOP

&MSGREAD SET

&IF .&ZMAOMJI = .J00999 &THEN &WRITE DATA=JOBID NEEDS RESET

 .

 .

 .

Note: This variable is null if the message is not carrying AOM data
(&ZMAOMDTA is NO).

More information:

&AOMJOBID (see page 829)
&ZMAOMDTA (see page 978)

&ZMAOMJN

Contains the job name of AOM messages sourced from MVS.

If the current message carries AOM data, and came from an MVS job, this
system variable contains the MVS job name.

This corresponds to the &AOMJOBNM system variable in AOMPROC.

Example: &ZMAOMJN

.LOOP

&MSGREAD SET

&IF .&ZMAOMJN = .PROD005 &THEN &WRITE DATA=PROD005 active.

 .

 .

 .

Note: This variable is null if the message is not carrying AOM data
(&ZMAOMDTA is NO).

&ZMAOMMID

Chapter 3: System Variables 981

More information:

&AOMJOBNM (see page 830)
&ZMAOMDTA (see page 978)

&ZMAOMMID

Contains the AOM message ID.

If the current message carries AOM data, this system variable contains the AOM
message ID. For multi-line WTO minor lines (&ZMAOMMIN=YES), the message
ID is that of the major line.

This system variable is null if the current message contains no AOM data
(&ZMAOMDTA=NO).

The maximum length of this system variable is 12 characters.

Example: &ZMAOMMID

.LOOP &MSGREAD SET

&GOTO .&ZMAOMMID

 :

 :

.$HASP150

 :

&GOTO .LOOP

Note: &ZMAOMMID corresponds to &AOMMSGID. The screening table and
AOMPROC can alter the MSGID if, for example, messages are in a non-standard
format or do not have their own identifiers.

More information:

&AOMMSGID (see page 847)
&ZMAOMDTA (see page 978)

&ZMAOMMIN

982 Network Control Language Reference Guide

&ZMAOMMIN

Indicates whether or not this is an AOM minor line.

If the current message carries AOM data, this system variable indicates whether
or not this is a minor line from a multi-line WTO. It has the value YES or NO. It is
null if the current message contains no AOM data (&ZMAOMDTA = NO).

Example: &ZMAOMMIN

.LOOP

&MSGREAD SET

&IF .&ZMAOMMIN = .YES &THEN &MSGDEL

 :

 :

Note: &ZMAOMMIN corresponds to the &AOMMINLN system variable available
to an AOMPROC.

More information:

&AOMMINLN (see page 69)
&ZMAOMDTA (see page 978)

&ZMAOMMLC

(Message Profile Variable.) Indicates whether or not the current message is an
MLWTO control line.

If the current message contains AOM data, this system variable indicates
whether or not it is a multi-line WTO control line. Its value is YES or NO. It is null
if the current line is not an AOM-sourced line.

Example: &ZMAOMMLC

& IF .&ZMAOMMLC = .YES &THEN +

 &GOSUB .CTL-LINE

More information:

&ZMAOMMLD (see page 983)
&ZMAOMMLE (see page 983)
&ZMAOMMLL (see page 984)
&ZMAOMMLT (see page 984)

&ZMAOMMLD

Chapter 3: System Variables 983

&ZMAOMMLD

(Message Profile Variable.) Indicates whether or not the current message is an
MLWTO data line.

If the current message contains AOM data, this system variable indicates
whether or not it is a multi-line WTO data line. Its value is YES or NO. It is null if
the current line is not an AOM-sourced line.

Example: &ZMAOMMLD

&IF .&ZMAOMMLD = .YES &THEN +

 &GOSUB .DAT-LINE

More information:

&ZMAOMMLC (see page 982)
&ZMAOMMLE (see page 983)
&ZMAOMMLL (see page 984)
&ZMAOMMLT (see page 984)

&ZMAOMMLE

(Message Profile Variable.) Indicates whether or not the current message is an
MLWTO end line.

If the current message contains AOM data, this system variable indicates
whether or not it is a multi-line WTO end line. Its value is YES or NO. It is null if
the current line is not an AOM-sourced line.

Example: &ZMAOMMLE

& IF .&ZMAOMMLE = .YES &THEN +

 &GOSUB .END-LINE

More information:

&ZMAOMMLC (see page 982)
&ZMAOMMLD (see page 983)
&ZMAOMMLL (see page 984)
&ZMAOMMLT (see page 984)

&ZMAOMMLL

984 Network Control Language Reference Guide

&ZMAOMMLL

(Message Profile Variable.) Indicates whether or not the current message is an
MLWTO label line.

If the current message contains AOM data, this system variable indicates
whether or not it is a multi-line WTO label line. Its value is YES or NO. It is null if
the current line is not an AOM-sourced line.

Example: &ZMAOMMLL

&IF .&ZMAOMMLL = .YES &THEN +

 &GOSUB .LAB-LINE

More information:

&ZMAOMMLC (see page 982)
&ZMAOMMLD (see page 983)
&ZMAOMMLE (see page 983)
&ZMAOMMLT (see page 984)

&ZMAOMMLT

(Message Profile Variable.) Indicates the type of MLWTO.

If the current message contains AOM data, this system variable indicates the
type of multi-line WTO. Its value is one of the following letters:

C

indicates a control line

L

Indicates a label line

D

Indicates a data line

DE

Indicates a data end line (last line)

This system variable is null if the current line is not an AOM-sourced line.

Example: &ZMAOMMLT

&GOTO .ML-&ZMAOMMLT

&ZMAOMMLV

Chapter 3: System Variables 985

More information:

&ZMAOMMLC (see page 982)
&ZMAOMMLD (see page 983)
&ZMAOMMLE (see page 983)
&ZMAOMMLL (see page 984)

&ZMAOMMLV

Contains the highest AOM message level of the current message.

Message levels is used to limit the messages that is delivered to AOM
authorized receivers. The possible values in &ZMAOMMLV, in order of
decreasing severity, are: WTOR, R, I, CE, E, BC, and IN. This system variable is
null if the current message does not contain AOM data

(&ZMAOMDTA = NO).

Example: &ZMAOMMLV

&IF &ZMAOMMLV = I &THEN &MSGCONT COLOR=RED HLIGHT=REVERSE

Notes:

Message levels is modified in the AOM screening table. This system variable
represents the final level that is used for message propagation to AOM
receivers.

Authorized AOM receivers can profile their environment to receive one or more
message levels.

This system variable corresponds to &AOMMSGLV.

Note: For more information, see the PROFILE command description in the
Online Help.

More information:

&AOMMSGLV (see page 848)

&ZMAOMMSG

986 Network Control Language Reference Guide

&ZMAOMMSG

Indicates whether or not the current message was marked for propagation to
eligible AOM receivers.

This system variable is set to YES if the current message was flagged as eligible
for propagation to all eligible AOM receivers. If not, it is set to NO.

The value of this system variable is independent of the value of &ZMAOMDTA,
which indicates whether or not the message carries AOM data.

Messages that also carry AOM data are subject to filtering on routing code and
message level before delivery.

Example: &ZMAOMMSG

.LOOP

&MSGREAD SET

&IF &ZMAOMMSG = YES &THEN &GOTO .AOMMSG

...

...

Note: All standard AOM traffic has &ZMAOMMSG set to YES. SYSCMD command
responses, however, while containing AOM data (&ZMAOMDTA = YES), are not
normally broadcast to AOM receivers, but just delivered to the command issuer.
Thus, they have &ZMAOMMSG = NO.

More information:

&ZMAOMDTA (see page 978)

&ZMAOMRC

Chapter 3: System Variables 987

&ZMAOMRC

Contains the AOM routing code(s) assigned to the current message.

If the current message contains AOM data (&ZMAOMDTA = YES), &ZMAOMRC
contains the routing code(s) of the current message, enclosed in parenthesis,
for example, (1,3,11).

&ZMAOMRC is set to null if there are no AOM attributes for the current
message.

Example: &ZMAOMRC

.LOOP &MSGREAD SET

&GOTO .&ZMAOMID

 .

 .

 .

.PREPMSG

&WRITE RC=&ZMAOMRC NRD=OPER +

 DATA=PLEASE PREPARE PRINTER 1 +

 FOR SPECIAL PRINT - AWZ001

&MSGCONT

&GOTO .LOOP

As is seen from the example, &ZMAOMRC is formatted so that it is inserted
directly into an &WRITE, &WTO, &WTOR, or &AOMALERT statement.

This system variable corresponds to the &AOMROUTC system variable available
to an AOMPROC.

Authorized AOM receivers can use the PROFILE ROUTCDE= command to control
the receipt of messages used on routing codes.

Note: For more information, see the PROFILE command description in the
Online Help.

More information:

&AOMROUTC (see page 860)
&ZMAOMRCM (see page 988)
&ZMAOMRCX (see page 988)

&ZMAOMRCM

988 Network Control Language Reference Guide

&ZMAOMRCM

Contains the routing code(s) assigned to the current message, in &MASKCHK
format.

If the current message contains AOM data, this system variable contains the 128
AOM routing codes, in MASKCHK format.

For example, ROUTCDE=(1,2,3,11) is represented by a 128-byte value of
YYYNNNNNNNYNNNNN....N.

This system variable is null if the current message has no AOM data
(&ZMAOMDTA = NO).

Example: &ZMAOMRCM

&ROUTECODE = &MASKCHK YYYNNNNNNNYNNNNN &ZMAOMRCM

Note: &ZMAOMRCM is used to identify invalid route codes.

More information:

&AOMRHEX (see page 858)
&ZMAOMRC (see page 987)
&ZMAOMRCX (see page 988)

&ZMAOMRCX

Contains the AOM routing code(s) assigned to the current message, in
hexadecimal characters.

If the current message contains AOM data, then this system variable contains
the 128 AOM routing codes, as sixteen hexadecimal digits. For example,
&ZMAOMRCX contains E020000000000000 for ROUTCDE=(1,2,3,11).

This system variable is null if the current message has no AOM attributes
(&ZMAOMDTA=NO).

Example: &ZMAOMRCX

& CALL STATPROG &ZMAOMRCX

Note: &ZMAOMRCX is hexadecimal packed before being passed to a user
program via &CALL by using the built-in function &HEXPACK.

&ZMAOMSOS

Chapter 3: System Variables 989

More information:

&AOMRHEX (see page 858)
&ZMAOMRC (see page 987)
&ZMAOMRCM (see page 988)

&ZMAOMSOS

Identifies the operating system type from which the current AOM message
came.

A message that is originated by AOM can come from either a VM or MVS
system. This system variable indicates the source of the message, for messages
containing AOM data. It contains OS (meaning z/OS, MSP, or VOS3) or VM.

Example: &ZMAOMSOS

&MSGREAD SET

&GOTO .&ZMAOMSOS

 .

 .

 .

.VM -* process VM-sourced msg.

 .

 .

 .

.OS -* process MVS-sourced msg.

 .

 .

 .

Notes:

If the message has no AOM data, &ZMAOMSOS is set to null.

The value in this system variable indicates which of the
operating-system-specific system variables will contain meaningful data. If MVS,
then &ZMAOMJI and &ZMAOMJN are available. If VM, then &ZMAOMUI and
&ZMAOMUN are available. In each case, the other variables are null.

&ZMAOMSYN

990 Network Control Language Reference Guide

More information:

&ZMAOMUI (see page 995)
&ZMAOMUN (see page 996)
&ZMAOMJI (see page 980)
&ZMAOMJN (see page 980)
&ZMAOMSYN (see page 990)

&ZMAOMSYN

Identifies the system name from which the current AOM message came.

MVS provides a system name that is unique within a sysplex. An AOM message
originating from an MVS system carries this system name in its internal message
flow.

If AOMPRFSN is set to YES (either in the PROFILE command or as a SYSPARM),
then the system name is available as a prefix to the message when displayed on
a terminal. If the message is being processed by a MSGPROC, then this system
variable indicates the system name.

Example: &ZMAOMSYN

&MSGREAD SET

&GOTO .&ZMAOMSYN

 .

 .

 .

.OS -* process MVS-sourced msg

 .

 .

 .

Note: If the message has no AOM data, &ZMAOMSYN is set to null.

More information:

&ZMAOMUI (see page 995)
&ZMAOMUN (see page 996)
&ZMAOMJI (see page 980)
&ZMAOMJN (see page 980)
&ZMAOMSOS (see page 989)

&ZMAOMTM

Chapter 3: System Variables 991

&ZMAOMTM

Contains the AOM time stamp of the current message.

&ZMAOMTM is set to the time that the current message was generated, if the
current message contains AOM data. This time is in the form hhmmss. If no
AOM data is present, &ZMAOMTM is null.

Example: &ZMAOMTM

.LOOP

&MSGREAD SET &GOTO .&AOMID

 .

 .

 .

&GOTO .LOOP .PRODJOB3

&IF &ZMAOMTM GT &TIME3 +

 &WRITE NRD=OPER DATA=WARNING JOB &AOMJOBNM IS +

 RUNNING LATE.

 .

 .

 .

&GOTO .LOOP

Note: &ZMAOMTM corresponds to the &AOMTIME system variable available to
an AOMPROC.

More information:

&AOMTIME (see page 872)

&ZMAOMTYP

992 Network Control Language Reference Guide

&ZMAOMTYP

Indicates the AOM type of a message.

For messages containing AOM data (&ZMAOMDTA=YES), this variable is set to
either WTO, WTOR, or MSG, depending on the message type.

Example: &ZMAOMTYP

.LOOP

&MSGREAD SET

&GOTO .&ZMAOMTYP

 .

 .

 .

.WTO

 .

 process WTO

 .

. &GOTO .LOOP

.WTOR

 .

 . process WTOR

 .

&GOTO .LOOP

.MSG

 .

 . process VM MSG

 .

Notes:

Using &ZMAOMTYP is one way for an NCL procedure (for example, a MSGPROC)
to distinguish WTORs.

The values in this system variable correspond to the &AOMTYPE system
variable.

More information:

&AOMTYPE (see page 873)

&ZMAOMUFM

Chapter 3: System Variables 993

&ZMAOMUFM

Contains the eight AOM user flags in &MASKCHK format.

&ZMAOMUFM contains a string of eight characters that indicate the settings of
the eight AOM user flags, if the current message contains AOM data. The eight
characters are Y or N. For example:

YNNNYNNY

The built-in function &MASKCHK is used to check the settings.

Example: &ZMAOMUFM

&USRFLAG3 = &MASKCHK **Y***** &ZMAOMUFM

&IF .&USRFLAG = .EQ &THEN &FLAG3 = ON

Notes:

&ZMAOMUF1-8 are flags which is set in the screening table or by an AOMPROC.

This system variable corresponds to the &AOMUFLGS system variable available
to an AOMPROC.

See Also: The &ZMAOMUF1-8 and &AOMUFLGS descriptions.

More information:

&ZMAOMUF1-8 (see page 994)
&AOMUFLGS (see page 874)

&ZMAOMUF1-8

994 Network Control Language Reference Guide

&ZMAOMUF1-8

These are eight system variables containing the AOM user defined flags, set in
the screening table.

The default for the system variables &ZMAOMUF1....&ZMAOMUF8 is NO. This is
set to YES by the screening table or reset via &AOMCONT or &AOMREPL.

Example: &ZMAOMUF1

.LOOP

&MSGREAD SET

&IF &ZMAOMUF1 = YES &GOTO .SPECPROC

 .

 .

 .

&GOTO .LOOP

 . -* Special message processing

 .

.SPECPROC

 .

 .

 .

&MSGCONT COLOR=YELLOW

&GOTO .LOOP

Note: These correspond to the eight AOMPROC-specific system variables
&AOMUFLG1-8.

More information:

&AOMUFLG1-8 (see page 875)
&AOMUFLGS (see page 874)
&ZMAOMUFM (see page 993)

&ZMAOMUI

Chapter 3: System Variables 995

&ZMAOMUI

A system variable containing the originating user ID of an AOM message from a
VM system.

If the current message contains AOM data (&ZMAOMDTA=YES), and the
message originated from a VM system, this system variable contains the user ID
from which the message came. For messages that originate from CP, the user ID
is CP.

This user ID is the virtual machine name that issued the CP MSG command.

Example: &ZMAOMUI

.LOOP

&MSGREAD SET

&IF .&AOMVMUID = .USER1 &THEN +

 &SYSCMD DEST=GCS MSG USER1 WHATS WRONG?

 .

 .

 .

Notes:

The &ZMAOMUI system variable is useful for replying to the originating user
when a problem is solved.

This system variable corresponds to the &AOMVMUID system variable available
to an AOMPROC.

More information:

&AOMVMUID (see page 878)

&ZMAOMUN

996 Network Control Language Reference Guide

&ZMAOMUN

Contains the VM RSCS node name that an AOM/VM message came from.

AOM/VM messages that carry AOM data (&ZMAOMDTA=YES) contain the RSCS
node that the message originated from in this system variable. For
CP-generated messages in the local system, this has a value of CP.

In a networked VM system, this field is useful for identifying the source of a
message.

Example: &ZMAOMUN

.LOOP

&MSGREAD SET

&IF &ZMAOMUN NE VM1 &THEN &GOTO .REMOTEVM

 .

 .

 .

Note: This system variable corresponds to the &AOMVMUND system variable
available to an AOMPROC.

More information:

&AOMVMUND (see page 879)

&ZMAPNAME

(Message profile variable) Indicates the name of the object in the message user
MDO component, if present. For example, after an &INTREAD, it returns the
map name for the $INT.USERMDO object.

&ZMCOLOR or &ZMCOLOUR

(Message profile variable) Indicates the color attribute of the message. Value is
any one of NONE, RED, BLUE, GREEN, YELLOW, TURQUOISE, PINK, or WHITE.

&ZMDOCOMP

Indicates the last name segment of the fully qualified name for the MDO
component involved in the last operation.

&ZMDOFDBK

Chapter 3: System Variables 997

&ZMDOFDBK

The &ZMDOFDBK system variable shows the feedback code after a verb
references an MDO. This feedback variable is used with &ZMDORC.

Note: For more information about the return code and feedback variables, see
the Network Control Language Programming Guide.

The following table shows the possible values of the return code and feedback
variables, and their meanings:

&ZMDORC &ZMDOFDBK Meaning

0 0 OK

4 0 Null: optional component present but
empty, or null data assigned to optional
component

 1 Null: optional component not present

 2 Null: mandatory component present but
empty, or null data assigned to mandatory
component

 3 Null: mandatory component not present

 4 String was truncated (applies to FIX offset
or length components only)

8 0 Type check: data is invalid for type

 1 Data check: data is invalid structurally—a
common cause is data too long or too
short

 2 Length check: maximum MDO length
exceeded

12 0 Name check: component not defined

 1 Name check: index position invalid or
value is out of range

16 0 Map check: map not found

 1 Map check: map contains errors—load
failed

 2 Map check: map/data mismatch

&ZMDOID

998 Network Control Language Reference Guide

&ZMDOID

Shows the identifier of the MDO involved in the last operation.

&ZMDOM

(Message profile variable) Indicates whether the message is a delete operator
message instruction. Value is YES or NO. This value is also dependent on the
setting of the &ZMTYPE variable.

More information:

&ZMTYPE (see page 1011)
&ZMMSG (see page 1003)

&ZMDOMAP

Returns the map name for &ZMDOID.

&ZMDOMID

(Message profile variable) Contains the delete operator message
identifier(DOMID) of the message read, provided the message has the non-roll
delete message attribute (as determined by the setting of the &ZMNRD
terminal). If &ZMNRD=NO, then &ZMDOMID is set to null.

More information:

&ZMNRD (see page 1004)

&ZMDONAME

Indicates the fully qualified name of the MDO component involved in the last
operation.

&ZMDORC

Chapter 3: System Variables 999

&ZMDORC

The &ZMDORC system variable shows the return code after any verb references
an MDO. This return code variable is used in conjunction with &ZMDOFDBK.

Note: For more information about the return code and feedback variables, see
the Network Control Language Programming Guide.

The following table shows the possible values of the return code and feedback
variables, and their meanings:

&ZMDORC &ZMDOFDBK Meaning

0 0 OK

4 0 Null: optional component present but
empty, or null data assigned to optional
component

 1 Null: optional component not present

 2 Null: mandatory component present but
empty, or null data assigned to mandatory
component

 3 Null: mandatory component not present

 4 String was truncated (applies to FIX offset
or length components only)

8 0 Type check: data is invalid for type

 1 Data check: data is invalid structurally—a
common cause is data too long or too
short

 2 Length check: maximum MDO length
exceeded

12 0 Name check: component not defined

 1 Name check: index position invalid or
value is out of range

16 0 Map check: map not found

 1 Map check: map contains errors—load
failed

 2 Map check: map/data mismatch

&ZMDOTAG

1000 Network Control Language Reference Guide

&ZMDOTAG

Indicates the MDO tag value of the component involved in the last operation.

&ZMDOTYPE

Indicates the ASN.1 type of the &ZMDOCOMP.

&ZMEVONID

Contains the nclid of the procedure which issued an &EVENT.

&ZMEVONID is set when the incoming message was generated by an &EVENT
verb. It contains the nclid of the procedure that issued the &EVENT.

&ZMEVPROF

Represents the EDS profile name which resulted in delivery of an event
notification.

&ZMEVPROF is set for incoming event messages (N00102) and represents the
EDS profile name which resulted in the delivery of the event notification.

A copy of the event notification is delivered for every profile whose attributes
match the event attributes.

&ZMEVRCDE

Contains the route code of an incoming event message.

&ZMEVRCDE contains the route code of the incoming event message (N00102)
if the ROUTECDE operand was specified on the originating &EVENT verb.

&ZMEVTIME

Chapter 3: System Variables 1001

&ZMEVTIME

Contains the time that an event originated.

&ZMEVTIME is set for incoming event messages (N00102) to the time the event
originated. It is in the format HH.MM.SS.THT.

&ZMEVUSER

Contains the user ID of a user who issued an &EVENT verb.

&ZMEVUSER is set when the incoming message was generated by an &EVENT
verb.

This variable is also set for some system events and represents the user who
was responsible for the event generation.

&ZMHLIGHT or &ZMHLITE

(Message profile variable) Indicates the display highlighting attribute of the
message. Values are NONE, USCORE, REVERSE, or BLINK.

&ZMINTENS

(Message profile variable) Indicates the display intensity attribute of the
message. Values are HIGH, LOW, or null if no message is processed.

&ZMLNODE

1002 Network Control Language Reference Guide

&ZMLNODE

(Message profile variable) Indicates the terminal name of the user to whom the
log message is to be attributed. Value is the name of a terminal (available to
&LOGREAD only).

If the message originated in a dependant NCL environment, it contains the
NCLID of the executing procedure.

For monitor class messages which are logged from a remote system,
&ZMLNODE is set to *REMOTE* if no single user is the message receiver.

&ZMLNODE is NULL if the source terminal ID or NCLID is not available.

More information:

&LOGREAD (see page 422)

&ZMLOGCMD

(Message profile variable) Indicates whether a log message is an echo to the log
of a command. Value is YES or NO. (Available to &LOGREAD only).

&ZMLSRCID

(Message profile variable) Contains the message prefix of the last handler for
the message just received.

&ZMLSRCTP

(Message profile variable) Indicates the type of the last handler for the message
just received. Values are:

null

If the message was generated within this system

ROF

If the message was delivered across a ROF session

MAI-OC

If the message was delivered across an MAI-OC session

&ZMLTIME

Chapter 3: System Variables 1003

&ZMLTIME

(Message profile variable) Contains the time stamp of a log message (available
to &LOGREAD only).

The format of &ZMLTIME is HH.MM.SS.THT.

&ZMLUSER

(Message profile variable) Contains the user ID the log message came from
(available to &LOGREAD only).

&ZMLUSER is NULL if the message is not attributed to a specific user.

$ZMMONMSG

(Message profile variable) Indicates whether the message received is a monitor
class message. Value is YES or NO.

&ZMMSG

(Message profile variable) The value is YES or NO indicating whether or not the
message received is a standard message.

The setting of &ZMMSG is always the opposite value to that for &ZMDOM, and
is dependent on the setting of the &ZMTYPE variable.

More information:

&ZMDOM (see page 998)
&ZMTYPE (see page 1011)

&ZMMSGCD

(Message profile variable) Indicates the hexadecimal message code attribute for
this message. The message code dictates which user IDs are eligible to receive
the message.

&ZMMDIDL

1004 Network Control Language Reference Guide

&ZMMDIDL

(Message profile variable) This is the domain ID of the previous product region
to handle this message.

It is the same as the originating system, or different if the message came from a
remote system and has been routed onwards by an intermediate system.

&ZMMDIDO

(Message profile variable) This is the domain ID for the product region where
this message originated:

■ If sourced from the local system, this is the local system domain ID.

■ If sourced from a remote system, this variable carries the domain ID of the
originating system, even though the message might have been routed
onwards by intermediate systems.

&ZMNRD

(Message profile variable) Indicates whether the message carries the non-roll
delete attribute. Values is:

NO

Not a non-roll delete message

YES

Message is non-roll delete and is deleted only by a delete operator message
(DOM) instruction

OPER

The message is non-roll delete but is deleted only by the cursor delete
function from an OCS window

More information:

&ZMDOMID (see page 998)

&ZMNRDRET

Chapter 3: System Variables 1005

&ZMNRDRET

(Message profile variable) Indicates whether the message has been received as
a result of a NRDRET command being issued by the user.

This flag allows an NCL procedure to ignore redisplayed messages when
analyzing events. Value is YES or NO.

&ZMODFLD

Returns the name of a modified variable.

&ZMODFLD is used to determine the names of variables modified by &PANEL,
&NDBGET or &SETVARS.

Example: &ZMODFLD

&CONTROL FLDCTL

&PANEL NAMEADDR -* Issue panel requesting name and address

 :

.VALIDATE

 &GOTO .&ZMODFLD

 -* jump to field validation routine

 &GOTO .NEXTPANE

.NAME -* process name input

 &IF .&NAME = .&THEN ...

 :

.ADDR -* process address input

 :

&SETVARS PREFIX=K# KEYWORDS=(OPT,USER,FUNC) +

 MODFLD=YES PARMS ERROR=CONTINUE

&ZMODFLD

1006 Network Control Language Reference Guide

Notes:

&ZMODFLD is processed as a stack. Each reference to &ZMODFLD returns the
top element of the stack, until it is empty, and resets the MODFLD attribute of
the returned field. &ASSIGN OPT=MODFLD with the NORESET option is used to
access modified field names and still allow the subsequent use of the
&ZMODFLD function.

When a panel is displayed, and the &CONTROL FLDCTL option is in force, NCL
identifies all the fields on the panel which have been modified when the user
causes input from the terminal. In addition, fields flagged as MODIFIED or
ERRFLD by &ASSIGN OPT=SETMOD/SETERR before the panel display, or fields
flagged by panel services field validation (when &CONTROL PANELRC is in effect)
are also returned by the &ZMODFLD function.

For example, if a panel is displayed with ten input fields and the user changes
three fields and presses Enter, successive references of &ZMODFLD return the
names of the three modified fields.

The fields are returned in the order they appear on the screen, that is, they are
processed on a left to right, top to bottom basis. This assists in the analysis and
editing processes required in NCL procedures when handling multi-field input
from terminals displaying NCL panels. Field validation is setup in an efficient
manner to process only those fields modified rather than process all fields that
exist on a panel.

The MODFLD attribute of a field is retained, unless cleared by &ZMODFLD, or by
&ASSIGN OPT=MODFLD, or by a panel display. If a field still has a MODFLD
attribute when a subsequent panel is displayed and it appears on that panel,
then it is again treated as being modified by the user and appears in the
&ZMODFLD stack. This is particularly useful when processing panels that contain
selection lists. The user might enter several selections one of which is incorrect.
The panel is redisplayed, highlighting the field in error. After the second display,
the original correct selections can still be processed via &ZMODFLD.

The &SETVARS and &NDBGET statements also support the optional use of the
MODFLD attribute.

More information:

&ASSIGN (see page 218)
&SETVARS (see page 650)
&NDBGET (see page 506)
&CONTROL (see page 281)

&ZMODSRCID

Chapter 3: System Variables 1007

&ZMODSRCID

(Message profile variable) Contains the message prefix for the originator of the
message just received.

&ZMOSRCTP

(Message profile variable) Indicates the type for the originator of the message
just received. Values are:

null

If the message was generated within this system

ROF

If the message was delivered across a ROF session

MAIOC

If the message was delivered across an MAI-OC session

&ZMPPODTA

(Message profile variable) Indicates whether any PPO message profile
information is available concerning this message.

Value is YES or NO. If YES, then other message profile variables are available
containing information about certain PPO attributes of the message.

More information:

&ZMPPOSEV (see page 1008)

&ZMPPOMSG

(Message profile variable) Indicates whether the message originated from PPO.
Value is YES or NO.

&ZMPPOSCNT

1008 Network Control Language Reference Guide

&ZMPPOSCNT

A counter of remote domains to which a PPO message was delivered.

After an &PPOALERT LINK=* or &PPOALERT DOMAIN=* statement is executed,
this variable is set to number of domains to which the message was sent across
ISR.

More information:

&ZMPPODTA (see page 1007)

&ZMPPOSEV

(Message profile variable) If &ZMPPODTA=YES, then this variable gives the
severity level of the PPO message.

Values are:

U

Undeliverable

I

Information

W

Warning

N

Normal

S

Severe

More information:

&ZMPPODTA (see page 1007)

&ZMPPOTM

(Message profile variable) If &ZMPPODTA=YES, this variable gives the time
when the message was created.

&ZMPPOVNO

Chapter 3: System Variables 1009

More information:

&ZMPPODTA (see page 1007)

&ZMPPOVNO

(Message profile variable) If &ZMPPODTA=YES, this variable contains the VTAM
message number for the PPO message.

More information:

&ZMPPODTA (see page 1007)

&ZMPREFXD

(Message profile variable) Indicates whether the message text has been
prefixed with identifier values. For example, an MAI-OC session ID or a ROF
message prefix. Value is YES or NO.

&ZMPTEXT

(Message profile variable) &ZMPTEXT is set to the entire message text, prefixed
with any ROF or MAI-OC session identifiers.

&ZMREQID

(Message profile variable) If &ZINTYPE=REQ (that is, &INTREAD is satisfied by a
request message), this variable is set to either of the following:

■ The user ID for the user issuing the INTQ command that generated the
request message, or

■ The NCL ID for the NCL process that issued the INTQ command or &WRITE
verb.

&ZMREQID depends on &ZINTYPE for its relevance; its setting is categorized by
the &ZMREQSRC variable.

Note: &ZMREQID is available for &INTREAD only.

&ZMREQSRC

1010 Network Control Language Reference Guide

&ZMREQSRC

(Message profile variable) If &ZINTYPE=REQ (that is, &INTREAD is satisfied by a
request message), this variable indicates whether the source of the INTQ
command generating the message as either:

USER

The source is a user

NCL

The source is another NCL process

SYSTEM

The source is a system notification

Note: &ZMREQSRC is available for &INTREAD only.

&ZMSLEVEL

Indicates the version of System Services.

Use this variable to assist in structuring procedures that are to be run in
environments with mixed versions of System Services. It returns a six-digit value
that corresponds to the current version.

Example: &ZMSLEVEL

&IF &ZMSLEVEL LT 050000 &THEN +

 &WRITE DATA=System does not support shortcuts

&ZMSOLIC

(Message profile variable) Indicates whether the message was solicited or
unsolicited. A solicited message is usually a command response. Values are YES
(that is, solicited) or NO.

&ZMSOURCE

Chapter 3: System Variables 1011

&ZMSOURCE

(Message profile variable) Indicates the verb that last set the values for the
message profile variables. The suite of message profile variables remains set
until changed by the execution of another verb which modifies that suite of
variables.

Valid values of &ZMSOURCE are:

■ INTREAD

■ LOGREAD

■ MSGREAD

&ZMTEXT

(Message profile variable) Contains the text of the message received. If the
message is a delete operator message (DOM), a null value is returned.

After &LOGREAD, the text does not include the standard log message heading
information of user ID, time and terminal name. These values are available from
the &ZMLUSER, &ZMLTIME, and &ZMLNODE message profile variables that are
set after &LOGREAD.

&ZMTYPE

(Message profile variable) Specifies the type of message received after
execution of the &READ verb. Values are:

MSG

The message is a standard text message

DOM

The message is a delete operator message instruction

NONE

The message is a VTAM PPO command echo

REQ

The message is a request message that has satisfied &INTREAD TYPE=ANY,
or &INTREAD TYPE=REQ

&ZNCLENV

1012 Network Control Language Reference Guide

More information:

&ZMDOM (see page 998)
&ZMMSG (see page 1003)

&ZNCLENV

Returns the execution environment of an NCL process. The execution
environment is one of the following:

PRIMARY

The process is running under a primary environment.

DEPENDENT

The process is running under a dependent environment.

&ZNCLID

Returns the unique identifier of the NCL process.

Each NCL process in the system has a unique identifying number, which is used
to identify individual processes and to allow communications from a terminal to
a particular procedure. In an NCL environment in which many independent
processes is executing concurrently, GO, INTQ, and FLUSH commands issued
either from an OCS window or from an NCL process executing in the same
environment, can use the NCL identifier to communicate directly with a specific
process.

The &ZNCLID system variable allows an NCL procedure to determine its own
NCL ID.

Example: &ZNCLID

&WRITE DATA=NCL Proc &ZNCLID recovering controller &PUNAME.

&ZNCLNEST

Chapter 3: System Variables 1013

Notes:

Each NCL process in the system is allocated a unique identifier when it is
started, and it retains this identifier until it ends. Multiple invocations of the
same procedure therefore have the same name but different NCL IDs.

GO, INTQ, and FLUSH commands normally apply only to NCL procedures that
are executing in the NCL environment associated with the terminal or procedure
that issues the commands.

Note: For more information, see the GO, INTQ, FLUSH, and SHOW NCL
command descriptions in the Online Help.

&ZNCLNEST

Returns the current procedure's EXEC nesting level within method level.

When an NCL process is invoked the first procedure executed is called the base
procedure. If the base procedure issues an EXEC command to invoke another
procedure, the second procedure is a nested procedure. This second procedure
can EXEC other procedures. Any procedure can inspect the &ZNCLNEST system
variable to determine its nesting level, which is the number of procedures deep
from the base procedure. The value of &ZNCLNEST is a number in the range 1 to
250 (1 represents the nesting level of the base procedure).

Example: &ZNCLNEST

&IF &ZNCLNEST EQ 250 &SYSMSG = &STR MAXIMUM PROCEDURE DEPTH

A maximum of 250 nesting levels is allowed in any one process.

&ZNCLTYPE

1014 Network Control Language Reference Guide

&ZNCLTYPE

Returns the type of the current procedure.

NCL processes is one of several different types. Most NCL processes are
standard types, that is, they can use all the standard NCL statements, built-in
functions, and system variables.

Some NCL processes, however, are running as a special type of process, and are
thus authorized to use NCL statements, built-in functions, and system variables
that are only available to that type of process.

As an example, the LOGPROC NCL process can use the &LOGREAD, &LOGDEL,
and &LOGREPL NCL statements. No other NCL process can use these
statements.

When writing generic NCL procedures, it might be necessary to determine the
exact type of NCL process that the procedure is executing as. The &ZNCLTYPE
system variable provides this.

&ZNCLTYPE

Chapter 3: System Variables 1015

The &ZNCLTYPE system variable provides the following values when referenced:

STD

The NCL process is a standard process. No special facilities are available.
This type includes both non-full-screen and full-screen mode procedures.

AOMP

The NCL process is executing as the primary AOMPROC. The &AOMxxx NCL
verbs are used. This value can only be returned if the AOM feature is
installed.

AOMS

The NCL process is executing as a secondary AOMPROC. The &AOMxxx NCL
verbs are used. This value can only be returned if the AOM feature is
installed.

CNMP

The NCL process is executing a CNMPROC. The &CNMxxx NCL verbs are
used. This value can only be returned if the NEWS feature is installed.

LOGP

The NCL process is executing as LOGPROC. The &LOGxxx NCL verbs are
used.

MAIS

The NCL process is executing as an MAI script process. The &MAIxxx NCL
verbs are used. This value can only be returned if the MAI/EF feature is
installed.

MSGP

The NCL process is executing as a MSGPROC. The &MSGxxx NCL verbs are
used.

PPOP

The NCL process is executing as PPOPROC. The &PPOxxx NCL verbs are used.

LOCK

The NCL process is running to handle a LOCKed session.

Example: &ZNCLTYPE

&IF &ZNCLTYPE NE MSGP &THEN +

 &ENDAFTER &WRITE DATA=ABORTING - NOT A MSGPROC

Note: The &ZLUTYPE system variable provides an indication of the region in
which an NCL process is executing.

&ZNETID

1016 Network Control Language Reference Guide

More information:

&ZLUTYPE (see page 972)

&ZNETID

Returns the value of the VTAM network identifier.

Identifies the network name of the VTAM in which the system is executing. The
network name is as defined by the NETID operand specified in the VTAM
initialization parameters.

Example: &ZNETID

&GOTO .&ZNETID

 :

 .CORPNET1

 .

 .-* Processing specific to this network

 .

.CORPNET2

 .

 .-* Processing specific to this network

 .

Notes:

There is one or more VTAM systems in the same network. This variable is used
to control processing, based on which VTAM network the system is running
under.

&NETID is only available on IBM systems. Other systems return a null value.

&ZNETNAME

Chapter 3: System Variables 1017

&ZNETNAME

Returns the network name of the primary ACB.

The &ZNETNAME variable returns the network name of the APPL definition used
for the system's primary ACB. The network name might differ from the
ACBNAME, depending upon how the APPL has been defined.

Some versions of VTAM might not support the interrogation of network name,
in which case &ZNETNAME returns a null value.

Example: &ZNETNAME

& WRITE DATA=SYSTEM SERVICES OPERATING WITH +

 ACB=&ZNETNAME

Note: &NETNAME is only available on IBM systems. Other systems return a null
value.

&ZNMDID

Returns the value of the system's domain identifier.

The NMDID system initialization parameter specifies a 1- to 4-character domain
identifier. If not specified, a default of up to the first four characters of the
primary ACBNAME is used. The domain identifier should be unique throughout
all connected systems.

Example: &ZNMDID

&WRITE DATA=The system domain identifier is &ZNMDID.

Notes:

The SHOW DOMAINS command is used to determine the domain identifier of
the local system and all currently connected systems.

The SHOW PARMS command is used to determine the settings of basic system
initialization parameters.

More information:

&ZNMSUP (see page 1018)

&ZNMSUP

1018 Network Control Language Reference Guide

&ZNMSUP

Returns the value of the system user prefix.

The NMSUP system initialization parameter, as specified in the startup JCL.

It is a 1- to 4 -character system user prefix value. If not specified, the NMDID
value, if specified, or the first four characters of the primary ACBNAME is used.

This value is used to construct the user IDs of the various background regions,
for example, BSYS (where NMINIT and NMREADY execute) has a user ID of
ddddBSYS, where dddd is the NMSUP value.

&ZOCS

Indicates whether the NCL process is associated with an OCS window.

This variable returns a value of YES if the process was invoked directly from an
OCS window (via the START or EXEC command) or indirectly by another process
executing in an OCS environment. A process executing in any other environment
that is not associated with an OCS window (User Services, for example) sees the
value of &ZOCS as NO.

Examples: &ZOCS

&IF &ZOCS EQ NO &THEN +

 &WRITE DATA=This must be run from OCS only

&ZOPS

Indicates the specific type of operating system.

When operating in mixed operating system environments it is desirable to
structure NCL procedures in such a way that they are operating system
independent. The &ZOPS system variable allows a procedure to test the specific
type of operating system and modify processing accordingly.

&ZOPS

Chapter 3: System Variables 1019

The &ZOPS variable returns one of the following values:

MSP

The operating system is MSP.

MSPEX

The operating system is MSP/EX.

VMESA

The operating system is VM/ESA.

VMGCS

The operating system is VM/GCS.

VOS3

The operating system is VOS3.

z/OS

The operating system is z/OS.

Example: &ZOPS

& IF &ZOPS EQ VOS3 &THEN +

 &WRITE DATA=ABENDCMD COMMAND NOT AVAILABLE

Notes:

The system rejects commands that are not valid in certain operating systems.
Use of &ZOPS allows an NCL procedure to tailor the operator interface so that
certain options, perhaps on full-screen panels, do not appear when running in
some environments.

&ZOPS returns the specific operating system type. If a generic test is adequate
(for example, if you want to know whether you are operating under an MVS
system of some sort), then using &ZGOPS might be simpler.

If you need to know the specific version of the operating system, then you need
to use &ZOPSVERS as well as &ZOPS.

More information:

&ZGOPS (see page 961)
&ZOPSVERS (see page 1020)

&ZOPSVERS

1020 Network Control Language Reference Guide

&ZOPSVERS

Indicates the version of the operating system under which your product region
is operating.

When operating in mixed operating system environments it is desirable to
structure NCL procedures in such a way that they are operating system
independent. The &ZOPSVERS system variable allows a procedure to test the
version of the operating system and modify processing accordingly.

The &ZOPSVERS variable returns version values in the following formats for the
operating systems listed:

MSP

Format nnnn (for example, 1010)

MSPEX

Format nnnn (for example, 1030)

z/OS

Format vv.rr.mm (for example, 01.04.00 is z/OS V1R4)

VMESA

Format L.svc (for example, 1.000)

VMGCS

Format L.svc (for example, 1.000)

VOS3

Format aa-bb (for example, 10-20)

Examples: &ZOPSVERS

&IF &ZOPS EQ z/OS AND +

 &ZOPSVERS EQ 01.04.00 &THEN +

 &WRITE DATA=Running z/OS V1R4

&ZOUSERID

Chapter 3: System Variables 1021

Notes:

The system rejects commands that are not valid in certain versions of certain
operating systems. Use of &ZOPSVERS allows an NCL procedure to tailor the
operator interface so that certain options, perhaps on full-screen panels, do not
appear when running in some environments.

&ZOPSVERS returns the specific version of an operating system type. If a test of
the operating system type is adequate (for example, if you want to know
whether you are operating on an MVS system of any version), then using &ZOPS
might be simpler.

More information:

&ZGOPS (see page 961)
&ZOPS (see page 1018)

&ZOUSERID

Provides the originating user ID for an NCL process that was submitted, or is
executing as the result of a timer command.

Is used to determine the user ID of the original command.

Example: &ZOUSERID

&IF &ZOUSERID NE &USERID &THEN +

 &WRITE DATA=PROC SOURCED EXTERNALLY

Notes:

The originating user might no longer be signed on.

The originating user ID is tracked through any number and level of AT, EVERY,
and SUBMIT commands.

The originating user ID is not tracked through ROF ROUTE commands to another
system.

More information:

&USERID (see page 927)

&ZPERRORC

1022 Network Control Language Reference Guide

&ZPERRORC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
error fields and messages.

Specified in distributed panel definitions.

&ZPERRORH

Contains the value of the standard panel field attribute HLIGHT (or HLITE) for
error fields.

Specified in distributed panel definitions.

&ZPINPHIC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
mandatory input data fields and command fields.

Specified in distributed panel definitions.

&ZPINPLOC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
optional input data fields.

Specified in distributed panel definitions.

&ZPINPUTH

Contains the value of the standard panel field attribute HLIGHT (or HLITE) for
data input fields.

Specified in distributed panel definitions.

&ZPINPUTP

Chapter 3: System Variables 1023

&ZPINPUTP

Contains the value of the standard panel field attribute PAD for data input
fields.

Specified in distributed panel definitions.

&ZPLABELC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
field labels and comments.

Specified in distributed panel definitions.

&ZPMTEXT1

Returns the text of the Primary Menu broadcast. To obtain the current Primary
Menu broadcast text as set by the NSBRO command.

Examples: See the distributed panel $NMPMENU.

The NSBRO PM1 operand is used to set the Primary Menu text. This system
variable allows the text to be used in NCL and substituted onto panels.

Note: For more information, see the NSBRO command in the Online Help and
the Reference Guide.

&ZPOUTHIC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
output data fields that are always present.

Specified in distributed panel definitions.

&ZPOUTLOC

1024 Network Control Language Reference Guide

&ZPOUTLOC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
output data fields that are not always present.

Specified in distributed panel definitions.

&ZPPKEYC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
the output fields on the left and right of the panel title and the function key
area.

Specified in distributed panel definitions.

&ZPPI

Indicates whether or not PPI is available.

To determine whether or not PPI is available in this system. The values that is
returned are:

YES

Indicates that the PPI interface is initialized.

NO

Indicates that PPI is not available.

&ZPPI can thus be used as a test to determine whether a procedure can issue
&PPI verbs.

&ZPPINAME

Contains the defined receiver ID of the current NCL process.

To determine the receiver ID of the current NCL process.

The value returned is the name specified on the ID= operand of the &PPI
DEFINE, or the generated name if ID=* was specified. If the &PPI DEFINE was
unsuccessful, or an &PPI DEACTIVATE is issued, &ZPPINAME returns a null value.

&ZPRINAME

Chapter 3: System Variables 1025

&ZPRINAME

Contains the name of the primary ACB or XNF UCE.

The value returned is the name specified on the PRI= JCL parameter. Use it in
preference to &ZACBNAME for code executing on SSI or XNF.

&ZPRODNAM

Returns the product name.

The variable allows an NCL procedure to determine the product name of the
system.

Example: &ZPRODNAM

&WRITE DATA=&ZPRODNAM will terminate in 5 minutes

&ZPSERVIC

Returns the value of the first four bytes of the PSERVIC field of the BIND for the
current terminal.

The PSERVIC fields of the BIND parameters used when the current terminal was
connected can be interrogated using the &ZPSERVIC variable. Certain terminal
types might have non-standard PSERVIC values indicating particular device
characteristics. NCL procedures can use &ZPSERVIC to gain access to these
settings.

Example: &ZPSERVIC

&1 = &SUBSTR &ZPSERVIC 3 1

&IF &1 EQ 10 &THEN +

 &GOSUB .SPECIAL-DEV

Note: The PSERVIC field of the BIND parameters identifies the type of device
that is connected, and provides information such as screen sizes. Additional bits
within the PSERVIC field can also be used in Fujitsu installations to indicate
special terminal attributes, such as DBCS or three-color support.

&ZPSKIP

1026 Network Control Language Reference Guide

&ZPSKIP

Returns the next available segment of panel skip data.

The &ZPSKIP system variable is used to retrieve the next available segment of
panel skip data. The stored panel skip string is automatically updated to remove
this segment. The &ZPSKIP reference is thus performing a similar action to a
panel display. The invoking NCL procedure should then use the returned data as
if you had entered it as a menu option.

Example: &ZPSKIP

The following code illustrates typical &ZPSKIP usage:

&SELECT = &ZPSKIP

.PROCESS

 &GOTO .MENU &SELECT

 &SYSMSG = &STR MSG004 INVALID SELECTION

.MENU

 &PANEL USERPANEL

 ...

 &GOTO .PROCESS

.MENU1

 ...

.MENU2

 ...

&ZPSKPSTR

Chapter 3: System Variables 1027

Notes:

The system supports the ability to perform menu jumps or panel skips as a
means of abbreviating panel navigation. Panel skips is used to move rapidly
from one panel display to another without viewing each individual panel which
would normally be displayed. The panel skip data is a variable length string
wherein data for each panel is delineated by the use of a period (.). This data is
normally used to automatically satisfy &PANEL statements.

The use of &ZPSKIP as a system variable is not required to implement panel
skipping. The system automatically uses panel skip segments to satisfy &PANEL
requests.

The &ZPSKIP system variable returns a null value if the current panel skip
segment contains a field separator character.

When the &ZPSKIP variable returns a non-null value, the value of &INKEY is set
to ENTER.

More information:

&ZPSKIP (see page 777)
&ZPSKPSTR (see page 1027)

&ZPSKPSTR

Returns the current panel skip string in its entirety.

Allows the entire panel skip string to be stored and/or examined.

Example: &ZPSKPSTR

&SKPALL = &ZPSKPSTR

Notes:

&ZPSKPSTR does not alter the value of the current panel skip data. The primary
menu procedure uses the following code to suppress panel skipping and then
restore it if required:
&T#ZPSKIP = &ZPSKPSTR -* extract value

&ZPSKIP -* nullify current setting

...

...

&ZPSKIP = &T#ZPSKIP -* restore panel skip The &ZPSKIP system variable and &ZPSKIP

verb.

&ZPSUBTLC

1028 Network Control Language Reference Guide

More information:

&ZPSKIP (see page 777)
&ZPSKIP (see page 1026)

&ZPSUBTLC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
sub-titles, headings and trailers.

Specified in distributed panel definitions.

&ZPTITLEC

Contains the value of the standard panel field attribute COLOR (or COLOUR) for
the panel title. It is specified in distributed panel definitions.

&ZPTITLEP

Contains the value of the standard panel field attribute PAD for the panel title.
Specified in distributed panel definitions.

&ZPWSTATE

Returns the state of a user's password when they log on.

Provides NCL with the ability to interrogate the state of a user's password. The
following values are returned:

'Blank'

There is no password expiry outstanding for this user.

EXPIRED

The user's password has expired and needs to be changed.

&ZREMIPA

Chapter 3: System Variables 1029

&ZREMIPA

Returns the IP address of a remote host for a TN3270 session.

Identifies the IP address of a remote TN3270 server.

Note: This information is available only if the IPCHECK SYSPARMS operand has
been set to REGISTER (the default) in the INIT procedure for your product
region.

Example: &ZREMIPA

&IF .&ZREMIPA NE . &THEN +

 &DO

 &SOCKET PING ADDRESS=&ZREMIPA

Note: For more information, see the IPCHECK SYSPARMS operand in the
Reference Guide and the SHOW USERS command description in the Online Help.

More information:

&ZLCLIPA (see page 969)
&ZLCLIPP (see page 970)
&ZREMIPP (see page 1029)

&ZREMIPP

Returns the remote host IP port for a TN3270 session.

Identifies the remote IP port of a TN3270 connection.

This information is available only if the IPCHECK SYSPARMS operand has been
set to REGISTER (the default) in the INIT procedure for your product region.

Note: For more information about the IPCHECK SYSPARMS operand, see the
Reference Guide.

More information:

&ZLCLIPA (see page 969)
&ZLCLIPP (see page 970)
&ZREMIPA (see page 1029)

&ZROWS

1030 Network Control Language Reference Guide

&ZROWS

Indicates the number of rows available to the physical terminal.

NCL procedures might want to determine the number of rows (or lines)
associated with the physical terminal. &LUROWS will return the number of lines
in the current processing window. However, when operating in split screen
mode, this might differ from the number of rows available on the actual screen.
&ZROWS is the maximum number of rows available at the terminal regardless
of the current processing window size.

While it is good practice to write procedures that cater for the largest screen
size (for example: 62 lines for a 3290) and that automatically adjust if used on a
smaller screen, it might offer performance advantages to format output to suit
the maximum size required for the requesting terminal. This allows the terminal
operator to alter screen dimensions as necessary, but also eliminates the
formatting of unnecessary data.

Example: &ZROWS

& IF &CNT GT &ZROWS &THEN +

 &GOTO .NOMORE

Note: When processing with an LU1 type device, a value of 1 is returned. For
VDU(screen) type devices, a value of 1 to 62 is returned. If tested from a
procedure running under a system region, a value of 1 is returned. Therefore,
&ZROWS always returns a value between 1 and 62.

More information:

&LUROWS (see page 903)
&ZCOLS (see page 949)

&ZSCOPE

Contains the scope of the server name if the current NCL process is registered as
a server. Otherwise it is null.

&ZSECEXIT

Chapter 3: System Variables 1031

&ZSECEXIT

Returns the type of security exit installed. Provides NCL with the ability to
interrogate the system to determine what type of security exit the installation is
using.

The following values are returned:

NONE

This system is running with local UAMS only.

PARTIAL

This system is running with a partial security exit.

FULL

This system is running with a full security exit.

Note: For more information about security exits, see the Security Guide.

&ZSERVER

Contains the server name if the current NCL process is registered as a server.
Otherwise it is null.

&ZSNAMID

1032 Network Control Language Reference Guide

&ZSNAMID

Returns an integer when using the &SNAMS verbs.

The integer returned is in the range 1 to 2,147,483,647 and is set following a
successful &SNAMS REGISTER or &SNAMS SEND request.

It can subsequently be used on an &SNAMS RECEIVE request to indicate that
only messages associated with that particular identifier (that is, the previous
application registration, or the previous solicitation request) should satisfy the
receive operation.

Its value is set following successful completion of various &SNAMS requests:

&SNAMS REGISTER

The integer returned is the registration identifier of the indicated
application. This value is used on a subsequent &SNAMS DEREGISTER
request to deregister the application. It may also be used on &SNAMS
RECEIVE and RECEIVE_NOTIFY requests to target messages designated for
the registered application.

&SNAMS SEND

&SNAMID is set only if the MDS-MU sent is a solicited request expecting one
or more MDS-MU replies. The integer returned represents the request
identifier. It may be used on subsequent &SNAMS_RECEIVE and
RECEIVE_NOTIFY requests to correlate received responses.

&SNAMS RECEIVE

The integer returned is the message identifier. If the message received is a
response to an outstanding request, it corresponds to the request identifier
of the initial MDS request. Otherwise it is the registration identifier of the
destination application.

Example: &ZSNAMID
&SNAMS REGISTER APPL=USERAPPL -* Register an MS application

&APPLID=&ZSNAMID -* Save its registration ID

&SNAMS SEND MU=query -* Send an MDS request

&REQID=&ZSNAMID -* Save the request ID

&SNAMS RECEIVE MU=response ID=&REQID -* Receive the response

&SNAMS RECEIVE MU=MSU ID=&APPLID -* Receive an MDS-MU targeted

 at the registered application

&ZSOCCID

Chapter 3: System Variables 1033

&ZSOCCID

Returns the socket ID used by the interface; for example, when using IBM
TCP/IP, the internal socket number (a small numeric value).

&ZSOCCID is used to identify an NCL socket or display produced by TCP/IP (for
example, the NETSTAT command).

Example: &ZSOCCID

&SOCKET CONNECT HOSTNAME=&HOST PORT=&PORT

&IF &RETCODE EQ 0 &THEN +

 &WRITE DATA=SOCKET &ZSOCID CONNECTED USING INTERFACE ID &ZSOCCID

&ZSOCERRN

Returns the error number value associated with the last referenced socket.

&ZSOCERRN is set in combination with &ZFDBK and &ZSOCVERR. For more
information, see the appendix "&SOCKET Verbs".

Example: &ZSOCERRN

&SOCKET SEND ID=&SOCKID DATA=&MSG

&IF &RETCODE NE 0 &THEN +

 &WRITE DATA=SEND FAILED ERRNO=&ZSOCERRN

More information:

&ZSOCVERR (see page 1036)

&ZSOCFHNM

1034 Network Control Language Reference Guide

&ZSOCFHNM

Returns the full host name of the host referenced by some requests (for
example, &SOCKET GETHOSTBYNAME).

&ZSOCFHNM is set by the host lookup functions GETHOSTBYNAME and
GETHOSTBYADDR.

It is also updated by &SOCKET calls with the name associated with the last
referenced sockets.

Example: &ZSOCFHNM

&SOCKET GETHOSTBYADDR ADDRESS=198.4.58.4

&WRITE DATA=HOST &ZSOCFHNM

&ZSOCHADR

Returns the IP address of the host referenced by some requests (for example,
&SOCKET GETHOSTBYADDR).

&ZSOCHADR returns the IP address of the remote host for a TCP socket. For a
UDP socket it returns the IP address last sent to or received from. &ZSOCHADR
is also set by the host lookup functions &SOCKET GETHOSTBYNAME and
GETHOSTBYADDR.

Example: &ZSOCHADR

&SOCKET RECEIVE_FROM ID=&SOCKID VARS=D*

&WRITE DATA=RECEIVED FROM &ZSOCHADR

&ZSOCHNM

Chapter 3: System Variables 1035

&ZSOCHNM

Returns the host name of the host referenced by some requests (for example,
&SOCKET GETHOSTBYNAME).

&ZSOCHNM is set by the host lookup function GETHOSTBYNAME and
GETHOSTBYADDR.

It is also updated by &SOCKET calls with the name associated with the last
referenced socket.

Example: &ZSOCHNM

&SOCKET GETHOSTBYNAME HOSTNAME=&HOST

&WRITE DATA=HOST &HOST KNOWN AS &ZSOCHNM

&ZSOCID

Returns the socket ID of the last referenced socket.

Socket IDs are uniquely numbered in the range 1 to 999999. Use the SHOW
SOCKETS command to display active sockets.

&ZSOCID returns a null value after &SOCKET CLOSE, &SOCKET DEALLOCATE,
&SOCKET GETHOSTBYNAME, and &SOCKET GETHOSTBYADDR.

&ZSOCPRT

Returns the port number of the last referenced socket.

&ZSOCTYPE

1036 Network Control Language Reference Guide

&ZSOCTYPE

Returns the type of the last referenced socket. Notes: The values returned is:

TCP

A TCP client created by using &SOCKET CONNECT/ACCEPT.

TCPLISTEN

A TCP server created by using &SOCKET REGISTER.

UDP

A UDP socket created by using &SOCKET OPEN.

&ZSOCVERR

Returns vendor error information from the last referenced socket.

&ZSOCVERR is set in combination with &ZFDBK and &ZSOCERRN.

Vendor error codes are mapped (normalized) into &ZSOCERRN values.
Unmapped values result in an &ZSOCERRN value of 999.For more information,
see the appendix "&SOCKET Verbs".

See Also: The &ZSOCERRN description.

More information:

&ZSOCERRN (see page 1033)

&ZSSCPNAM

Returns the value of the VTAM SSCP name.

If supported by the version of VTAM, &ZSSCPNAM identifies the System Services
Control Point name of the VTAM in which the system is executing as specified in
the VTAM initialization parameters.

Example: &ZSSCPNAM

&WRITE DATA=VTAM SSCP=&ZSSCPNAM

If the level of VTAM in use does not support the provision of SSCP name,
&ZSSCPNAM returns a default of VTAM.

&ZSYSNAME

Chapter 3: System Variables 1037

&ZSYSNAME

Returns the MVS SYSNAME value. If the value is not available (if the operating
system is non-MVS) a value of UNKNOWN is returned.

&ZTCP

Returns the status of the socket interface.

Check the status of the API and take the appropriate action.

Example: &ZTCP

& IF &ZTCP NE ACTIVE &THEN +

 &DO -* Write the error message and return

 &WRITE THE TCP/IP INTERFACE IS INACTIVE

 &END

 &DOEND

.

.

Note: The value in this system variable is obtained by performing a SHOW TCPIP
command.

More information:

&ZTCPHSTA (see page 1037)
&ZTCPHSTF (see page 1038)
&ZTCPHSTN (see page 1038)

&ZTCPHSTA

Returns the value of the local host's IP address.

Example: IP address

192.168.2.66

Note: The value in this system variable is obtained by performing a SHOW TCPIP
command. The value held in this system variable is only reliable if the socket
interface is active; that is, if &ZTCP = ACTIVE.

&ZTCPHSTF

1038 Network Control Language Reference Guide

More information:

&ZTCP (see page 1037)
&ZTCPHSTF (see page 1038)
&ZTCPHSTN (see page 1038)

&ZTCPHSTF

Returns the value of the local host's full name.

Example: host full name

TESTMVS1.SYDNEY.TESTING.COM

Note: The value in this system variable is obtained by performing a SHOW TCPIP
command. The value held in this system variable is reliable only if the socket
interface is active; that is, if &ZTCP = ACTIVE.

More information:

&ZTCP (see page 1037)
&ZTCPHSTA (see page 1037)
&ZTCPHSTN (see page 1038)

&ZTCPHSTN

Returns the value of the local host's short name.

Example: host short name

MERCURY

Note: The value in this system variable is obtained by performing a SHOW TCPIP
command. The value held in this system variable is only reliable if the socket
interface is active; that is, if &ZTCP = ACTIVE.

More information:

&ZTCP (see page 1037)
&ZTCPHSTA (see page 1037)
&ZTCPHSTF (see page 1038)

&ZTIMEn

Chapter 3: System Variables 1039

&ZTIMEn

Provides different formats of the current time.

&ZTIME1, &ZTIME2, &ZTIME3, &ZTIME10, and &ZTIME11 are system variables
which supply the current time in several different formats:

■ &ZTIME1 time as HH:MM:SS

■ &ZTIME2 time as HH:MM:SS.TH

■ &ZTIME3 time as nnnnnnn

■ &ZTIME10 time as HHMMSS

■ &ZTIME11 time as HHMMSS.FFFFFF

where:

HH

Current hour of day (in 24-hour time).

MM

Current minute.

SS

The current second.

TH

Hundredths of a second.

nnnnnnn

The time since midnight in hundredths of a second. Leading zeros are
suppressed.

FFFFFF

The time accurate to 10-6

More information:

&TIME (see page 926)
&ZGTIMEn (see page 962)

&ZTSOUSER

1040 Network Control Language Reference Guide

&ZTSOUSER

Indicates if the user has connected to the product region through the TSO or TSS
interface.

NCL procedures might want to determine if users have logged on through the
TSO (or TSS) interface, and if so, perform appropriate processing.

&ZTSOUSER will return one of the following values:

YES

The user has logged on using the TSO interface.

NO

Access was not made using the TSO interface.

Example: &ZTSOUSER

&IF &ZTSOUSER EQ YES &THEN +

 &GOTO .TSOMENU

Note: &ZTSOUSER is used to provide TSO users with special processing.

&ZUCENAME

Chapter 3: System Variables 1041

&ZUCENAME

Returns the UCE name which your product region is using to communicate with
XNF (used by Hitachi VOS3 systems only).

Example: &ZUCENAME

&GOTO .&ZUCENAME

 .

 .

 .

.ERROR

 &ENDAFTER &WRITE DATA=This procedure is restricted to +

 production systems.

 .

 .

 .

.NMPROD1 -* Production system number 1

 .

 .

 .

.NMPROD2 -* Production system number 2

 .

 .

 .

Note: Is null if your product region is not using the XNF access method.

&ZUDATEn

1042 Network Control Language Reference Guide

&ZUDATEn

A set of system variables that return the user's date, in different formats, time
zone adjusted.

Use:&ZUDATE1 to &ZUDATE17 (excluding &ZUDATE15) are system variables
that supply the current user's date, adjusted by time zone, in a variety of
formats:

■ &ZUDATE1—date as YY.DDD

■ &ZUDATE2—date as DAY DD-MON-YYYY

■ &ZUDATE3—date as DD-MON-YYYY

■ &ZUDATE4—date as DD/MM/YY

■ &ZUDATE5—date as MM/DD/YY

■ &ZUDATE6—date as YY/MM/DD

■ &ZUDATE7—date as YYMMDD

■ &ZUDATE8—date as YYYYMMDD

■ &ZUDATE9—date as nnnnnn

■ &ZUDATE10—date as YYYYMMDDHHMMSSZ

■ &ZUDATE11—date as YYYYMMDDHHMMSS.FFFFFFZ

■ &ZUDATE12—date as DD/MM/YYYY

■ &ZUDATE13—date as YYYY/MM/DD

■ &ZUDATE14—date as MM/DD/YYYY

■ &ZUDATE16—date as YYYY.DDD

■ &ZUDATE17—date as YYYYDDD

where:

DAY

The day of the week as follows:

■ MON Monday

■ TU Tuesday

■ WED Wednesday

■ THU Thursday

■ FRI Friday

&ZUDATEn

Chapter 3: System Variables 1043

■ SAT Saturday

■ SUN Sunday

&ZUDATEn

1044 Network Control Language Reference Guide

DD

The day of the month as a 2-digit number

DDD

The Julian day within the year as a 3-digit number

MM

The month of the year as a 2-digit number

MON

The month of the year as follows:

■ JAN January

■ FEB February

■ MAR March

■ APR April

■ MAY May

■ JUN June

■ JUL July

■ AUG August

■ SEP September

■ OCT October

■ NOV November

■ DEC December

nnnnnn

The number of days from 1 January 0001 with no leading zeros

YYYY

The current year as a 4-digit number

YY

The current year as a 2-digit number

Z

Greenwich Mean Time (GMT)

FFFFFF

The time accurate to 10-6

&ZUDAY

Chapter 3: System Variables 1045

Example: &ZUDATE3

&FILEDATE = &ZUDATE3

Note: Use of &ZUDATE11 should be avoided, to reduce unnecessary overhead,
if microsecond accuracy is not required. Each access to &ZUDATE11 causes the
system to refetch and synchronize time with the operating system, to format
the result to microsecond accuracy.

&ZUDAY

Returns the user's day of the week, time zone adjusted.

&ZUDAY provides a system variable for the user's day of the week, time zone
adjusted. It is in the form DDD, where DDD is set to one of the following values:

MON

Monday

TUE

Tuesday

WED

Wednesday

THU

Thursday

FRI

Friday

SAT

Saturday

SUN

Sunday

Example: &ZUDAY

&IF &ZUDAY EQ SUN &THEN -EXEC SUNDAY

&ELSE +

 -EXEC EVERYDAY

&ZUNIQUE

1046 Network Control Language Reference Guide

Notes:

The current date, based on the operating system time, is provided in different
formats by the system variables &DATE1 to &DATE17.

The current date, based on GMT, is provided in different formats by the system
variables &ZGDATE1 to &ZGDATE17.

The user's current date, time zone adjusted, is provided in different formats by
the system variables &ZUDATE1 to &ZUDATE17.

More information:

&DAY (see page 888)
&ZGDAY (see page 960)

&ZUNIQUE

To supply a unique value each time it is referenced.

The return value is an 8-character string that contains hexadecimal characters (0
to 9 and A to Z). There are approximately 4 billion (4,000,000,000) values
available.

The first value is 00000001. The last is FFFFFFFF.

&ZUSERLC

Chapter 3: System Variables 1047

&ZUSERLC

Provides the language code for this user.

Your product region supports the specification of a language code for a user.
This code is used to provide language dependent processing from NCL. Such
processing might include variation of error messages or selection of alternative
help panels for a particular user.

Example: &ZUSERLC

&IF &ZUSERLC EQ AL &THEN +

 &GOTO .GERMAN &PANEL HELP&ZUSERLC

When displaying panels using the &PANEL statement, the &SYSMSG system
variable is primed by the system with the text of an appropriate message in the
event of an error. The default system messages in such cases are in English. Use
of the &CONTROL PANELRC option allows interception of the &SYSMSG variable
by the procedure, thus facilitating translation, based on the &ZUSERLC system
variable.

Note: For more information, see the Network Control Language Programming
Guide.

More information:

&CONTROL (see page 281)
&ZUSERSLC (see page 1048)

&ZUSERSLC

1048 Network Control Language Reference Guide

&ZUSERSLC

Returns the system recognized language code for a user.

Your product region supports the use of national language character sets, based
on the user's language code, which is returned in the &ZUSERSLC system
variable.

Example: &ZUSERSLC

&CALL PROC=GETMSG PARMS=(ID=&MSGID,LANG=&ZUSERSLC)

When the user's language code (&ZUSERLC) is a system defined value, this is the
value returned in &ZUSERSLC. If &ZSERLC is not a system defined value, the
language code of the system (which is set using the SYSPARMS command LANG
operand) is returned. If the system language code is not a system defined value,
the value UK is returned.

More information:

&ZUSERLC (see page 1047)
Supported Language Codes for National Language Support (see page 1269)

&ZUSRMODE

Returns a value indicating special conditions of this signed on user.

To determine if the signed on user requires special processing.

The following values are returned:

'blank'

No special processing

NEW

New user processing

INSTALL

The user is the INSTALL user

Example: &ZUSRMODE

&IF .&ZUSRMODE = .NEW &THEN +

 &GOSUB .NEW_USER

&ZUTIMEn

Chapter 3: System Variables 1049

&ZUTIMEn

Provides different formats of the user's current time, time zone adjusted.

&ZUTIME1, &ZUTIME2, &ZUTIME3, &ZUTIME10, and &ZUTIME11 are system
variables which supply the user's current time, time zone adjusted, in several
different formats:

■ &ZUTIME1 time as HH:MM:SS

■ &ZUTIME2 time as HH:MM:SS.TH

■ &ZUTIME3 time as nnnnn

■ &ZUTIME10 time as HHMMSS

■ &ZUTIME11 time as HHMMSS.FFFFFF

where:

HH

is current hour of day (in 24-hour time)

MM

is current minute

SS

is current second

TH

is hundredths of a second

nnnnnnn

is the time since midnight in hundredths of a second. Leading zeros are
suppressed.

FFFFFF

is the time accurate to 10 -6

Each access to &ZUTIME11 causes the system to refetch and synchronize time
with the operating system, to format the result to microsecond accuracy. Unless
you require this level of accuracy, you should avoid using the &ZUTIME11
option, to reduce unnecessary overheads.

&ZUTIMEZn

1050 Network Control Language Reference Guide

More information:

&TIME (see page 926)
&ZGTIMEn (see page 962)
&ZUTIMEZn (see page 1050)

&ZUTIMEZn

A set of system variables that indicate the difference in time between local
(operating system) time and the user's time zone.

&ZUTIMEZ, &ZUTIMEZ1, &ZUTIMEZ2, and &ZUTIMEZ3 are system variables that
indicate the difference between local time and the user's time zone.

&ZUTIMEZ plus or minus HH.MM

&ZUTIMEZ1 plus or minus HH:MM

&ZUTIMEZ2 plus or minus HHMM

&ZUTIMEZ3 plus or minus nnnnn-an integer being hundredths of a second since
midnight

Example: &ZUTIMEZ1

&TIMEDIFF = &ZUTIMEZ1

Each access to &ZUTIMEZ3 causes the system to refetch and synchronize time
with the operating system, to format the result to microsecond accuracy. Unless
you require this level of accuracy, you should avoid using the &ZUTIMEZ3
option, to reduce unnecessary overheads.

See Also: The &TIME, &ZTIMEn, &ZGTIMEn, &ZUTIMEn, and &ZUTIMEZN system
variables.

&ZUTIMEZN

Chapter 3: System Variables 1051

&ZUTIMEZN

Returns the user's time zone name.

Example: &ZUTIMEZN

&IF &ZUTIMEZN=AUSESTDT -EXEC STDT +

 &ELSE

 .

 .

 .

&ZVARCNT

Returns the number of non-null variables created or modified by the last NCL
verb that used generic processing. After processing an MDO, &ZVARCNT is set to
one.

A number of NCL verbs are capable of generating the number of variables
necessary to hold the data that results from their operation. The procedure can
inspect this variable to determine how many variables have been created or
modified.

Example: &ZVARCNT

&INTREAD ARGS -* read next command reply

&WORDS = &ZVARCNT -* see how many words in the message.

&A1=X

&A2=X

&B1= -* (Null)

&B2=Y

&B3= -* (Null)

&ASSIGN VARS=A* FROM VARS=B*

&ASSIGN VARS=(X,Y,Z) FROM VARS=(B1,B2,B3)

 -* After this statement &ZVARCNT=1

&ZVTAMLVL

1052 Network Control Language Reference Guide

&ZVTAMLVL

Returns the VTAM release and version number, if available.

If supported by the version of VTAM, the system variable &ZVTAMLVL is set to
the character value of the VTAM release level. The format is as follows:

X.Y.Z

X

The version number

Y

The release number

Z

The modification level.

Example: &ZVTAMLVL

&IF &ZVTAMLVL EQ 6.1.4 &THEN +

 &WRITE DATA=VTAM LEVEL ACCEPTABLE

Note: &ZVTAMLVL is only available on IBM systems. Other systems return a null
value.

&ZVTAMPU

Returns the host PU name of VTAM.

If supported by the version of VTAM, the system variable &ZVTAMPU is set to
the value of host PU name defined for this VTAM system. The value is as defined
in the VTAM initialization parameters using the HOSTPU operand.

Example: &ZVTAMPU

&WRITE DATA=VTAM PUNAME=&ZVTAMPU

Note: If the level of VTAM in use does not support the provision of the host PU
name this system variable will return a default value of 'ISTPUS'.

&ZVTAMSA

Chapter 3: System Variables 1053

&ZVTAMSA

Returns the subarea number of VTAM.

If supported by the version of VTAM, the system variable &ZVTAMSA is set to
the value of the VTAM subarea number.

Example: &ZVTAMSA

&WRITE DATA=VTAM SUBAREA=&ZVTAMSA

Note: &ZVTAMSA is only available on IBM systems. Other systems return a null
value.

&ZWINDOW

Returns the identifier of the current window.

Each window is assigned a number-either 1 or 2. &ZWINDOW returns the
number of the window under which the NCL process is executing.

Example: &ZWINDOW

&IF &ZWINDOW = 2 &THEN +

 &GOTO .SECOND-WIND

Note: The SPLIT and SWAP commands is used to open a second window. The
window number is displayed on the supplied primary menu.

More information:

&ZWINDOW# (see page 1054)

&ZWINDOW#

1054 Network Control Language Reference Guide

&ZWINDOW#

The &ZWINDOW# system variable returns the number of active windows.

To determine is the user has activated a second window. A value of 1 is
returned if one window is active, 2 is returned if both windows are active.

Examples: &ZWINDOW#

&IF &ZWINDOW# = 2 &THEN +

 &TEXT = &STR TWO WINDOWS ACTIVE

Note: The SPLIT and SWAP commands is used to open a second window.

More information:

&ZWINDOW (see page 1053)

&ZWSTATE

Returns a value indicating the current window's state. To determine window
conditions for specific processing. The following values are returned: SIGNON
The window has been created as a result of a signon NEW The window has been
newly created by SPLIT/SWAP processing OLD The window has been initialized
during earlier processing

Examples: &ZWSTATE

&IF &ZWSTATE = SIGNON &THEN +

 &GOSUB .LOGON_MSGS

Note: The value OLD is not returned when used in procedures other than the
primary menu procedure.

&0

Chapter 3: System Variables 1055

&0

Returns the name of the procedure currently being executed.

&0 is used within a procedure where a message from the procedure makes
reference to the name of the procedure itself. If this is done and the procedure
is renamed, no modification of the message text is required.

Example: &0

&WRITE DATA=Error in input to &0 invoked from &00

Note: The value returned from &0 will be a 1 to 8 character name. If the
procedure is not nested, &0 will return the name of the base procedure that
was originally invoked by the user.

&00

Returns the name of the base procedure of the NCL process.

&00 makes it possible for a nested procedure to have error messages issued
that correctly reference the name of the invoking procedure.

Example: &00

&WRITE DATA=Error in input to &0 invoked from &00

Note: The value returned from &00 is a 1- to 8-character name.

&000

1056 Network Control Language Reference Guide

&000

&000 returns the value of the NCL global variable prefix.

NCL supports global variables that is set and shared by all NCL procedures
throughout the system. Global variables are identified by a unique prefix. This is,
by default, set to GLBL.

An installation can alter the default global variable prefix using the SYSPARMS
NCLGLBL command. A change to this prefix would then require subsequent
changes to all NCL procedures that referenced global variables. To eliminate this
problem the &000 system variable is set to the current value of the global
variable prefix. This makes it possible for global variables to be referenced using
complex variable techniques that cause the name of the variable to be
dynamically resolved to include the current global variable prefix.

For example, consider that the current global variable prefix is #$ and that a
variable &#$Z1 has been created. This could be referenced in the following way:

&WRITE DATA=THE CURRENT VALUE OF GLOBAL Z1 IS &#$Z1

An alternative method using the &000 system variable would be:

&WRITE DATA=THE CURRENT VALUE OF GLOBAL Z1 IS &&000Z1

&000 takes advantage of the NCL parsing rule that delimits a numeric variable at
the first non-numeric character. Thus, when resolving the value of &&000Z1,
&000 is delimited at the character Z, and resolved to #$, which is the current
value of the global variable prefix. Parsing then continues to resolve the value of
&#$Z1.

Example: &000

&&000Z1 = &STR THIS IS DATA IN GLOBAL VARIABLE Z1

Note: Do not use a single character for the global variable prefix in your
system-always use a combination of at least two characters, preferably a
combination of the national characters, for example @#$. This minimizes the
risk of the global variable prefix clashing with any other user variables. You
should also set NCL coding standards for your installation which prevent naming
conventions that conflict with your choice of global variable prefix.

Chapter 4: PSM Interface 1057

Chapter 4: PSM Interface

This chapter describes how to use the Print Services Manager (PSM) NCL
interface, the operands that can be specified when executing procedure
$PSCALL, and the return codes that are set on completion.

This section contains the following topics:

About the PSM NCL Interface (see page 1057)
$PSCALL OPT=BROWSE (see page 1059)
$PSCALL OPT=CANCEL (see page 1061)
$PSCALL OPT=CLOSE (see page 1062)
$PSCALL OPT=CONFIRM (see page 1063)
$PSCALL OPT=DELETE (see page 1065)
$PSCALL OPT=HEADER (see page 1066)
$PSCALL OPT=HOLD (see page 1068)
$PSCALL OPT=INFO (see page 1070)
$PSCALL OPT=MODIFY (see page 1075)
$PSCALL OPT=OPEN (see page 1077)
$PSCALL OPT=PUT (see page 1083)
$PSCALL OPT=QUEUE (see page 1085)
$PSCALL OPT=RELEASE (see page 1088)
Banner Exit (see page 1089)
Printer Exit Interface (see page 1090)

About the PSM NCL Interface

Print Services Manager (PSM) has an NCL interface which enables you to add
output to the spool and invoke other PSM facilities, from an installation-written
NCL procedure. For example, your application could provide a facility that allows
the user to print information, by first requesting PSM to present the Confirm
Printer panel on which they can enter a printer name, number of copies, and
hold and keep settings, and then sending the information to be printed to the
spool. This means the application does not have to be concerned about how to
send information to the printer or what to do if the printer is unavailable, as this
is all handled by PSM. The application can then request PSM to present the
Output Queue showing the status of the user's output.

The PSM NCL interface gives you the flexibility of invoking any of its facilities
from anywhere within your NCL applications.

To call PSM from an NCL procedure you must execute NCL procedure $PSCALL.

About the PSM NCL Interface

1058 Network Control Language Reference Guide

$PSCALL Options

Following is a list of the options for which procedure $PSCALL can be invoked.
These options are fully described on the following pages of this chapter.

$PSCALL OPT=BROWSE

browse a print request or the output for a print request

$PSCALL OPT=CANCEL

cancel an open print request

$PSCALL OPT=CLOSE

close an open print request

$PSCALL OPT=CONFIRM

confirm printer details

$PSCALL OPT=DELETE

delete a print request from the spool

$PSCALL OPT=HEADER

add header lines to an open print request

$PSCALL OPT=HOLD

hold a print request

$PSCALL OPT=INFO

return printer, form or setup information

$PSCALL OPT=MODIFY

modify a print request

$PSCALL OPT=OPEN

open a print request

$PSCALL OPT=PUT

add output (data that is to be printed) to a print request

$PSCALL OPT=QUEUE

present the Output Queue

$PSCALL OPT=RELEASE

release a print request

$PSCALL OPT=BROWSE

Chapter 4: PSM Interface 1059

$PSCALL OPT=BROWSE

Browses a print request or the output for a print request.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=BROWSE

 [BROWSE={ OUTPUT | REQUEST }]

 REQ=n

Presents the Browse Output panel showing the output for a print request or the
Print Request panel showing the request details. You cannot browse the output
for a request whose status is BUILD-PRT or DIRECT-ERR.

When the Browse Output or Print Request panel is terminated by the user
entering the EXIT or RETURN command (or pressing the Function key to which
those commands are assigned), control is returned to the NCL procedure that
executed $PSCALL.

Operands:

OPT=BROWSE

Specifies that a print request or the output for a print request is to be
browsed.

BROWSE={ OUTPUT | REQUEST }

Specifies whether the request, or the output for the request, is to be
browsed.

OUTPUT

Presents the Browse Output panel

REQUEST

Presents the Print Request panel

REQ=n

Specifies the number of the print request to be browsed.

$PSCALL OPT=BROWSE

1060 Network Control Language Reference Guide

Return Codes:

0

$PSCALL completed successfully. &$PSFDBK may be set to the following
value:

1

RETURN command entered (or the function key to which it is assigned
was pressed).

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following values:

1

User not authorized for the request.

18

Print request not found on the spool.

19

No output found for the print request.

22

Status of the print request was BUILD-PRT or DIRECT-ERR.

8

An error occurred. &SYSMSG is set to an error message.

Examples: OPT=BROWSE

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=BROWSE REQ=765

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=BROWSE BROWSE=REQUEST REQ=9812

$PSCALL OPT=CANCEL

Chapter 4: PSM Interface 1061

$PSCALL OPT=CANCEL

Cancels an open print request.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=CANCEL

 REQ=n

Cancels an open print request. The request must have been opened by the same
NCL process. The print request is closed and deleted from the spool.

Operands:

OPT=CANCEL

Specifies that an open print request is to be canceled.

REQ=n

Specifies the number of the print request to be canceled.

Return Codes:

0

$PSCALL completed successfully

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to the following value:

17

Print request not open

8

An error occurred. &SYSMSG is set to an error message.

Examples: OPT=CANCEL

& CONTROL NOSHRVARS

-EXEC $PSCALL OPT=CANCEL REQ=898

$PSCALL OPT=CLOSE

1062 Network Control Language Reference Guide

$PSCALL OPT=CLOSE

Closes an open print request.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=CLOSE

 REQ=n

Closes an open print request. The request must have been opened by the same
NCL process. If the request was opened with the HOLD operand set to NO, the
request is queued for printing, otherwise the status is set to HELD and the
request is not printed until released.

Operands:

OPT=CLOSE

Specifies that an open print request is to be closed.

REQ=n

Specifies the number of the print request to be closed.

Return Codes:

0

$PSCALL completed successfully

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to the following value:

17

Print request not open

8

An error occurred. &SYSMSG is set to an error message.

Example: OPT=CLOSE

& CONTROL NOSHRVARS

-EXEC $PSCALL OPT=CLOSE REQ=1256

$PSCALL OPT=CONFIRM

Chapter 4: PSM Interface 1063

$PSCALL OPT=CONFIRM

Presents the Confirm Printer panel and returns the entered details to the caller.

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=CONFIRM

 [USERID=userid]

Confirms the printer name, number of copies, hold and keep settings required
to satisfy a print request. The Confirm Printer panel is presented with the fields
set to the values last used by the user.

You can modify any of the fields. The Printer Name field supports prompting.
When you confirm the details by pressing Enter, the information is returned to
the caller.

Operands:

OPT=CONFIRM

Specifies that the Confirm Printer panel is to be presented.

USERID=userid

Specifies the user ID of the user whose last used printing details are to be
used to prime the fields on the Confirm Printer panel. The default is the user
ID set in the system variable &USERID.

$PSCALL OPT=CONFIRM

1064 Network Control Language Reference Guide

Return Codes:

0

$PSCALL completed successfully. The following variables are set:

&$PSPRTNAME

Printer name

&$PSCOPIES

Number of copies

&$PSHOLD

Hold setting, YES or NO

&$PSKEEP

Keep setting, YES or NO

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an information message and &$PSFDBK is set to the following value:

23

CANCEL command was executed

8

An error occurred. &SYSMSG is set to an error message.

Examples: OPT=CONFIRM

& CONTROL SHRVARS =($PS)

-EXEC $PSCALL OPT=CONFIRM

&CONTROL SHRVARS =($PS)

-EXEC $PSCALL OPT=CONFIRM USERID=USER01

$PSCALL OPT=DELETE

Chapter 4: PSM Interface 1065

$PSCALL OPT=DELETE

Deletes a print request from the spool.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=DELETE

 REQ=n

Deletes a print request from the spool. The request to be deleted must have a
status of HELD, HELD-ERROR, DIRECT-ERR or QUEUED.

Operands:

OPT=DELETE

Specifies that a print request is to be deleted from the spool.

REQ=n

Specifies the number of the print request to be deleted.

Return Codes:

0

$PSCALL completed successfully.

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following values:

1

User not authorized for the request.

18

Print request not found on the spool.

21

The print request is locked by the system or another user.

22

Status of the print request was not HELD, HELD-ERROR, DIRECT-ERR or
QUEUED.

8

An error occurred. &SYSMSG is set to an error message.

$PSCALL OPT=HEADER

1066 Network Control Language Reference Guide

Example: OPT=DELETE

& CONTROL NOSHRVARS

-EXEC $PSCALL OPT=DELETE REQ=915

$PSCALL OPT=HEADER

Adds header lines to an open print request.

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=HEADER

 REQ=n

 [SKIP={ 0 | 1 | 2 | 3 }]

 [USCORE={ 1 | 2 }]

 [ALIGN={ LEFT | RIGHT | CENTER }]

 [BOLD={ YES | NO }]

 [TOTAL=n]

Prints a heading at the top of each page of output for a print request. The lines
of text that are to be printed as the heading on each page need only be
specified once, rather than each time a new page is requested. The header lines
will be printed at the top of each new page.

Operands:

OPT=HEADER

Specifies that header lines are to be added to an open print request.

REQ=n

Specifies the number of the print request to which the header lines are to
be added.

SKIP={ 0 | 1 | 2 | 3 }

Specifies the number of lines to be advanced before printing each header
line. The default is 1.

$PSCALL OPT=HEADER

Chapter 4: PSM Interface 1067

USCORE={ 1 | 2 }

Specifies whether the text in each header line is to be underlined:

1

Specifies that text excluding the blanks between words is to be
underlined.

2

Specifies that text including the blanks between words is to be
underlined.

ALIGN={ LEFT | RIGHT | CENTER }

Specifies whether the text in each header line is to be aligned. The length
used to align the text is the value defined in the Columns per Page field
(width) for the printer.

BOLD={ YES | NO }

Specifies whether the text in each header line is to be bolded. The default is
NO.

TOTAL=n

Specifies the number of variables containing header lines that are to be
added to the print request. The valid range is 1 to 30. The default is 1.

Variables:

&$PSDATAn

Must be set to the header line of header text that is to be printed. n must
be in the range 1 to 30. To print the page number in the heading, the
variable must contain the characters &$PSP#.

Return Codes:

0

$PSCALL completed successfully.

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to the following value:

17

The print request is not open.

8

An error occurred. &SYSMSG is set to an error message.

$PSCALL OPT=HOLD

1068 Network Control Language Reference Guide

Example: OPT=HEADER

&CONTROL SHRVARS=($PS)

&TEMP = &CONCAT & $PSP#

&$PSDATA1 = &ASISTR Page=&TEMP

-EXEC $PSCALL OPT=HEADER REQ=342 SKIP=0 BOLD=NO TOTAL=1

&$PSDATA1 = &STR Title Line 1

&$PSDATA2 = &STR Title Line 2

-EXEC $PSCALL OPT=HEADER REQ=342 SKIP=1 BOLD=YES TOTAL=2

Notes:

When OPT=HEADER is specified, the header data passed is appended to the
current header. If the previous call was not an OPT=HEADER, this will reset the
header. This option allows a print request to contain numerous headers. The
maximum number of text lines per header is 30.

A header is only physically printed when a form feed is done as the result of
SKIP=NEWPAGE being specified on an OPT=PUT call, or when the lines per page
defined for the printer is reached.

$PSCALL OPT=HOLD

Holds a print request.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=HOLD

 REQ=n

Holds a print request so that it is not printed until released. The request to be
held must have a status of BUILD or QUEUED.

Operands:

OPT=HOLD

Specifies that a print request is to be held.

REQ=n

Specifies the number of the print request to be held.

$PSCALL OPT=HOLD

Chapter 4: PSM Interface 1069

Return Codes:

0

$PSCALL completed successfully.

4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following values:

1

User not authorized for the request.

8

Print request not found on the spool.

21

The print request is locked by the system or another user.

22

Status of the print request was not BUILD or QUEUED.

8

An error occurred. &SYSMSG is set to an error message.

Example: OPT=HOLD

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=HOLD REQ=2345

$PSCALL OPT=INFO

1070 Network Control Language Reference Guide

$PSCALL OPT=INFO

Returns printer, form or setup information. Optionally, presents a list of
printers, forms, or setups from which a selection is made.

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO

 INFO=PRINTER

 PRINTER={ printer name | prefix? | ? }

 [TYPE={ JES | VTAM | EXIT | ALIAS }]

-EXEC $PSCALL OPT=INFO

 INFO=FORM

 FORM={ form name | prefix? | ? }

-EXEC $PSCALL OPT=INFO

 INFO=SETUP

 SETUP={ setup name | prefix? | ? }

-EXEC $PSCALL OPT=INFO

 INFO=USER

 [USERID=userid]

Validates a printer, form or setup name entered on a panel, or provides a list of
valid values for a printer, form or setup field, from which a selection is made.
This option also enables you to determine the name of a user's default printer.
The information returned regarding the printer, form, or setup, could be used to
determine how to format the output for a print request.

Operands:

OPT=INFO

Specifies that definition information is to be returned.

INFO={ PRINTER | FORM | SETUP | USER }

Specifies the type of information to be returned.

PRINTER

Returns information from a printer definition.

FORM

Returns information from a form definition.

SETUP

Returns information from a setup definition.

USER

Returns the name of the user's default printer.

$PSCALL OPT=INFO

Chapter 4: PSM Interface 1071

PRINTER={ printer name | prefix? | ? }

Specifies the name of the printer. If a prefix followed by a question mark is
specified, a Printer List is presented from which a selection is made. The list
will contain all printers with names starting with the specified prefix. If a
question mark is specified, a Printer List containing all the defined printers is
presented.

TYPE={ JES | VTAM | EXIT | ALIAS }

Specifies the type of printers to be displayed in the Printer List. This operand
is ignored if the PRINTER operand is not set to a question mark, or a prefix
followed by a question mark.

FORM={ form name | prefix?| ? }

Specifies the name of the form. If a prefix followed by a question mark is
specified, a Form List is presented from which a selection is made. This list
will contain all forms with names starting with the specified prefix. If a
question mark is specified, a Form List containing all the defined forms is
presented.

SETUP={ setup name | prefix? | ? }

Specifies the name of the setup. If a prefix followed by a question mark is
specified, a Setup List is presented from which a selection is made. This list
will contain all setups with names starting with the specified prefix. If a
question mark is specified, a Setup List containing all the defined setups is
presented.

USERID=userid

Specifies the user ID for which the default printer is to be returned. If the
INFO operand is set to USER and USERID is not specified, the default printer
for the user ID set in the system variable &USERID, is returned.

$PSCALL OPT=INFO

1072 Network Control Language Reference Guide

Return Codes:

&RETCODE = 0

$PSCALL completed successfully. The variables returned are as follows:

&$PSPRTNAME

Printer name.

&$PSPRTRNAME

Name of the printer for which the printer is an alias, if the printer type is
ALIAS.

&$PSPRTTYPE

Printer type: JES, VTAM, EXIT or ALIAS.

&$PSPRTRTYPE

Printer type of the printer for which the printer is an alias, if the printer
type is ALIAS.

&$PSPRTCASE

Lower case flag: YES or NO.

&$PSPRTDESC

Description of the printer.

&$PSPRTLLIMIT

Line limit.

&$PSPRTDEST

JES remote destination name if the printer type is JES.

&$PSPRTCLASS

JES output class if the printer type is JES.

&$PSPRTLUNAME

VTAM defined network name for the printer if the printer type is VTAM.

&$PSPRTEXIT

Name of a printer exit if the printer type is EXIT.

&$PSPRTEXDATA

Printer exit data if the printer type is EXIT.

&$PSPRTLOGMOD

Name of an entry in the logmode table if the printer type is VTAM.

$PSCALL OPT=INFO

Chapter 4: PSM Interface 1073

&$PSFORMNAME

Form name.

&$PSFORMDESC

Description of the form.

&$PSFORMLINES

Maximum number of lines to be printed per page.

&$PSFORMCOLS

Maximum number of columns to be printed per page.

&$PSFORMBANR

The banner page flag (*DEFAULT or *NONE), or the name of a banner
exit NCL procedure.

&$PSSETUPNAME

Setup name.

&$PSSETUPDESC

Description of the setup.

&RETCODE = 4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following values:

2

Printer not defined

4

No printers defined with the specified prefix and/or type

5

Printer not selected from Printer List

6

Form not defined

8

No forms defined with the specified prefix

9

Form not selected from Form List

$PSCALL OPT=INFO

1074 Network Control Language Reference Guide

10

Setup not defined

12

No setups defined with the specified prefix

13

Setup not selected from Setup List

14

Default printer not defined for specified user ID

&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

Examples: OPT=INFO

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=PRINTER PRINTER=?

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=PRINTER PRINTER=FLOOR5

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=PRINTER TYPE=JES PRINTER=?

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=FORM FORM=AREA1?

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=SETUP SETUP=TPAPER

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=USER USERID=USER01

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=INFO INFO=USER

Notes:

When the INFO operand is set to USER or PRINTER, all of the variables returned
for return code 0 are set. When INFO is set to FORM, only the variables starting
with the characters $PSFORM and $PSSETUP are set and the others are null.
When INFO is set to SETUP, only the variables starting with the characters
$PSSETUP are set and the others are null.

When variable &$PSPRTTYPE is set to JES, EXIT or VTAM, variables
&$PSPRTRNAME and &$PSPRTRTYPE are null.

$PSCALL OPT=MODIFY

Chapter 4: PSM Interface 1075

$PSCALL OPT=MODIFY

Modifies a print request that is on the spool.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=MODIFY

 REQ=n

Presents the print request panel allowing the request to be modified. You can
modify the destination, number of copies, keep flag and priority, if authorized.
You cannot modify a request with the status of WAIT, PRINTING, BUILD-PRT, or
DIRECT-ERR.

When the print request panel is terminated by the user entering the FILE or
CANCEL command (or pressing the function key to which those commands are
assigned), control is returned to the NCL procedure that executed $PSCALL.

Operands:

OPT=MODIFY

Specifies that a print request is to be modified.

REQ=n

Specifies the number of the print request to be modified.

$PSCALL OPT=MODIFY

1076 Network Control Language Reference Guide

Return Codes:

&RETCODE = 0

$PSCALL completed successfully.

&RETCODE = 4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following:

1

User not authorized for the request

18

Print request not found on the spool

21

Print request locked by the system or another user

22

Status of the print-request was PRINTING, BUILD-PRT or DIRECT-ERR

&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

Example: OPT=MODIFY

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=MODIFY REQ=23

$PSCALL OPT=OPEN

Chapter 4: PSM Interface 1077

$PSCALL OPT=OPEN

Opens a print request.

&CONTROL SHRVARS=($PS)

To open a print request for a printer that is defined to PSM:

-EXEC $PSCALL OPT=OPEN

 DEST=PSM

 [PRINTER=printer name]

 [USERID=userid]

 [JESCLASS=class]

 [VTAMLOG=logmode]

 [FORM=form name]

 [SETUP=setup name]

 [LOWCASE={ YES | NO }]

 [LINES=n]

 [COLS=n]

 [BANNER={ *DEFAULT | *NONE | proc name }]

 [JESFORM=JES Form name]

 [JESFCB=JES FCB name]

 [JESUCS=JES UCS code]

 [JESPGM=JES PGM name]

 [EXITDATA=c]

 [COPIES=n]

 [PRTY=n]

 [HOLD={ YES | NO }]

 [KEEP={ YES | NO }]

$PSCALL OPT=OPEN

1078 Network Control Language Reference Guide

To open a print request for a printer that is not defined to PSM and is a JES
printer:

-EXEC $PSCALL OPT=OPEN

 DEST=JES

 [JESDEST=destid.userid]

 [JESCLASS=class]

 [FORM=form name]

 [SETUP=setup name]

 [LOWCASE={YES | NO }]

 [LINES=n]

 [COLS=n]

 [BANNER={ *DEFAULT | *NONE | proc name }]

 [JESFORM=JES Form name]

 [JESFCB=JES FCB name]

 [JESUCS=JES UCS code]

 [JESPGM=JES PGM name]

 [COPIES=n]

 [PRTY=n]

 [HOLD={YES | NO}]

 [KEEP={YES | NO}]

To open a print request for a printer that is not defined to PSM and is a VTAM
printer:

-EXEC $PSCALL OPT=OPEN

 DEST=VTAM

 VTAMLU=luname

 [VTAMLOG=logmode]

 [FORM=form name]

 [SETUP=setup name]

 [LOWCASE={ YES | NO }]

 [LINES=n]

 [COLS=n]

 [BANNER={ *DEFAULT | *NONE | proc name }]

 [COPIES=n]

 [PRTY=n]

 [HOLD={YES | NO}]

 [KEEP={YES | NO}]

Allocates a print request number and opens it. You can then add output to the
request using the PUT option.

$PSCALL OPT=OPEN

Chapter 4: PSM Interface 1079

Operands:

OPT=OPEN

Specifies that a print request is to be opened.

DEST={ PSM | JES | VTAM }

Specifies the type of output destination.

PSM

Indicates the printer is defined to PSM.

JES

Indicates the printer is not defined to PSM and is a JES printer.

VTAM

Indicates the printer is not defined to PSM and is a VTAM printer.

PRINTER=printer name

Specifies the name of the printer on which the request is to be printed.

USERID=userid

Specifies the user ID that is to be the owner of the print request. If not
specified, the user ID set in the &USERID system variable will be the owner
of the request. If the DEST operand is set to PSM and the PRINTER operand
is not specified, this operand specifies the user ID whose default printer is
the printer on which the request is to be printed. If a user ID is not specified,
the default printer for the user ID set in the &USERID system variable is
used.

JESDEST=destid.userid

Specifies the JES2 or JES3 remote destination of the printer on which the
request is to be printed. destid is the remote destination name and userid is
the remote user ID. userid is optional but, if specified, destid must also be
specified.

JESCLASS=class

Specifies the JES2 or JES3 output class. If the DEST operand is set to JES and
an output class is not specified, the output class defined in the defaults
definition is used. If DEST is set to PSM, this class, if specified, is used
instead of that defined in the printer definition.

VTAMLU=luname

Specifies the VTAM defined network name of the printer on which the
request is to be printed.

$PSCALL OPT=OPEN

1080 Network Control Language Reference Guide

VTAMLOG=logmode

Specifies the name of an entry in the LU's logmode table which is to be used
for the session. If the DEST operand is set to VTAM and a logmode is not
specified, the LU's default logmode entry is used. If DEST is set to PSM, this
logmode, if specified, is used instead of that defined in the printer
definition.

FORM=form name

Specifies the name of the form definition to be used. If the DEST operand is
set to JES or VTAM, the default is that defined in the defaults definition. If
DEST is set to PSM, this form name, if specified, is used instead of that
defined in the printer definition.

SETUP=setup name

Specifies the name of the setup definition to be used. This setup name is
used instead of that defined in the form definition.

LOWCASE={ YES | NO }

Specifies whether the printer supports lower case characters. If the DEST
operand is set to PSM, the value of this operand is used instead of that
defined in the printer definition. If DEST is set to JES or VTAM, the default is
that defined in the defaults definition.

LINES=n

Specifies the maximum number of lines to be printed per page. The range is
0 to 999. If there is no limit to the number of lines per page (that is, the
paper is continuous), 0 must be specified. If the DEST operand is set to PSM,
the value of this operand is used instead of that defined in the form
definition. If the DEST operand is set to JES or VTAM, the default is that
defined in the defaults definition.

COLS=n

Specifies the maximum number of columns to be printed per page. The
range is 1 to 256. If the DEST operand is set to PSM, the value of this
operand is used instead of that defined in the form definition. If the DEST
operand is set to JES or VTAM, the default is that defined in the defaults
definition.

$PSCALL OPT=OPEN

Chapter 4: PSM Interface 1081

BANNER={ *DEFAULT | *NONE | proc name }

Specify *DEFAULT if the default banner page is to be printed, *NONE if no
banner page is to be printed, or the name of an NCL procedure which is to
be executed as a banner exit. If the DEST operand is set to PSM, the value of
this operand is used instead of that defined in the form definition. If the
DEST operand is set to JES or VTAM, the default is that defined in the
defaults definition. The banner exit is described in the following pages of
this chapter.

JESFORM=JES form name

Specifies the name of a JES form that is to be used when processing the
SYSOUT data set. It the DEST operand is set to PSM, this JES form name is
used instead of that defined in the form definition. This operand is ignored
if the printer specified is not a JES printer.

JESFCB=JES FCB name

Specifies the name of a JES FCB (forms control buffer) that is to be used
when processing the SYSOUT data set. If the DEST operand is set to PSM,
this JES FCB name is used instead of that defined in the form definition. This
operand is ignored if the printer specified is not a JES printer.

JESUCS=JES UCS code

Specifies the JES UCS (universal character set) code to be associated with
the SYSOUT data set. If the DEST operand is set to PSM, this JES UCS code is
used instead of that defined in the form definition. This operand is ignored
if the printer specified is not a JES printer.

JESPGM=JES PGM name

Specifies the JES PGM (program) name to be associated with the SYSOUT
data set. If the DEST operand is set to PSM, this JES PGM name is used
instead of that defined in the form definition. This operand is ignored if the
printer specified is not a JES printer.

EXITDATA=c

Specifies exit data that is to be passed to the printer exit NCL procedure
instead of that defined in the printer definition. Exit data is from 1 to 120
characters long and must be quoted if it contains imbedded blanks. This
operand is ignored if the DEST operand is set to JES or VTAM.

COPIES=n

Specifies the number of copies to be printed. The range is 1 to 255; the
default is 1.

$PSCALL OPT=OPEN

1082 Network Control Language Reference Guide

PRTY=n

Specifies a priority for the print request. The range is 1 to 99. The highest
priority is 1 and the lowest is 99; the default is 50. Print requests for a
printer will be printed in priority order starting with priority 1.

HOLD={ YES | NO }

Specifies whether the print request is to be assigned a status of HELD when
closed (that is, will not be printed until released). The default is NO.

KEEP={ YES | NO }

Specifies whether the print request is to be kept after being printed. The
default is NO.

Return Codes:

&RETCODE = 0

$PSCALL completed successfully. &$PSREQ# is set to the 4-digit request
number allocated by the system.

&RETCODE = 4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following values:

2

Printer not defined

6

Form not defined

10

Setup not defined

14

Default printer not defined for specified user ID

20

JES printing not supported on operating system

&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

$PSCALL OPT=PUT

Chapter 4: PSM Interface 1083

Example: OPT=OPEN

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=OPEN DEST=PSM PRINTER=FLOOR5

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=OPEN DEST=JES JESDEST=RMT15 JESCLASS=F +

 LOWCASE=NO LINES=60 COLS=80

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=OPEN DEST=PSM USERID=USER01 COPIES=2 +

 PRTY=3

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=OPEN DEST=VTAM VTAMLU=PLUA01 HOLD=YES

$PSCALL OPT=PUT

Adds output (data that is to be printed) to a print request.

&CONTROL SHRVARS=($PS)

-EXEC $PSCALL OPT=PUT

 REQ=n

 [SKIP={ 0 | 1 | 2 | 3 | NEWPAGE }]

 [USCORE={ 1 | 2 }]

 [ALIGN={ LEFT | RIGHT | CENTER }]

 [BOLD={ YES | NO }]

 [TOTAL=n]

Adds output to an open print request. The output is added to the spool for the
specified print request number.

Operands:

OPT=PUT

Specifies that lines of output are to be added to a print request.

REQ=n

Specifies the number of the print request to which the output is to be
added.

SKIP={ 0 | 1 | 2 | 3 | NEWPAGE }

Specifies the number of lines to be advanced before printing each line of
output. NEWPAGE specifies advance to a new page before printing each line
of output. The default is 1.

$PSCALL OPT=PUT

1084 Network Control Language Reference Guide

USCORE={ 1 | 2 }

Specifies whether the text in each line of output is to be underlined:

1

Specifies that text excluding the blanks between words is underlined.

2

Specifies that text including the blanks between words is underlined.

{ LEFT | RIGHT | CENTER }

Specifies whether the text in each line of output is to be aligned. The length
used to align the text is the value defined in the Columns per Page field
(width) for the printer.

BOLD={ YES | NO }

Specifies whether the text in each line of output is to be bolded. The default
is NO.

TOTAL=n

Specifies the number of variables containing lines of output that are to be
printed. Range is 1 to 99999. The default is 1.

Variables:

&$PSDATAn

Must be set to the line of output to be printed. n must be in the range 1 to
99999. If the length of this variable is greater than the value defined in the
Columns per Page field (width) for the printer, the line of output is
truncated.

Return Codes:

&RETCODE = 0

$PSCALL completed successfully.

&RETCODE = 4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to the following value:

17 Print request not open

&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

$PSCALL OPT=QUEUE

Chapter 4: PSM Interface 1085

Examples: OPT=PUT

&CONTROL SHRVARS=($PS)

&$PSDATA1 = &STR This is a line of print data

&$PSDATA2 = &STR This is another line of data

-EXEC $PSCALL OPT=PUT REQ=5 TOTAL=2

&CONTROL SHRVARS=($PS)

&$PSDATA1 = &STR This is the report heading

-EXEC $PSCALL OPT=PUT REQ=150 SKIP=NEWPAGE ALIGN=CENTER +

 BOLD=YES

&CONTROL SHRVARS=($PS)

&$PSDATA1 = &STR Date:&DATE4

-EXEC $PSCALL OPT=PUT REQ=5678 SKIP=2 ALIGN=RIGHT

&CONTROL SHRVARS=($PS)

&$PSDATA1 = &ASISTR Name Description

-EXEC $PSCALL OPT=PUT REQ=2323 SKIP=3 USCORE=1

$PSCALL OPT=QUEUE

Presents the Output Queue.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=QUEUE

 [USERID={ userid | prefix* }]

 [PRINTER={ printer name | prefix* }]

Presents the Output Queue showing print requests that are currently on the
spool. When the Output Queue is terminated by the user entering the EXIT or
RETURN command (or pressing the Function key to which those commands are
assigned), control is returned to the NCL procedure that executed $PSCALL.

$PSCALL OPT=QUEUE

1086 Network Control Language Reference Guide

Operands:

OPT=QUEUE

Specifies the Output Queue is to be presented.

USERID={ userid | prefix* }

Specifies the user ID of the user whose print requests are to be displayed on
the Output Queue. For the Output Queue to be displayed with print
requests for users whose user ID starts with a particular prefix, specify the
prefix followed by an asterisk (*).

PRINTER={ printer name | prefix* }

Specifies the PSM printer name, JES remote destination, or VTAM defined
network name (LU name), at which print requests to be displayed on the
Output Queue are to be printed. For the Output Queue to be displayed with
print requests for printers which the name, JES remote destination, or
VTAM defined network name, starts with a particular prefix, specify the
prefix followed by an asterisk (*).

Return Codes:

&RETCODE = 0

$PSCALL completed successfully. &$PSFDBK may be set to the following
value:

RETURN command entered (or the Function key to which it is assigned was
pressed)

&RETCODE = 4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to the following value:

User not authorized for the request

&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

$PSCALL OPT=QUEUE

Chapter 4: PSM Interface 1087

Examples: OPT=QUEUE

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=QUEUE

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=QUEUE USERID=ZXPSD

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=QUEUE USERID=ZXP*

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=QUEUE PRINTER=FLOOR5

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=QUEUE USERID=ZXPSD PRINTER=FLOOR5

$PSCALL OPT=RELEASE

1088 Network Control Language Reference Guide

$PSCALL OPT=RELEASE

Releases a held print request.

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=RELEASE

 REQ=n

To release a print request for printing that is held on the spool. The request to
be released must have a status of BUILD-HELD, HELD, or HELD-ERROR.

Operands:

OPT=RELEASE

Specifies that a print request is to be released for printing.

REQ=n

Specifies the number of the print request to be released.

Return Codes:

&RETCODE = 0

$PSCALL completed successfully.

&RETCODE = 4

$PSCALL completed successfully. The request was denied. &SYSMSG is set
to an error message and &$PSFDBK is set to one of the following values:

1

User not authorized for the request

18

Print request not found on the spool

21

Print request locked by the system or another user

22

Status of the print request was not BUILD-HELD, HELD or HELD-ERROR

&RETCODE = 8

An error occurred. &SYSMSG is set to an error message.

Banner Exit

Chapter 4: PSM Interface 1089

Example: OPT=RELEASE

&CONTROL NOSHRVARS

-EXEC $PSCALL OPT=RELEASE REQ=4555

Banner Exit

A banner exit is an installation-written NCL procedure. The banner exit allows
you to tailor the banner page printed at the front of the output for a print
request. The banner exit is executed by the system before printing the output
for a request.

It is passed information regarding the print request, and can pass back to the
system the information that is to be printed on the banner page.

The variables passed to the banner exit by the system are as follows:

&$PSUSERID

The user ID of the user who generated the print request.

&$PSREQ#

The number of the print request.

&$PSREQDATE

The date the print request was generated in the format DD-MMM-YYYY.

&$PSREQTIME

The time the print request was generated in the format HH.MM.SS.

The variables the banner exit can set are as follows:

&$PSBANCNT

Must be set to the number of &$PSDATAn variables containing text that is
to be printed on the banner page. The range is 1 to 999.

&$PSDATAn

May be set to the line of text to be printed on the banner page. n must be in
the range 1 to 999.

&$PSSKIPn

Indicates the number of lines to be advanced before printing the line of text
specified in the corresponding &$PSDATAn variable. Valid values are 0, 1, 2,
3. The default is 1. n must be in the range 1 to 999.

Printer Exit Interface

1090 Network Control Language Reference Guide

&$PSUSCORn

Indicates whether the text specified in the corresponding &$PSDATAn
variable is to be underlined. n must be in the range 1 to 999. Valid values
are 1 and 2, where 1 specifies text excluding blanks between words is
underlined, and 2 specifies the text including blanks between words is
underlined.

&$PSALIGNn

Indicates where text specified in the corresponding &$PSDATAn variable is
to be aligned. The variable n must be in the range 1 to 999. Valid values for
this variable are LEFT, RIGHT, and CENTER. The line length used to align text
is the value defined in the Columns per Page field (width), for the printer.

&$PSBOLDn

Indicates whether text specified in the corresponding &$PSDATAn variable
is to be bolded. The variable n must be in the range 1 to 999. Valid values
for this variable are NO and YES. The default is NO.

Printer Exit Interface

A printer exit is an installation-written NCL procedure. The printer exit enables
the implementation of output destinations other than JES or VTAM, for
example, a mailing system or a file.

When a print request that has a destination of a printer exit is closed or
released, the printer exit is executed by the system to perform initialization
processing, then once for each line of data and finally to perform termination
processing.

The variables passed to the printer exit by the system are as follows:

&$PSACTION

This variable is set to indicate the processing that is to be performed. This
variable is set to one of the following values:

INIT

Initialization processing is to be performed

DATA

Data line processing is to be performed

TERM

Termination processing is to be performed

Printer Exit Interface

Chapter 4: PSM Interface 1091

&$PSTERM

This variable is set to indicate the type of termination when the
&$PSACTION variable is set to TERM. This variable is set to one of the
following values:

NORMAL

Normal termination

EXIT

Terminated by printer exit setting return code 8

CANCEL

Print request canceled by the procedure sending the output

&$PSEXITDATA

This variable is set to the exit data defined in the printer definition. Exit data
in the printer definition is overridden on the OPEN call to $PSCALL.

&$PSUSERID

This variable is set to the user ID of the user who generated the print
request.

&$PSREQ#

This variable is set to the number of the print request.

&$PSREQDATE

This variable is set to the date the print request was generated in the format
DD-MMM-YYYY.

&$PSREQTIME

This variable is set to the time the print request was generated in the format
HH.MM.SS.

&$PSDATA

This variable is set to the line of data that is to be processed.

&$PSSKIP

This variable is set to the skip amount specified for the line of data. Valid
values are NEWPAGE, 0, 1, 2, and 3.

Printer Exit Interface

1092 Network Control Language Reference Guide

&$PSUSCORE

This variable is set to the underline setting specified for the line of data.
Valid values are 1 and 2.

&$PSBOLD

This variable is set to the bold setting specified for the line of data. Valid
values are YES and NO.

The variables that is set by the printer exit are as follows:

&$PSUSRDc

These variables is set to user data, where c is 1 to 5 alphanumeric and/or
national characters. These variables are never set or cleared by the system,
therefore must be completely managed by your installation.

The system variable &RETCODE is set by the printer exit as follows:

0

Continue processing.

8

An error occurred. Terminate processing and set the status of the print
request on the spool to HELD-ERROR or DIRECT-ERR. &SYSMSG is set to an
error message that is to be written to the activity log and stored in the error
message field in the printer request.

Chapter 5: CA CCI Interface 1093

Chapter 5: CA CCI Interface

This chapter describes how you can use NCL to connect to the CA Common
Communications Interface (CA CCI). CA CCI is a CA program-to-program
communication protocol. You can use CA CCI to communicate with other CA
products that use CA CCI.

Note: For more information about CA CCI, see CA Common Services
documentation.

This section contains the following topics:

$CACCI OPT=INIT (see page 1094)
$CACCI OPT=INQUIRE (see page 1095)
$CACCI OPT=RECEIVE (see page 1097)
$CACCI OPT=SEND (see page 1098)
$CACCI OPT=TERM | TERMINATE (see page 1100)
$CACCI OPT=CANCEL (see page 1101)
Return Codes and Variables (see page 1101)
$CACCI Example (see page 1103)

$CACCI OPT=INIT

1094 Network Control Language Reference Guide

$CACCI OPT=INIT

Requests communication with CA CCI. After this call has successfully executed,
&$CACCIID is set with a value to be used on subsequent calls to identify this CA
CCI registration.

&CALL PROC=$CACCI PARMS=(OPT=INIT,

 NAME=name)

Operands:

NAME=name

Defines the caller. This operand must be a unique name within a system for
RECEIVE and within a product region for other calls, e.g. SEND or INQUIRE.
The name is not visible on the CA SYSVIEW® Performance Management CCI
Receivers panel until a RECEIVE is issued.

Limits: 1 to 20 mixed case characters, numbers, spaces, and special
characters. Special characters require quotes.

Note: When the NCL process ends, registration with CCI for this name is
automatically terminated if it is still active. The &$CACCIID value is only usable
within the process, including procedures invoked by &CALL. It cannot be used by
another process.

$CACCI OPT=INQUIRE

Chapter 5: CA CCI Interface 1095

$CACCI OPT=INQUIRE

Requests that CA CCI provide a list of eligible receivers in an MDO mapped by
$NMMPCCI.

&CALL PROC=$CACCI PARMS=(OPT=INQUIRE,

 ID=cci_id,

 NAME=name,

 [SYSID=sysid,]

 MDO=mdoname,

 SHARE=(mdoname>))

Operands:

ID=cci_id

Specifies the identifier returned in &$CACCIID from an earlier CCI INIT call.

NAME=name

Specifies a mask that only returns receivers with names that match this
value.

Limits: 1 to 20 mixed case characters, including numbers, spaces, special
characters, and asterisks to allow for pattern matching. Special characters
require quotes.

SYSID=sysid

Specifies the ID of the system from which to retrieve the receiver. The ID
can be a mask that only returns receivers with IDs that match this value. If
omitted, only receiver IDs on the local system are selected.

Limits: 1 to 8 characters, including asterisks to allow for pattern matching
(see $CACCI Example)

MDO=mdoname

Specifies the name of the MDO to return the results, and is mapped by
$NMMPCCI.

SHARE=(mdoname>)

Specifies MDO to be shared with the called procedure. The data in the MDO
mdoname can be seen by the calling procedure.

$CACCI OPT=INQUIRE

1096 Network Control Language Reference Guide

Notes:

The map for the returned MDO is as follows:

--<LK0(2,1) TAGS(EXPLICIT)>--

$NMMPCCI DEFINITIONS ::= BEGIN

Inquire ::= SEQUENCE

{

 numReceivers <<1>> INTEGER,

 cciReceivers <<2>> SEQUENCE OF <<3>> Receiver OPTIONAL

}

Receiver ::= SEQUENCE

{

 receiverID <<4>> ID,

 remote <<5>> BOOLEAN,

 active <<6>> BOOLEAN,

 messagesQueued <<7>> INTEGER

}

ID ::= SEQUENCE

{

 name <<8>> GraphicString (SIZE(1..20)),

 sysID <<9>> GraphicString (SIZE(1..8)) OPTIONAL

}

END

$CACCI OPT=RECEIVE

Chapter 5: CA CCI Interface 1097

$CACCI OPT=RECEIVE

Requests that CA CCI receive data. Data arrives attached to a NOTIFY event until
either a CANCEL or TERM is issued, or the NCL procedure terminates. The data is
sent to the process dependent request queue and read by the &INTREAD verb.

&CALL PROC=$CACCI PARMS=(OPT=RECEIVE,

ID=cci_id,

[NAME=name,]

[SYSID=sysid])

Operands:

ID=cci_id

Specifies the identifier returned in $CACCIID from an earlier CCI INIT call.

NAME=name

Identifies the eligible sender's name. If omitted, any sender's data is eligible
for this receive. The name is visible on the CA SYSVIEW Performance
Management CCI Receivers panel in the SenderId column.

Limits: 1 to 20 mixed case characters, numbers, spaces, and special
characters. Special characters require quotes.

SYSID=sysid

Specifies the system ID of the sender from which to receive data. The SYSID
is visible on the CA SYSVIEW Performance Management CCI Receivers panel
in the SSysId column.

$CACCI OPT=SEND

1098 Network Control Language Reference Guide

Notes:

Use &INTREAD TYPE=REQ or TYPE=ANY to read the data. If a timeout occurs on
&INTREAD, the RECEIVE is not canceled and data may still be read by a
subsequent &INTREAD.

Note: See the Notes in the description for &INTREAD for details of the mapped
data object $INT.

The notify message for the RECEIVE is located in $INT.TEXT and the data is in
$INT.USERMDO. The notify message format is as follows:

N00101 NOTIFY: CCI EVENT: RECEIVE RESOURCE: ID=cci_id

LCLNAME=local_name RSYSID=remote_sysid RMTNAME=remote_name

RC=return_code

If the return code is not zero, RECEIVE is terminated and must be re-issued. The
following fields are appended to the message:

■ ERR=error code

■ ERRX=extended error code

■ DESC=error description

The message text should always be checked before reading the data, since the
INTQUE OCS command can also be used to satisfy the &INTREAD.

$CACCI OPT=SEND

Requests that CA CCI send data to a registered receiver.

&CALL PROC=$CACCI PARMS=(OPT=SEND,

ID=cci_id,

NAME=name,

[SYSID=sysid,]

[WAIT={YES | TARGET,}]

DATA=data)

$CACCI OPT=SEND

Chapter 5: CA CCI Interface 1099

Operands:

ID=cci_id

Specifies the identifier returned in $CACCIID from an earlier CCI INIT call.

NAME=name

Specifies a receiver to send to.

Limits: 1 to 20 mixed case characters, numbers, spaces and special
characters. Special

characters require quotes.

SYSID=sysid

Specifies the system ID of a receiver to send to. This operand is not required
if the receiver is active on the same system.

WAIT=YES | TARGET

Specifies whether to wait for data to be sent to, or wait for data has been
received by, the remote receiver.

■ YES means the SEND completes when the data is outbound from the
local system.

■ TARGET means that the SEND completes when the targeted receiver has
received the data. TARGET is the same as YES for a local receiver.

DATA=data

Specifies the data to send.

Limits: 1 to 256 bytes

Note: You can use the &ZQUOTE built-in function if the data contains spaces
or special characters.

Examples:

&TEXT = &ZQUOTE This is a test

&CALL PROC=$CACCI PARMS=(OPT=SEND,+

ID=&MYTEST,+

NAME=FRED,+

SYSID=A11SENF,+

WAIT=TARGET,+

DATA=&TEXT)

$CACCI OPT=TERM | TERMINATE

1100 Network Control Language Reference Guide

$CACCI OPT=TERM | TERMINATE

Requests that CA CCI terminate a registered receiver. When you TERMINATE,
you cannot use the $CACCIID value again, any RECEIVE open is terminated, and
you cannot RECEIVE, INQUIRE or SEND until you issue an INIT call again.

&CALL PROC=$CACCI PARMS=(OPT=TERM | TERMINATE,

ID=cci_id)

Operands:

ID=cci_id

Specifies the identifier returned in $CACCIID from an earlier CCI INIT call.

$CACCI OPT=CANCEL

Chapter 5: CA CCI Interface 1101

$CACCI OPT=CANCEL

Requests that CA CCI cancel a previously registered receiver ID. When you
CANCEL, you are only canceling a particular RECEIVE, but you can still issue
INQUIRE, SEND or RECEIVE again.

&CALL PROC=$CACCI PARMS=(OPT=CANCEL,

 ID=cci_id,

 [NAME=name,]

 [SYSID=sysid])

Operands:

ID=cci_id

Specifies the identifier returned in $CACCIID from an earlier CCI INIT call.

NAME=name

Identifies the sender’s name, if one was specified on the RECEIVE. If
omitted, any outstanding receive-any statement (RECEIVE with no NAME=)
is canceled.

Limits: 1 to 20 mixed case characters, numbers, spaces, and special
characters. Special characters require quotes.

SYSID=sysid

Specifies the system ID of the sender, if one was specified on the RECEIVE
call.

Note: The optional NAME and SYSID operands should match those on the
RECEIVE being canceled. If you issue RECEIVE with no NAME or SYSID specified
(that is, RECEIVE any), then the CANCEL should be the same. If you requested to
RECEIVE only from a named sender on a particular system, then the same name
and system should be specified on CANCEL.

Return Codes and Variables

The following table shows the meanings of the return codes:

Return
Code

Meaning Variables Returned Variable Contents

0 Successful &$CACCID
(from INIT call only)

ID to be used in subsequent
CANCEL, INQUIRE, RECEIVE, SEND,
or TERMINATE calls

Return Codes and Variables

1102 Network Control Language Reference Guide

Return
Code

Meaning Variables Returned Variable Contents

4 CA CCI is inactive

8 CA CCI logic error

12 Abend has occurred, the system abend code is in the extended error code

16 CA CCI unrecoverable problem

20 CA CCI invalid PLIST

32 CA CCI error

72 Invalid OPT parameter

The following table shows the range of error codes to which the returned
variables apply and what variables are set, depending on the value of
&RETCODE (return code):

Return
Code

Meaning Variables Returned Variable Contents

0–32 CA CCI return code &$CACCIFDBK Feedback code

&$CAERRORCODE CCI error code

&$CAERRCODEX Extended error code
(hexadecimal)

&$CAERRORTEXT Error description

64 OML error - note the variables
and provide information for CA
Technical Support

&$CAERRORCODE OML error code

&$CAERRORTEXT OML error description

&$CAERRORCOND OML error condition code

&$CAERRORKYWD Keyword causing error

&$CAERRORVAL Value causing error

68 Invalid OPT parameter &$CAERRORTEXT Error description

$CACCI Example

Chapter 5: CA CCI Interface 1103

Feedback Codes

The feedback codes set in &$CACCIFDBK are as follows:

Code Option

1 INIT

2 TERM

3 SEND

4 RECEIVE

5 CANCEL

6 INQUIRE

$CACCI Example

The following NCL procedure shows the use of the INIT, INQUIRE, SEND,
RECEIVE and TERMINATE functions to create a simple test of CA CCI within one
system. The name of the procedure is MYCCIXMP.

-* Test $CACCI

&I = &SUBSTR &1 1 1

&IF .&I = .C &THEN +

 &GOSUB .CLIENT

&ELSE +

 &GOSUB .SERVER

&EXIT

-* Server side of CCI connection

.SERVER

-* Register with CCI

&CALL PROC=$CACCI PARMS=(OPT=INIT,NAME=MYSERVER)

&IF &RETCODE = 0 &THEN &DO

 &WRITE Server: INIT RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

 &RETSUB

&DOEND

&SVID = &$CACCIID

-* Start a client to talk to us

&INTCMD -START MYCCIXMP CLIENT

$CACCI Example

1104 Network Control Language Reference Guide

-* Handshake with client

&DOUNTIL .&MSG = .READY OR .&MSG = .ABORT

 &INTREAD TYPE=ANY VARS=MSG

 &WRITE Client sent: &MSG

&DOEND

-* Bail out if client had problems

&IF &MSG = ABORT &THEN &DO

 &WRITE Server: Aborting as requested by client

 &RETSUB

&DOEND

-* Ask CCI for a list of all interested receivers

&CALL PROC=$CACCI

PARMS=(OPT=INQUIRE,ID=&SVID,NAME=MY**************,+

 MDO=MYMDO) SHARE=(MYMDO>)

&IF &RETCODE = 0 &THEN &DO

 &WRITE Server: INQUIRE RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

 &RETSUB

&DOEND

$CACCI Example

Chapter 5: CA CCI Interface 1105

-* Display receiver information

&ASSIGN VARS=NUMREC FROM MDO=MYMDO.NUMRECEIVERS

&WRITE Server: &NUMREC receivers found:

&WRITE Server: SYSID Name LclRmt State MsgsQd

&I = 1

&DOWHILE &I <= &NUMREC

 &ASSIGN VARS=SID FROM

MDO=MYMDO.CCIRECEIVERS.{&I}.RECEIVERID.SYSID

 &ASSIGN VARS=NAME FROM

MDO=MYMDO.CCIRECEIVERS.{&I}.RECEIVERID.NAME

 &ASSIGN VARS=REMOTE FROM MDO=MYMDO.CCIRECEIVERS.{&I}.REMOTE

 &ASSIGN VARS=ACTIVE FROM MDO=MYMDO.CCIRECEIVERS.{&I}.ACTIVE

 &ASSIGN VARS=QUEUED FROM

MDO=MYMDO.CCIRECEIVERS.{&I}.MESSAGESQUEUED

 &IF &REMOTE = 1 &THEN &REMOTE = REMOTE

 &ELSE &REMOTE = LOCAL*

 &IF &ACTIVE = 1 &THEN &ACTIVE = ACTIVE**

 &ELSE &ACTIVE = INACTIVE

 &WRITE Server: &SID &NAME &REMOTE &ACTIVE &QUEUED

 -* Send 2 messages to the receivers

&CONTROL NOUCASE

&DATA = &ZQUOTE (Hello from the CCI server)

&CONTROL UCASE

&CALL PROC=$CACCI

PARMS=(OPT=SEND,ID=&SVID,NAME=&NAME,SYSID=&SID,+

 DATA=&DATA)

&IF &RETCODE = 0 &THEN &DO

 &WRITE Server: SEND RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

 &RETSUB

&DOEND

&CALL PROC=$CACCI PARMS=(DATA='Hello()from the CCI server

again',+

 OPT=SEND,ID=&SVID,NAME=&NAME,SYSID=&SID)

 &IF &RETCODE = 0 &THEN &DO

 &WRITE Server: SEND RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

 &RETSUB

 &DOEND

 &I = &I + 1

&DOEND

&WRITE

-* Display all messages from the client

&DOUNTIL .&MSG = .FIN

 &INTREAD TYPE=ANY STRING=(MSG)

 &WRITE Client: &MSG

&DOEND

$CACCI Example

1106 Network Control Language Reference Guide

-* Terminate our CCI connection

&CALL PROC=$CACCI PARMS=(OPT=TERMINATE,ID=&SVID)

&IF &RETCODE = 0 &THEN &DO

 &WRITE Server: TERM gave:,

 &RETCODE &CACCIFDBK &$CAERRORCODE &$CAERRORTEXT

 &RETSUB

&DOEND

&RETSUB

-* Client side of CCI connection

.CLIENT

-* Register with CCI

&CONTROL NOUCASE

&CLIENT = &ZQUOTE MY Client .Do_Do

&CONTROL UCASE

&CALL PROC=$CACCI PARMS=(OPT=INIT,NAME=&CLIENT)

&IF &RETCODE = 0 &THEN &DO

 &WRITE Client: INIT RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

&WRITE ABORT

&RETSUB

&DOEND

&CLID = &$CACCIID

&WRITE &CLID

-* Tell CCI to receive msgs from our server

&CALL PROC=$CACCI PARMS=(OPT=RECEIVE,ID=&CLID,NAME=MYSERVER)

&IF &RETCODE = 0 &THEN &DO

 &WRITE RECEIVE RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

 &WRITE ABORT

 &RETSUB

&DOEND

-* Tell the server ready for messages

&WRITE READY

-* Receive and display all messages

&DOUNTIL &ZFDBK ¬= 0

 &INTREAD TYPE=REQ STRING=(*) WAIT=3

 &IF &ZFDBK = 0 &THEN &DO

 &ASSIGN VARS=MSG FROM MDO=$INT.USERMDO

 &ASSIGN VARS=NOTIFY FROM MDO=$INT.TEXT

 &WRITE Server sent: &MSG

 &WRITE Notify msg : &NOTIFY

 &DOEND

 &DOEND

$CACCI Example

Chapter 5: CA CCI Interface 1107

-* Terminate our CCI connection

&CALL PROC=$CACCI PARMS=(OPT=TERMINATE,ID=&CLID)

&IF &RETCODE = 0 &THEN &DO

 &WRITE Client: TERM RC:+

 &RETCODE FB:&CACCIFDBK EC:&$CAERRORCODE ET:&$CAERRORTEXT

 &WRITE FIN

 &RETSUB

&DOEND

-* Tell the server finished

&WRITE FIN

&RETSUB

Chapter 6: Broadcast Services Interface 1109

Chapter 6: Broadcast Services Interface

This section contains the following topics:

About Broadcast Services (see page 1109)
$BSCALL OPT=SEND (see page 1109)
$BSCALL OPT=MENU (see page 1113)
$BSCALL OPT=LISTALL (see page 1114)
$BSCALL OPT=REVIEW (see page 1114)
$BSCALL OPT=DISCARD (see page 1116)
Notification Exit Interface (see page 1117)

About Broadcast Services

Broadcast Services has an NCL external interface which enables you to easily
issue broadcasts from installation-written NCL procedures. To do this, you must
execute the NCL procedure $BSCALL.

This chapter describes the functions provided by the Broadcast Services NCL
interface, the operands to be specified when executing procedure $BSCALL and
the return codes that are set on completion.

Note: For more information about the Broadcast Services panels referred to in
this chapter see the Reference Guide.

$BSCALL OPT=SEND

Sends a broadcast.

&CONTROL NOSHRVARS NOVARSEG

-EXEC $BSCALL OPT=SEND

 TYPE={ALL | APPL | EASINET | TERMINAL |

 MAIAPPL | NCLAPPL | USERID | NOTIFY }

 [B1=textline1]

 [B2=textline2]

 [B3=textline3]

 [B4=textline4]

 [IMM={ YES | NO }]

 [MASK=usermask]

 [RETAIN={ PERM | VIEWED | NO }]

 [APPLPROC=procname]

$BSCALL OPT=SEND

1110 Network Control Language Reference Guide

Operands:

OPT=SEND

Specifies a broadcast that is to be sent and which users are to receive it.

TYPE={ALL | APPL | EASINET | TERMINAL |MAIAPPL | NCLAPPL | USERID |
NOTIFY }

Specifies the type of broadcast to send.

ALL

Broadcasts to all users. This includes EASINET users (where the
&BROLINE1 to 4 variables will be updated) and all product region users
who are currently logged on (executes the $NMBRO notification
procedure).

APPL

Specifies that an NCL application wishes to broadcast a message to
specific users. The broadcast will be actioned for signed on users whose
user ID matches the string specified on the MASK operand. The
APPLPROC operand is specified with this operand for a customized
notification procedure.

Note: The RETAIN=PERM operand cannot be specified with TYPE=APPL.

EASINET

Broadcasts to specific EASINET terminals. This only updates the
&BROLINE1 to 4 variables. The MASK operand must specify an LU name.

TERMINAL

Broadcasts to specific terminals, both EASINET and product region. This
includes EASINET users (where the &BROLINE1-4 variables will be
updated) and all product region users who are currently logged on
(executes the $NMBRO notification procedure). The MASK operand
must specify an LU name.

MAIAPPL

Broadcasts to MAI users of an application. The broadcast is sent based
on the results of a SHOW MAI=ALL command. The MASK operand must
specify a string that matches an MAI application name.

NCLAPPL

Broadcasts to users of NCL applications. This is based on the results of a
SHOW NCL=ALL command. The MASK operand must specify a string that
matches either the base or current procedure.

$BSCALL OPT=SEND

Chapter 6: Broadcast Services Interface 1111

USERID

Broadcasts to specific users. The broadcast will be actioned for
signed-on users whose user ID matches the string specified on the
MASK operand.

If the mask contains a user ID which does not contain any wildcard
characters, and RETAIN=PERM is specified, and the user ID is not
currently logged on to a region, the broadcast will be retained until the
broadcast is reviewed when the user logs on.

NOTIFY

Broadcasts to the user specified using the MASK operand, using their
preferred method of notification. The method of notification is defined
in the user's UAMS profile. (See the chapter “Working with UAMS” in
the Security Guide.)

The default method is a standard broadcast (option U) with RETAIN=NO.

B1=textline1

Specifies the text for broadcast line 1.

B2=textline2

Specifies the text for broadcast line 2.

B3=textline3

Specifies the text for broadcast line 3.

B4=textline4

Specifies the text for broadcast line 4.

IMM={ YES | NO }

This operand is only used for broadcasts to product region users (that is,
TYPE=ALL, ALLMASK, APPL, USERID, MAIAPPL and NCLAPPL). IMM=YES
causes the $NMBRO notification procedure to be executed immediately,
and the broadcast will interrupt the user's current work. This option is not
recommended as data is lost if the user is currently typing.

IMM=NO means that the broadcast will not be actioned until the next user
input, such as pressing Enter.

MASK= usermask

This operand is mandatory for the following types: NCLAPPL, MAIAPPL,
APPL, USERID, ALLMASK, EASINET, and NOTIFY.

An asterisk is used as a wildcard character anywhere within the mask string
for any type of broadcast except NOTIFY, which requires an exact user ID.

$BSCALL OPT=SEND

1112 Network Control Language Reference Guide

RETAIN={ PERM | VIEWED | NO }

Specifies the required retention of the broadcast.

PERM means that the broadcast that is sent shall be permanently retained,
but not across region restarts.

VIEWED causes the broadcast to be retained until it has been viewed by all
receivers. This is the default.

NO means that the broadcast will not be retained. That is, it will only be
available to users who are currently logged on.

APPLPROC=procname

Specifies the name of the procedure that the $NMBRO notification
procedure is to execute. The broadcast text is shared with the procedure in
the variables &$BSB1-4. This is valid only with OPT=APPL.

Return Codes:

&RETCODE = 0

$BSCALL completed successfully.

&RETCODE = 8

An error occurred. &SYSMSG is set with an error message.

Example: OPT=SEND

&CONTROL NOSHRVARS NOVARSEG

&TEXT = &STR PRODUCTION SYSTEM IS NOW AVAILABLE

-EXEC $BSCALL OPT=SEND TYPE=ALL B1=&TEXT RETAIN=NO

Note: If the text entered in the B1-4 fields contains imbedded blanks, $BSCALL
must be invoked with &CONTROL NOVARSEG in effect.

$BSCALL OPT=MENU

Chapter 6: Broadcast Services Interface 1113

$BSCALL OPT=MENU

Displays the Broadcast Services : Primary Menu.

&CONTROL NOSHRVARS NOVARSEG

-EXEC $BSCALL

OPT=MENU

Operands:

OPT=MENU

Specifies that the Broadcast Services Primary Menu is to be displayed.

Return Codes:

&RETCODE = 0

$BSCALL completed successfully.

&RETCODE = 1

RETURN key pressed.

&RETCODE = 8

An error occurred. &SYSMSG is set with an error message.

Example: OPT=MENU

&CONTROL NOSHRVARS

-EXEC $BSCALL OPT=MENU

$BSCALL OPT=LISTALL

1114 Network Control Language Reference Guide

$BSCALL OPT=LISTALL

Lists all active broadcasts.

&CONTROL NOSHRVARS NOVARSEG

-EXEC $BSCALL

OPT=LISTALL

Displays the Broadcast Services : List Broadcasts panel.

Operands:

OPT=LISTALL

Specifies that a list of active broadcasts is required.

Return Codes:

&RETCODE = 0

$BSCALL completed successfully.

&RETCODE = 1

RETURN key pressed.

&RETCODE = 8

An error occurred. &SYSMSG is set with an error message.

Examples: OPT=LISTALL

&CONTROL NOSHRVARS

-EXEC $BSCALL OPT=LISTALL

Note: This is the same as selecting option L on the Broadcast Services : Primary
Menu. This panel is used to view or delete the active broadcasts that are listed.

$BSCALL OPT=REVIEW

Displays the Broadcast Services : Review Broadcasts panel.

&CONTROL NOSHRVARS NOVARSEG

-EXEC $BSCALL OPT=REVIEW

 [TYPE={ TERMINAL | MAIAPPL | NCLAPPL | USERID | * }]

 [MASK=usermask]

To review outstanding broadcasts. The type of broadcasts to be displayed on
the review panel is limited by specifying the TYPE operand.

$BSCALL OPT=REVIEW

Chapter 6: Broadcast Services Interface 1115

Operands:

OPT=REVIEW

Specifies that a review of outstanding broadcasts is required.

TYPE={ TERMINAL |MAIAPPL | NCLAPPL | USERID | * }

Specifies the type(s) of broadcast to be displayed.

TERMINAL

Display broadcasts to specific product region terminals that were sent
using TYPE=TERMINAL or using the TA option on the Broadcast Services
Send panel.

MAIAPPL

Display permanent broadcasts to MAI users of an application.

NCLAPPL

Display permanent broadcasts to users of NCL applications.

USERID

Display broadcasts to specific users.

*

Display broadcasts that have been sent to the calling user ID or LU
name. A mask cannot be specified with this option. This is the default
TYPE.

MASK= usermaskl

The type of broadcast to be displayed determines the type of mask that
should be specified. The broadcast will be displayed if the mask specified
when the broadcast was sent matches the mask specified on this call.

Return Codes:

&RETCODE = 0

$BSCALL completed successfully.

&RETCODE = 1

RETURN key pressed.

&RETCODE = 8

An error occurred. &SYSMSG is set with an error message.

$BSCALL OPT=DISCARD

1116 Network Control Language Reference Guide

Examples: OPT=REVIEW

&CONTROL NOSHRVARS

-EXEC $BSCALL OPT=REVIEW TYPE=NCLAPPL MASK=SDI*

&CONTROL NOSHRVARS

-EXEC $BSCALL OPT=REVIEW TYPE=MAIAPPL MASK=PRODCICS

$BSCALL OPT=DISCARD

Decrements the outstanding receivers counter by one.

&CONTROL NOSHRVARS NOVARSEG

-EXEC $BSCALL OPT=DISCARD

 [ID=nnnnnnnn]

This call is made by the distributed $LOGPROC procedure when the message
N15577 is encountered. If the log proc procedure is customized, you must make
sure that the code that processes the broadcast discarded message is present in
the customized log proc procedure.

Operands:

OPT=DISCARD

Specifies that the outstanding receivers counter is to be decremented by
one.

ID=nnnnnnnn

This is the user-supplied broadcast ID. If this is not specified, your product
region will automatically generate a numeric broadcast ID, 8 digits in length.

Return Codes:

&RETCODE = 0

$BSCALL completed successfully.

&RETCODE = 8

An error occurred. &SYSMSG is set with an error message.

&RETCODE = 8

Example: OPT=DISCARD

&CONTROL NOSHRVARS

-EXEC $BSCALL OPT=DISCARD ID=123456

Notification Exit Interface

Chapter 6: Broadcast Services Interface 1117

Notification Exit Interface

A notification exit is an installation written NCL procedure which performs the
notification. The procedure is called with the following variables shared:

&$BSB1-n

These variables are set to the notification message lines.

&$BSBCNT

This variable is set to the number of lines of the notification.

&$BSUSER

This variable is set to the user ID specified in the notification rule. If it is
blank, the UAMS user ID is used.

&$BSPARMS

This variable is set to the parameters specified in the notification rule.

The exit is invoked via an EXEC command and must set the system variable
&RETCODE to indicate the following conditions:

0

Notification has been issued without errors.

8

Errors occurred. The notification might have been issued. The system
variable &SYSMSG is set with a message that describes the error.

Chapter 7: Dataset Services Interface 1119

Chapter 7: Dataset Services Interface

Notification Exit Interface

1120 Network Control Language Reference Guide

This section contains the following topics:

About the Dataset Services Interface (see page 1121)
$DSCALL OPT=ALIAS (see page 1132)
$DSCALL OPT=ALLOC (see page 1133)
$DSCALL OPT=ALLOC STAT=NEW (see page 1138)
$DSCALL OPT=ALLOC SYSOUT=class (see page 1143)
$DSCALL OPT=ALLOCINFO (see page 1146)
$DSCALL OPT=BROWSE (see page 1149)
$DSCALL OPT=CATLIST (see page 1150)
$DSCALL OPT=CLOSE (see page 1153)
$DSCALL OPT=COMPRESS (see page 1154)
$DSCALL OPT=CONCAT (see page 1156)
$DSCALL OPT=COPY (see page 1157)
$DSCALL OPT=COPYPDS (see page 1161)
$DSCALL OPT=COPYSEQ (see page 1164)
$DSCALL OPT=CREATE (see page 1167)
$DSCALL OPT=DECONCAT (see page 1171)
$DSCALL OPT=DELETE (see page 1172)
$DSCALL OPT=DELMEM (see page 1173)
$DSCALL OPT=DEQ (see page 1174)
$DSCALL OPT=DSNLIST (see page 1175)
$DSCALL OPT=DSNSPACE (see page 1176)
$DSCALL OPT=EDIT (see page 1177)
$DSCALL OPT=ENQ (see page 1178)
$DSCALL OPT=FCLOSE (see page 1179)
$DSCALL OPT=FINDMEM (see page 1181)
$DSCALL OPT=FOPEN (see page 1182)
$DSCALL OPT=INFO (see page 1187)
$DSCALL OPT= LISTC (see page 1190)
$DSCALL OPT=MEMLIST (see page 1195)
$DSCALL OPT=MOVE (see page 1198)
$DSCALL OPT=MOVEPACK (see page 1199)
$DSCALL OPT=OPEN (see page 1201)
$DSCALL OPT=PRINT (see page 1203)
$DSCALL OPT=READ (see page 1204)
$DSCALL OPT=RENAME (see page 1207)
$DSCALL OPT=RENMEM (see page 1208)
$DSCALL OPT=SHOWALLOC (see page 1209)
$DSCALL OPT=SUBMIT (see page 1211)
$DSCALL OPT=UNALL (see page 1212)
$DSCALL OPT=UTILITY (see page 1214)
$DSCALL OPT=VOLSPACE (see page 1217)
$DSCALL OPT=WRITE (see page 1218)

About the Dataset Services Interface

Chapter 7: Dataset Services Interface 1121

About the Dataset Services Interface

The Dataset Services interface allows you to perform sequential file support
functions in z/OS or MSP from product region applications. These functions
include:

■ Dynamically allocating sequential or partitioned data sets

■ Reading and writing to sequential data sets and PDS members

■ Manipulating members in PDS directories

■ Performing data set maintenance

■ Running utility functions

■ Performing compound functions

To call the Dataset Services options from an NCL procedure, execute the NCL
API $DSCALL, using keywords and shared variables.

This chapter describes the operands that is specified when executing $DSCALL
options, and the return codes and variables that are set on completion.

Note: A basic knowledge of z/OS or MSP JCL and system utilities is assumed.

Exit Procedures

Note: For details of the exit procedure supplied with Dataset Services,
NMDSSCHK, see the Security Guide.

The following table lists the $DSCALL options that can be invoked in alphabetical
order.

Option Function

OPT=ALIAS Creates an alias for a member of a PDS.

OPT=ALLOC Allocates an existing cataloged data set.

OPT=ALLOC
STAT=NEW

Creates a new data set.

OPT=ALLOC
SYSOUT=CLASS

Allocates a SYSOUT data set.

About the Dataset Services Interface

1122 Network Control Language Reference Guide

Option Function

OPT=ALLOCINFO Obtains allocation information by ddname or relative
allocation number.

OPT=BROWSE Opens a data set and displays a record.

OPT=CATLIST Displays a selection list of data sets that begin with a
specified high level qualifier.

OPT=CLOSE Closes an open data set.

OPT=COMPRESS Compresses a PDS.

OPT=CONCAT Concatenates a set of data sets under a single ddname.

OPT=COPY Copies sequential data sets or PDS members.

OPT=COPYPDS Copies a PDS member from a source data set to a
target data set.

OPT=COPYSEQ Copies a sequential data set from a source data set to
a target data set.

OPT=CREATE Creates a data set.

OPT=DECONCAT Deconcatenates a set of data sets.

OPT=DELETE Deletes a cataloged data set.

OPT=DELMEM Deletes a member of a PDS.

OPT=DEQ Releases an SPF ENQ.

OPT=DSNLIST Provides in variables a list of data sets concatenated to
a DD.

OPT=DSNSPACE Determines the amount of space in a data set.

OPT=EDIT Opens a data set and allows a record to be edited.

OPT=ENQ Performs an ENQ on a data set or member.

OPT=FCLOSE Combines the CLOSE option and the UNALLOCATE or
FREE option into a single call.

OPT=FINDMEM Provides a visual display of where a member is in a
concatenation.

About the Dataset Services Interface

Chapter 7: Dataset Services Interface 1123

Option Function

OPT=FOPEN Combines the ALLOC option for new or existing data
sets, and the OPEN option into one call.

OPT=FREE Deallocates a data set. See OPT=UNALL for a
description of this option.

OPT=INFO Combines the ALLOCATE option for an existing data
set, and the UNALL or FREE option into a single call
that retrieves data set information

OPT=LISTC Obtains or displays a list of data sets that begin with a
specified prefix.

OPT=MEMLIST Obtains or displays a list of PDS members.

OPT=MOVE Copies a sequential data set, then deletes the original
data set.

OPT=MOVEPACK Moves a data set to a specified volume.

OPT=OPEN Opens a sequential data set or member of a PDS for
input or output.

OPT=PRINT Opens a data set and allows one or more records to be
printed.

OPT=READ Reads one or more records from an open data set.

OPT=RENAME Renames a data set.

OPT=RENMEM Renames a member of a PDS.

OPT=SHOWALLOC Provides a full-screen display of allocated data sets.

OPT=SUBMIT Submits JCL.

OPT=UNALL Deallocates a data set.

OPT=UTILITY Executes the IBM utilities: IEBGENER, IEBCOPY,
IEHLIST, IEHMOVE and IDCAMS.

OPT=VOLSPACE Determines the amount of space available on a
volume.

OPT=WRITE Writes one or more records to an open data set.

About the Dataset Services Interface

1124 Network Control Language Reference Guide

Return Codes

Return codes for each option are returned in the variables &$DSRC and
&RETCODE. &$DSFDBK may also be set. The return codes are as follows:

RC=0

Function completed. &$DSFDBK will normally be 0 but can also be set to
another value to provide additional information. This is documented under
each specific function.

RC=4

A Dataset Services error has occurred and the function is incomplete. This is
typically a run-time error. The specific error is indicated in &$DSFDBK and
these are described in Feedback Codes in this chapter. The corresponding
message for each code is N16Cxx (where xx is the feedback code) and is
returned in &SYSMSG.

RC=8

A Dataset Services Interface error has occurred and the function is
incomplete. This is typically an application program specification error. The
error is indicated in &SYSMSG with message number DSnnnn.

RC=12

A system utility has returned a non-zero return code. This may be an error
or a warning. &$DSFDBK contains the return code from the system utility,
and the SYSPRINT file contains the output from the system utility.

Feedback Codes

$DSCALL returns a feedback code that further qualifies the return codes 0 and 4
as described above. The feedback code is returned in variable &$DSFDBK.

Some feedback codes represent successful completion of the function and may
be for information only. For example, feedback code 9 represents the normal
end of file condition when a READ operation reaches the end of a file or
member.

Note: A detailed description of the meaning of a feedback code is contained in
the online help for the message. To display the online help, enter the message
ID at the OCS command line and press the help function key (PF1).

About the Dataset Services Interface

Chapter 7: Dataset Services Interface 1125

The feedback codes (for return code 0 or 4) and their meanings are:

0

Function completed successfully

1

DDname not found

2

Data set not found

3

Member not found

4

Data set is not allocated

5

DYNALLOC failed

6

Data set is in use

7

Member replaced

8

Start of new directory

9

End of file or member

10

Write error on CLOSE

11

Stow error on CLOSE

12

Error on CLOSE

13

CLOSE ABEND occurred

About the Dataset Services Interface

1126 Network Control Language Reference Guide

14

Delete failure-not expired

15

Delete failure-SCRATCH failed

16

Rename failed

17

Rename failed, data set exists on more than one volume

18

Rename failed, data set is not on DASD

19

Reserved

20

Data set is migrated

21

Volume is not mounted

22

ENQ failed

23

Reserved

24

Data set is OPEN

25

Data set is VSAM

26

Reserved

27

Reserved

28

Reserved

About the Dataset Services Interface

Chapter 7: Dataset Services Interface 1127

29

Reserved

30

DCB OPEN failed

31

I/O error occurred

32

DCB ABEND occurred

33

Record supplied for WRITE is invalid length

34

Directory block length is invalid

35

OPEN mode is invalid

36

Userdata is invalid length

37

Number of userdata TTRs is invalid

38

PDS cannot be opened with MODE=EXTEND or DISP=MOD

39

Reserved

40

Invalid ddname

41

Invalid member name

42

Invalid second member name

43

Invalid data set name

About the Dataset Services Interface

1128 Network Control Language Reference Guide

44

Invalid second data set name

45

An invalid parameter was specified

46

DDLIST format is invalid

47

DDLIST must contain at least two ddnames

48

Invalid DDLIST, Duplicate DDNAME found

49

Reserved

50

Specified DSORG is invalid for this request

51

No member name has been specified

52

No member name may be specified

53

Spanned RECFM is not supported by Dataset Services

54

New member name already exists

55

PDS directory is full

56

Specified ENQ is already held

57

Specified ENQ is not held

58

Reserved

About the Dataset Services Interface

Chapter 7: Dataset Services Interface 1129

59

Reserved

60

Unable to determine allocation request type

61

ALLOC MDO operand has been omitted

62

ALLOC MDO operand is not allowed

63

ALLOC MDO operand is invalid

64

DYNALLOC request refused by SMS

65

Allocation relative request number reached

66

Last allocation relative request number does not exist

67

Data set already exists

68

DDNAME is already in use

69

Reserved

70

MDO update failed

71

ATTACH of system utility module failed

72

Obtain of data set information failed

73

RDJFCB failed

About the Dataset Services Interface

1130 Network Control Language Reference Guide

74

OBTAIN failed

75

Unexpected ENQ/DEQ return code

76

NOTE failed

77

Unexpected return code from function

78

Unexpected ABEND occurred in function

79

Reserved

80

Path name is invalid

81

Path name is already defined

82

Path name is not defined

83

Path name is wrong access class

84

Request is not valid on path now

85

Path has had a previous error

86

Subtask status is invalid

87

NMDSSCHK exit has failed

88

NMDSSCHK exit has refused request

About the Dataset Services Interface

Chapter 7: Dataset Services Interface 1131

89

Reserved

90

Request is not supported

91

An ABEND has occurred

92

Request has been canceled

93

A storage shortage has occurred

94

Reserved

95

Reserved

96

Reserved

97

Reserved

98

Reserved

99

Dataset Services has entered shutdown

$DSCALL OPT=ALIAS

1132 Network Control Language Reference Guide

$DSCALL OPT=ALIAS

Creates an alias for a member of a PDS.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=ALIAS

 DSN=dataset_name

 MEMBER=member_name

 ALIAS=member_name

This call is used to create an alias entry for a member of a PDS. The alias entry
inherits the SPF statistics of the original member. This call fails if a member with
the same alias name already exists.

Operands:

OPT=ALIAS

Specifies that an alias be created for a member of a PDS.

DSN=dataset_name

Specifies the name of the PDS containing the member. No member name is
specified.

MEMBER=member_name

Specifies the existing member for which an alias is to be created.

ALIAS=member_name

Specifies the alias name to be created. Any subsequent references to this
name result in access to the member specified in the MEMBER operand.

Return Codes:

For information on &SYSMSG, &$DSRC, and &$DSFDBK, see Return Codes and
Feedback Codes in this chapter.

Example: OPT=ALIAS

EXEC $DSCALL OPT=ALIAS DSN=CUSTOMER.DATA MEMBER=TEST01 + ALIAS=PROD01

$DSCALL OPT=ALLOC

Chapter 7: Dataset Services Interface 1133

$DSCALL OPT=ALLOC

Allocates an existing cataloged data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=ALLOC

 DSN=dataset_name

 [DD=DD_name]

 [DISP= { KEEP | DELETE } [, { KEEP | DELETE }]]

 [MIGRATE= { YES | NO }]

 [MOUNT= { NO | YES }]

 [STAT= { OLD | MOD | SHR }]

 [INFO= { YES | WAIT | NOWAIT | NO }]

This call is used to allocate an existing cataloged data set to your product region.
The data set remains allocated to your product region until it is explicitly
deallocated, or your product region terminates.

Operands:

OPT=ALLOC

Specifies that a data set is to be allocated.

DSN=dataset_name

Specifies the data set name to allocate.

DD=DD_name

Specifies the ddname for the allocation. If this operand is omitted, a
ddname is generated by the operating system.

DISP={ KEEP | DELETE } [, { KEEP | DELETE }]

Specifies the Normal and Conditional Disposition of the data set. The
disposition relates to the normal or conditional termination of your product
region, not of the requesting NCL process. If KEEP is specified, the data set
remains cataloged. If DELETE is specified, the data set is uncataloged and
deleted.

MIGRATE={ YES | NO }

Specifies whether to allocate a data set if it has been migrated. If
MIGRATE=NO is specified, Dataset Services checks that the data set has
been migrated (for example, by DFHSM). If the data set has been migrated,
Dataset Services rejects the allocation request. If MIGRATE=YES is specified,
Dataset Services issues the allocation request without checking that the
data set has been migrated.

$DSCALL OPT=ALLOC

1134 Network Control Language Reference Guide

MOUNT={ NO | YES }

Specifies whether a volume mount is allowed. If MOUNT=NO is specified,
and an allocation request requires a volume which is off-line, the allocation
request fails. If MOUNT=YES is specified and an allocation request requires a
volume which is off-line, a MOUNT request for the volume is issued.

STAT= { OLD | MOD | SHR }

Specifies the data set status.

INFO= { YES | WAIT | NOWAIT | NO }

Allocation information is obtained by using the Dynamic Allocation (SVC 99)
services, which require the SYSZTIOT system resource, which may not be
available. The INFO= parameter specifies whether allocation information is
required and, if so, the action required when SYSZTIOT is not available:

INFO=YES

Indicates that information is required. If the SYSZTIOT resource is not
immediately available, then $DSCALL retries the allocation information
request up to five times at two-second intervals. This is the default.

INFO=WAIT

Also indicates that information is required. If the SYSZTIOT resource is
not immediately available, then $DSCALL retries the allocation
information request at two-second intervals until the information is
available.

INFO=NOWAIT

Also indicates that information is required. If the SYSZTIOT resource is
not immediately available, then $DSCALL does not retry.

INFO=NO

Indicates that allocation information is not required.

If allocation information is requested (INFO=YES, INFO=WAIT, or
INFO=NOWAIT), then the information is returned as described in the Return
Variables section below. If allocation information is not requested (INFO=NO) or
the SYSZTIOT resource is not available after any retries (INFO=YES or
INFO=NOWAIT), then the return variables are undefined.

$DSCALL OPT=ALLOC

Chapter 7: Dataset Services Interface 1135

Return Codes:

$DSR
C

$DSFDB
K

Meaning

0 0 Data set was allocated; allocation details available in &$DS*
variables as described below.

0 non-zer
o

Data set was allocated; however, allocation details are
incomplete.

4 non-zer
o

Data set was not allocated.

8 non-zer
o

A Dataset Services Interface error has occurred and the
function is incomplete. This is typically an application
program specification error. The error is indicated in
&SYSMSG with message number DSnnnn.

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSSTAT

Status of data set; values are OLD, MOD, or SHR

&$DSDSN

Full data set name with member name omitted, and true name if an alias
was entered

&$DSMEM

Member name if a member of a PDS

&$DSORG

Data set organization; values are PS, PO, PSU, POU, CX, CQ, MQ, GS, TX, TQ,
TR, and VS

&$DSVOL

First volume

&$DSUNIT

Unit name for the volume

$DSCALL OPT=ALLOC

1136 Network Control Language Reference Guide

&$DSRECF

Record format; values are F,FB, FS, FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM,
FBSM, V, VB, VS, VBS, VBSA, VM, VBM, VSM, VBSM, U, UA, UM

&$DSRECL

Record length

&$DSRECA

Actual usable record length. If the record format is variable length, then the
value is record length minus 4. In all other cases the value is the same as
record length.

&$DSBLKS

Block size

&$DSDDNAME

DDname from the allocation, as supplied or as generated by the operating
system

&$DSSTORCLS

SMS storage class if SMS is active for this data set

&$DSMGMTCLS

SMS management class if SMS is active for this data set

&$DSDATACLS

 SMS data class if SMS is active for this data set

&$DSDYNEC

DYNALLOC error code

&$

DYNALLOC information code

Examples: OPT=ALLOC

EXEC $DSCALL OPT=ALLOC DSN=CUSTOMER.DATA STAT=SHR

$DSCALL OPT=ALLOC

Chapter 7: Dataset Services Interface 1137

Notes:

Only cataloged data sets are supported. Unit and volume parameters are not
supported by this function.

If the data set has been migrated, the allocation may be delayed if a tape mount
is required to recover the migrated data set.

Allocation of a data set uses the Dynamic Allocation (SVC 99) services, which
require the SYSZTIOT system resource. An unconditional SVC 99 is used at first.
This causes the allocation function to wait if SYSZTIOT is unavailable.

If allocation fails, then &$DSRC is set to 4 and specific information is made
available in &$DSFDBK, &$DSDYNEC, &$DSDYNIC, and &SYSMSG.

If the data set is allocated, then &$DSRC is always set to zero. If allocation
information was requested (INFO=YES, INFO=WAIT, or INFO=NOWAIT), then a
conditional SVC 99 is used to obtain the allocation information which is returned
in the &$DS* variables. If the information is available in the return variables,
then &$DSFDBK is also set to zero. If INFO=YES or INFO=NOWAIT was specified,
then failure of the allocation information request due to SYSZTIOT being
unavailable is indicated by the following:

&$DSFDBK = 5

&$DSDYNEC = 0254

More information:

$DSCALL OPT=ALLOCINFO (see page 1146)

$DSCALL OPT=ALLOC STAT=NEW

1138 Network Control Language Reference Guide

$DSCALL OPT=ALLOC STAT=NEW

Creates and allocates a new non-VSAM data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=ALLOC STAT=NEW

 FORMAT=dataset_format

 ORG=dataset_organization

 SPACE={ TRK | CYL } , pri,sec [,dir]

 [BLKSIZE=blocksize]

 [DATACLS=class]

 [DD=DD_name]

 [DISP={ KEEP | DELETE } [, { KEEP | DELETE }]]

 [DSN=dataset_name]

 [DSNTYPE={ HFS | LIBRARY | PDSE }]

 [FREE={ UNAL | CLOSE }]

 [LRECL=logical_record_length]

 [MGMTCLS=class]

 [MOUNT={ NO | YES }]

 [RLSE={ NO | YES }]

 [STORCLS=class]

 [VOL=volser [UNIT=unit]]

This call is used to create a new data set and allocate it to your product region.
The data set remains allocated to your product region until it is explicitly
deallocated, until a CLOSE is requested if allocated with FREE=CLOSE, or until
your product region terminates. When the data set is deallocated or your
product region terminates, the data set is deleted if the relevant disposition
specified DELETE.

Operands:

OPT=ALLOC

Specifies that a data set is to be allocated.

STAT=NEW

Specifies that the status of the data set is NEW.

FORMAT=dataset_format

Specifies the data set format for the new data set. Valid values are: F, FB, FS,
FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM, FBSM, V, VB, VS, VBS, VBSA, VM
VBM, VSM, VBSM, U, UA, UM.

ORG=dataset_organization

Specifies the data set organization for the new data set. Valid values are: PS,
PO, PSU, and POU.

$DSCALL OPT=ALLOC STAT=NEW

Chapter 7: Dataset Services Interface 1139

SPACE={ TRK | CYL } , pri,sec [,dir]

Specifies the space allocation in tracks or cylinders. The SPACE type and
primary allocation quantity are required. The directory allocation quantity is
required if the data set is a PDS.

BLKSIZE=blocksize

Specifies the block size for the new data set. The value must be an integer in
the range 0 to 32,760.

DATACLS=class

Specifies the SMS data class.

DD=DD_name

Specifies the ddname for the allocation. If this operand is omitted, a
ddname is generated by the operating system.

DISP={ KEEP | DELETE } , { KEEP | DELETE }

Specifies the Normal and Conditional Disposition of the data set. The
disposition relates to the normal or conditional termination of your product
region, not of the requesting NCL process. If KEEP is specified, the data set
remains cataloged.

If DELETE is specified, the data set is uncataloged and deleted.

If a temporary data set is allocated (that is, the DSN operand is omitted)
then DISP=DELETE, DELETE is forced. This ensures the data set is deleted
when it is deallocated or when your product region terminates.

If the DSN operand is specified and the DISP operand is omitted, DISP
defaults to KEEP. In this case the data set will be cataloged. If your product
region terminates abnormally, the action taken is decided by the operating
system.

DSN=dataset_name

Specifies the data set name to be created. If the DSN operand is omitted, a
temporary data set is allocated. When a temporary data set is allocated, no
disposition is allowed and DELETE, DELETE is forced.

$DSCALL OPT=ALLOC STAT=NEW

1140 Network Control Language Reference Guide

DSNTYPE={ HFS | LIBRARY | PDSE }

Specifies whether you want to create a Hierarchical File System (HFS) file or
a PDSE data set:

HFS

Specifies an HFS file

LIBRARY or PDSE

Specifies a PDSE data set

FREE={ UNAL | CLOSE }

Specifies whether the data set is to be deallocated by explicit request only
(FREE=UNAL) or is to be deallocated when the file is closed (FREE=CLOSE).

LRECL=logical_record_length

Specifies the logical record length for the new data set. The value must be
an integer in the range 1 to 32,760.

MGMTCLS=class

Specifies the SMS management class.

MOUNT={ NO | YES }

Specifies whether a volume mount is allowed. If MOUNT=NO is specified,
and an allocation request requires a volume which is off-line, the allocation
request fails. If MOUNT=YES is specified and an allocation request requires a
volume which is off-line, a MOUNT request for the volume is issued.

RLSE={ NO | YES }

Specifies the secondary space release option.

STORCLS=class

Specifies the SMS storage class.

VOL=volser [UNIT=unit]

Specifies the volume serial number and unit name for the new allocation. If
the VOL operand is omitted, the operating system determines if the
allocation is allowed, and may choose to allocate the data set or any volume
which the requesting user is authorized for.

$DSCALL OPT=ALLOC STAT=NEW

Chapter 7: Dataset Services Interface 1141

Return Codes:

$DSRC $DSFDB
K

Meaning

0 0 Data set was allocated; allocation details available in
&$DS* variables as described below.

0 non-zer
o

Data set was allocated; however, allocation details are
incomplete.

4 non-zer
o

Data set was not allocated.

8 non-zer
o

A Dataset Services Interface error has occurred and the
function is incomplete. This is typically an application
program specification error. The error is indicated in
&SYSMSG with message number DSnnnn.

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSSTAT

Status of data set; value is NEW

&$DSDSN

Full data set name with member name omitted, and true name if an alias
was entered

&$DSDSNTYPE

Type of file or data set; value is HFS or LIBRARY

&$DSMEM

Member name if a member of a PDS

&$DSORG

Data set organization; values are PS, PO, PSU, and POU

&$DSVOL

First volume

&$DSUNIT

Unit name for the volume

$DSCALL OPT=ALLOC STAT=NEW

1142 Network Control Language Reference Guide

&$DSRECF

Record format, values are F, FB, FS, FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM,
FBSM, V, VB, VS, VBS, VBSA, VM, VBM, VSM, VBSM, U, UA, UM

&$DSRECL

Record length

&$DSRECA

Actual usable record length. If the record format is variable length, then the
value is record length minus 4. In all other cases the value is the same as
record length.

&$DSBLKS

Block size

&$DSDDNAME

DDname from the allocation, as supplied or as generated by the operating
system

&$DSSTORCLS

SMS storage class if SMS is active for this data set

&$DSMGMTCLS

SMS management class if SMS is active for this data set

&$DSDATACLS

SMS data class if SMS is active for this data set

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

Example: STAT=NEW

EXEC $DSCALL OPT=ALLOC DSN=CUSTOMER.DATA STAT=NEW +

 ORG=PO FORMAT=FB BLKSIZE=800 +

 LRECL=80 SPACE='TRK,5,1,10'

Note: Most non-VSAM data sets is allocated. However, IS and DA data sets are
not supported.

$DSCALL OPT=ALLOC SYSOUT=class

Chapter 7: Dataset Services Interface 1143

More information:

$DSCALL OPT=ALLOC (see page 1133)

$DSCALL OPT=ALLOC SYSOUT=class

Allocates a SYSOUT data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=ALLOC

 SYSOUT=class

 [BLKSIZE=blocksize]

 [COPIES=copies]

 [DD=DD_name]

 [DESTID=destination_ID]

 [FCB=fcb]

 [FOLD= { NO | YES }]

 [FORMAT=dataset_format]

 [FREE= { UNAL | CLOSE }]

 [HOLD= { NO | YES }]

 [LRECL=logical_record_length]

 [PGM=program_name]

 [UCS=ucs]

 [USERID=user_ID]

This call is used to allocate a SYSOUT data set to your product region. The data
set remains allocated to your product region until it is explicitly deallocated,
until a CLOSE is requested if allocated with FREE=CLOSE, or until your product
region terminates.

Operands:

OPT=ALLOC

Specifies that a data set is to be allocated.

SYSOUT=class

Specifies the SYSOUT data set class. The value must be a single alphabetic
character which represents a valid SYSOUT class in the system in which your
product region is executing.

BLKSIZE=blocksize

Specifies the block size for the data set. The value must be an integer in the
range 1 to 32,760.

$DSCALL OPT=ALLOC SYSOUT=class

1144 Network Control Language Reference Guide

COPIES=copies

Specifies the number of SYSOUT copies. The value must be an integer in the
range 1 to 255. If the operand is not specified, one copy is produced.

DD=DD_name

Specifies the ddname for the allocation. If this operand is omitted, a
ddname is generated by the operating system.

DESTID=destination_ID

Specifies the Remote Workstation Identifier of the workstation to which the
data set is to be routed. The value must be 1 to 8 characters.

FCB=fcb

Specifies the SYSOUT Forms Control Block (FCB) Image Identifier. The value
must be 1 to 4 characters.

FOLD={ NO | YES }

Specifies the SYSOUT fold option.

FORMAT=dataset_format

Specifies the data set format. Valid values are: F, FB, FS, FBS, FA, FBA, FSA,
FBSA, FM, FBM, FSM, FBSM, V, VB, VS, VBS, VBSA, VM VBM, VSM, VBSM, U,
UA, UM.

FREE={ UNAL | CLOSE }

Specifies whether the data set is to be deallocated by explicit request only
(FREE=UNAL) or is to be deallocated when the file is closed (FREE=CLOSE).

HOLD={ NO | YES }

Specifies the SYSOUT hold option.

LRECL=logical_record_length

Specifies the logical record length for the data set. The value must be an
integer in the range 1 to 32,760.

PGM=program_name

Specifies the SYSOUT program name. The value must be a 1- to 8-character
name that conforms to PDS member naming conventions. See the notes on
$DSCALL OPT=ALLOC.

$DSCALL OPT=ALLOC SYSOUT=class

Chapter 7: Dataset Services Interface 1145

UCS=ucs

Specifies the SYSOUT Universal Character Set name. The value must be 1 to
4 characters.

USERID=user_ID

Specifies the user ID of the user at the remote workstation who will receive
the data set.

Return Codes:

$DSRC $DSFDBK Meaning

0 0 Data set was allocated; allocation details available in
&$DS* variables as described below.

0 non-zero Data set was allocated; however, allocation details are
incomplete.

4 non-zero Data set was not allocated.

8 non-zero A Dataset Services Interface error has occurred and the
function is incomplete. This is typically an application
program specification error. The error is indicated in
&SYSMSG with message number DSnnnn.

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSRECF

Record format; values are F, FB, FS, FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM,
FBSM, V, VB, VS, VBS, VBSA, VM, VBM, VSM, VBSM, U, UA, UM

&$DSRECL

Record length

&$DSRECA

Actual usable record length. If the record format is variable length, then the
value is record length minus 4. In all other cases, the value is the same as
record length.

&$DSBLKS

Block size

$DSCALL OPT=ALLOCINFO

1146 Network Control Language Reference Guide

&$DSDDNAME

DDname from the allocation, as supplied or as generated by the operating
system

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

Examples: SYSOUT=class

EXEC $DSCALL OPT=ALLOC +

 SYSOUT=X BLKSIZE=121 LRECL=121 FORMAT=FBA

Note: If PGM=INTRDR is specified, the SYSOUT file is used to submit JCL for
execution; however, it is recommended that the $DSCALL OPT=SUBMIT function
is used.

More information:

$DSCALL OPT=ALLOC (see page 1133)

$DSCALL OPT=ALLOCINFO

Obtains allocation information by ddname or relative allocation number.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=ALLOCINFO

 { DD=DD_name | RELNUM=number }

This call is used to obtain information about a data set that is allocated to your
product region. The data set to be queried is specified using the ddname of the
data set, or by specifying the relative allocation number for the data set. If the
ddname method is used, information can only be obtained about the first data
set in the concatenation. If the relative allocation number method is used,
information is obtained about any data set allocated to your product region.

$DSCALL OPT=ALLOCINFO

Chapter 7: Dataset Services Interface 1147

Operands:

OPT=ALLOC

INFO Specifies that allocation information is to be obtained.

DD=DD_name

Specifies the ddname of the data set for which information is to be
obtained.

RELNUM=number

Specifies the relative allocation number assigned by the operating system.
The number must be an integer in the range 1 to 32,760. A full list of data
sets allocated to your product region is obtained by requesting information
using RELNUM=1, RELNUM=2, and so on. When the last data set allocated
to your product region is reached, a feedback code of 65 (&$DSFDBK=65) is
returned to indicate the last data set has been reached.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

&$DSFDBK

Feedback code

&$DSSTAT

Status of data set; values are NEW, OLD, MOD, or SHR

&$DSDSN

Full data set name or true name if an alias is used

&$DSMEM

Member name if a member of a PDS

&$DSORG

Data set organization; values are PS, PO, PSU, POU, CX, CQ, MQ, GS, TX, TQ,
and TR

$DSCALL OPT=ALLOCINFO

1148 Network Control Language Reference Guide

&$DSDDNAME

DDname for allocation. If you perform a query through RELNUM then this
variable may be blank if the relative number is part of a concatenation.

&$DSSTORCLS

SMS storage class if SMS is active for this data set

&$DSMGMTCLS

SMS management class if SMS is active for this data set

&$DSDATACLS

SMS data class if SMS is active for this data set

&$DSCDISP

Conditional data set disposition

&$DSNDISP

Normal data set disposition

Example: OPT=ALLOCINFO

EXEC $DSCALL OPT=ALLOCINFO DD=SYSDD

Notes:

The ALLOCINFO function requires access to a system resource called SYSZTIOT
that is also used by other functions such as ALLOCATE. The SYSZTIOT resource is
come unavailable for a long period (for example, when waiting for a tape mount
to be satisfied if a data set being allocated has been migrated to tape by
DFHSM).

To avoid possible delays in the completion of Dataset Services functions, your
product region checks to ensure that the SYSZTIOT resource is available. If it is
unavailable, the request fails immediately rather than waiting for SYSZTIOT to
become available. This should be taken into consideration when writing NCL
procedures which use the Allocation Information Query function.

Failure of an allocation information request due to SYSZTIOT being unavailable
is indicated by the following:

&$DSFDBK = 5

&$DSDYNEC = 0254

$DSCALL OPT=BROWSE

Chapter 7: Dataset Services Interface 1149

$DSCALL OPT=BROWSE

Displays a sequential data set or member of a PDS for browsing.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=BROWSE

 DATA={ }

 DD=DD_name or DSN=dataset_name

 [MEMBER=member_name]

 [LIMIT=number]

 [TRUNCATE=number]

Use this option to display the records in a member of a data set. This is a display
only function.

Operands:

OPT=BROWSE

Specifies that a browse action is to be performed.

DATA={ }

Specifies the records to be read.

DD=DD_name or DSD=dataset_name

Specifies the ddname or data set name of the data set to be opened for
browsing.

MEMBER=member_name

Specifies the member name. If the DD operand is used to identify a
concatenated data set, the member is obtained from the first data set that
it exists in.

LIMIT=number

Specifies the maximum number of records to be browsed in the file. This
operand is only applicable if DATA=* is specified.

TRUNCATE=number

Specifies the length to which the records displayed from the file are
truncated. The value TRUNCATE operand must be in the range 1 to 32,760.

$DSCALL OPT=CATLIST

1150 Network Control Language Reference Guide

$DSCALL OPT=CATLIST

Displays a selection list of data sets that begin with a specified name prefix.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=CATLIST

 QUAL= qualifier

This call allows users of your product region to obtain a full-screen selection list
of cataloged data sets that have a specified name prefix. The list is obtained by
your product region using an IDCAMS LISTCAT operation. When the list is
displayed, the user can obtain data set information about data sets in the list.

Operands:

OPT=CATLIST

Specifies that a selection list of data sets be obtained.

QUAL=qualifier

The fully qualified name prefix for the list of data sets to be displayed. The
qualifier can consist of more than one level.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

$DSCALL OPT=CATLIST

Chapter 7: Dataset Services Interface 1151

Example: OPT=CATLIST

EXEC $DSCALL OPT=CATLIST QUAL=PROD1.MAIN

The CATLIST option returns a selection list such as the one shown in the first
example that follows. Enter S beside a data set to select it and display data set
information, as shown in second example that follows.

The following is an example of OPT=CATLIST Output:

 USER01------------ Dataset Services : Listcat Output ---------------------
 Command ===> Scroll ===> PAGE

 S/=Select B=Browse E=Edit P=Print M=Memlist
 D=Delete R=Rename SUB=Submit RC=Recall
 Dataset Name Catalog Volume Created
 PROD1.MAIN.ALERTCKP VMVS005 17-AUG-2008
 PROD1.MAIN.ALERTCKP.DATA VMVS005 MVS007 17-AUG-2008
 PROD1.MAIN.ALERTCKP.INDX VMVS005 MVS007 17-AUG-2008
 S PROD1.MAIN.ALERTHST VMVS005 17-AUG-2008
 PROD1.MAIN.ALERTHST.DATA VMVS005 MVS007 17-AUG-2008
 PROD1.MAIN.ALERTHST.INDX VMVS005 MVS007 17-AUG-2008
 PROD1.MAIN.BASE.INSTALL VMVS005 PGM002 16-AUG-2008
 PROD1.MAIN.CMDLIB VMVS005 PGM002 16-AUG-2008
 PROD1.MAIN.CSI VMVS005 16-AUG-2008
 PROD1.MAIN.CSI.DATA VMVS005 PGM002 16-AUG-2008
 PROD1.MAIN.CSI.INDEX VMVS005 PGM002 16-AUG-2008
 PROD1.MAIN.HELP VMVS005 PGM002 16-AUG-2008
 PROD1.MAIN.ICOPANL VMVS005 17-AUG-2008
 PROD1.MAIN.ICOPANL.DATA VMVS005 MVS007 17-AUG-2008
 PROD1.MAIN.ICOPANL.INDX VMVS005 MVS007 17-AUG-2008
 PROD1.MAIN.INSTAL VMVS005 PGM002 16-AUG-2008
 F1=Help F2=Split F3=Exit F5=Find F6=Refresh
 F7=Backward F8=Forward F9=Swap

$DSCALL OPT=CATLIST

1152 Network Control Language Reference Guide

The following is an example of Information for a Selected Data Set:

 USER01------------------- PROD1.MAIN.ALERTHST -----------Columns 001 079
 Command ===> Scroll ===> PAGE
 **************************** TOP OF DATA *******************************
 Dataset name PROD1.MAIN.ALERTHST
 Dataset organization ... VSAM
 Dataset record format ..
 Logical record length ..
 Dataset blocksize
 Dataset volume MVS007
 Dataset unit 3380
 Storage class DASD
 Number of extents 0
 Create date 17-AUG-2008
 Expiration date None
 Last reference date Not available
 Tracks per cylinder 15
 Primary tracks 0
 Allocated tracks 0
 Used tracks 0
 Secondary allocation ... 0
 *************************** BOTTOM OF DATA *****************************
 F1=Help F2=Split F3=Exit F4=Return F5=Find
 F7=Backward F8=Forward F9=Swap F10=Left F11=Right

Note: This function performs an IDCAMS LISTCAT to obtain the list of data sets.
The SYSPRINT data set is automatically deleted. The only option available on the
selection list is used to obtain data set information. The information is returned
unless the data set is migrated.

$DSCALL OPT=CLOSE

Chapter 7: Dataset Services Interface 1153

$DSCALL OPT=CLOSE

Closes an open data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=CLOSE

 { DD=DD_name | ID=path_name }

Use this function to close an open data set.

Operands:

OPT=CLOSE

Specifies that a close action be performed.

DD=DD_name

Specifies the ddname of the data set to close. This operand is used if the
path ID is not provided.

ID=path_name

Specifies the path ID of the data set to close.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=CLOSE

EXEC $DSCALL OPT=CLOSE DD=SYSDD

Note: For an OUTPUT data set, the final block is written. This may cause an
ABEND message if the data set exceeds its size limit.

$DSCALL OPT=COMPRESS

1154 Network Control Language Reference Guide

$DSCALL OPT=COMPRESS

Compresses a PDS.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=COMPRESS

 DSN=dataset_name

 [DISPLAY= {YES | NO }]

 [STAT= { OLD | SHR }]

 [SYSPRINT= { DELETE | KEEP | DSN }]

This call is used to compress a PDS using IEBCOPY. The compress function is
used to reclaim unused space in the data set. This reduces fragmentation within
the PDS and can result in more efficient use of the space allocated to the PDS.

Operands:

OPT=COMPRESS

Specifies that the data set be compressed.

DSN=dataset_name

Specifies the name of the data set to be compressed. No member name is
specified.

DISPLAY={YES | NO }

Specifies whether to display the output on completion of the function. This
operand is only valid if SYSPRINT=DSN is specified. If DISPLAY=YES is
specified, a full-screen display of the SYSPRINT data set is presented after
the compress operation has completed.

STAT={ OLD | SHR }

Specifies if the data set to be compressed is allocated exclusively for
IEBCOPY (STAT=OLD) or is allowed to be shared with other users
(STAT=SHR). It is recommended that STAT=OLD be specified to avoid the
possibility of the PDS being corrupted if another user updates the PDS
during the compress operation.

$DSCALL OPT=COMPRESS

Chapter 7: Dataset Services Interface 1155

SYSPRINT={ DELETE | KEEP | DSN }

Specifies the type of data set to be allocated to the SYSPRINT DD for
IEBCOPY.

■ If SYSPRINT=KEEP is specified, your product region allocates a SYSOUT
file with CLASS=A. After the compress operation has completed, the
SYSOUT data set is deallocated with DISP=KEEP to cause it to be kept.
The output from the compress operation is browsed through, for
example, SDSF.

■ If SYSPRINT=DELETE is specified, your product region allocates a SYSOUT
file with CLASS=A. After the compress operation has completed, the
SYSOUT file is deallocated with DISP=DELETE to cause it to be deleted.
The output from the compress operation cannot be browsed.

■ If SYSPRINT=DSN is specified, your product region allocates a temporary
data set which is deleted when your product region terminates. The
output from the compress operation is browsed through ISPF or by
specifying DISPLAY=YES for this call. The data set is not deallocated from
your product region on completion of the compress operation. The data
set name, ddname, and volume for the data set are returned to the
caller in variables. Use $DSCALL with OPT=FREE specifying the SYSPRINT
ddname to remove the data set created by SYSPRINT.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSPRINTDSN

SYSPRINT data set name if SYSPRINT=DSN is specified, or SYSOUT=A if
SYSPRINT=DELETE or SYSPRINT=KEEP

&$DSPRINTDD

SYSPRINT ddname

&$DSPRINTVOL

SYSPRINT data set volume

Example: OPT=CLOSE

EXEC $DSCALL OPT=CLOSE DSN=SYS.WORK.DEV01 STAT=SHR +

 SYSPRINT=DSN DISPLAY=NO

Note: IEBCOPY is invoked internally.

$DSCALL OPT=CONCAT

1156 Network Control Language Reference Guide

$DSCALL OPT=CONCAT

Concatenates a set of data sets under a single ddname.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=CONCAT

 DDLIST=' ddname1, ddname2, ... ddnamen '

This call is used to concatenate two or more ddnames which are allocated to
your product region under a single ddname. Each ddname in the list to be
concatenated may be a single data set allocation or may itself be a
concatenated DD.

Operands:

OPT=CONCAT

Specifies that data sets are to be concatenated.

DDLIST='ddname1, ddname2,...ddnamen '

Specifies the list of ddnames to be concatenated. The DDs are concatenated
in the order in which they appear in the list. The resulting concatenated DD
is assigned the first ddname in the list. All ddnames in the list other than the
first cannot be directly referenced after concatenation has completed. An
attempt to directly reference these ddnames will be rejected by the
operating system. If the DD is subsequently deconcatenated, the original
ddnames is directly referenced again. For more information, see $DSCALL
OPT=DECONCAT.

Note: A maximum of 50 ddnames is specified in the DDLIST parameter.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

$DSCALL OPT=COPY

Chapter 7: Dataset Services Interface 1157

Example: OPT=CONCAT

EXEC $DSCALL OPT=CONCAT DDLIST='DD1,DD2'

This example concatenates all data sets allocated under the ddname 'DD2' to
the 'DD1' DD data set list. The resulting DD is called 'DD1' and the ddname 'DD2'
is no longer recognized by the operating system.

Note: Data sets that are concatenated in the JCL for your product region are
deemed to be permanently concatenated, which means the DD cannot be
deconcatenated. Data sets that are dynamically concatenated by your product
region is deconcatenated.

$DSCALL OPT=COPY

Copies sequential data sets or PDS members.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=COPY

 FROMDSN=dataset_name

 TODSN=dataset_name

 [DISPLAY= { YES | NO }]

 { MEMBER=member_name |

 MEMBER={ * | member_name [, member_name,...] } }

 [REPLACE= { YES | NO }]

 [STAT= { SHR | OLD }]

 [SYSPRINT= { KEEP | DELETE | DSN }]

This call is used to copy a sequential data set to another sequential data set, a
sequential data set to a PDS member, a PDS member to a sequential data set, or
PDS members to another PDS.

$DSCALL OPT=COPY

1158 Network Control Language Reference Guide

Operands:

OPT=COPY

Specifies that the sequential data set or PDS members be copied.

FROMDSN=dataset_name

Specifies the name of the sequential data set or PDS to be copied.

■ If the value of the FROMDSN operand is a sequential data set, the value
of the TODSN operand is a sequential data set or a PDS with a single
member name specified.

■ If the value of the FROMDSN operand is a PDS with no member name
specified, the value of the TODSN operand must be a PDS and cannot
have a member name specified. A selection list is presented to allow
selection of individual members to be copied.

■ If the value of the FROMDSN operand is a PDS with an asterisk (*)
specified as the member name, the value of the TODSN operand must
also be a PDS, and all members in the PDS are copied.

■ If the value of the FROMDSN operand is a PDS with a member name
containing a mask (for example ABC*), the value of the TODSN data set
must also be a PDS, and all member names that fit specified mask are
copied. No selection list is presented.

■ If the value of the FROMDSN operand is a PDS with a single member
name specified, the value of the TODSN operand is a sequential data set
or a PDS. If the value of the TODSN operand is a PDS and has no
member name specified, the PDS member specified in the FROMDSN
operand is copied with no name change. If the value of the TODSN
operand is a PDS and does specify a member name, that member name
is given to the PDS member specified in the FROMDSN operand.

The following table summarizes the results of the various copy operations.

From To Member Result Utility

SEQ SEQ NULL Data set copied IEBGENER

SEQ PDS
(mem)

NULL Copied to
member

IEBGENER

PDS PDS NULL Selection List IEBCOPY

PDS(*) PDS NULL All members
copied

IEBCOPY

$DSCALL OPT=COPY

Chapter 7: Dataset Services Interface 1159

From To Member Result Utility

PDS
(mask)

PDS NULL Selected
members copied

IEBCOPY

PDS
(mem)

PDS NULL Member copied
to same name

IEBGENER

PDS
(mem)

PDS
(newmen)

NULL Member copied
and renamed

IEBGENER

PDS
(mem)

SEQ NULL Member copied
to sequential data
set

IEBGENER

PDS PDS NON-BLAN
K

As specified in the
Member
parameter

IEBCOPY

TODSN=dataset_name

Specifies the name of the target data set.

DISPLAY={ YES | NO }

Specifies whether to display the output on completion of the function. This
operand is only valid if SYSPRINT=DSN is specified. If DISPLAY=YES is
specified, a full-screen display of the SYSPRINT data set is presented after
the copy operation has completed.

MEMBER={ member_name | MEMBER={* | member_name [,
member_name...] } }

Specifies the names of the members to be copied. If MEMBER=* is specified,
all members in the PDS are copied.

If the value of the MEMBER operand is a member name containing a mask
(for example, ABC*), all members starting with the specified prefix are
copied.

If the value of the MEMBER operand is a list of single member names, only
the specified members are copied.

$DSCALL OPT=COPY

1160 Network Control Language Reference Guide

REPLACE={YES | NO }

Specifies whether to replace an existing data set of the same name and is
only applicable where the values of the FROMDSN and TODSN operands are
both PDS data sets.

If REPLACE=YES is specified, the member name specified in the FROMDSN
operand is copied and given the member name specified in the TODSN
operand even if that member name already exists.

If REPLACE=NO is specified, the member specified in the FROMDSN operand
is not copied if the member name specified in the TODSN operand already
exists.

STAT={ OLD | SHR }

Specifies whether the data set specified in the TODSN operand is allocated
exclusively for the copy operation (STAT=OLD), or is shared with other users
(STAT=SHR). It is recommended that STAT=OLD be used as data set integrity
cannot be guaranteed if another user attempts to access the data set while
the copy operation is in progress.

The data set specified in the FROMDSN operand is always allocated with
STAT=SHR.

SYSPRINT={ DELETE | KEEP | DSN }

Specifies the type of data set to be allocated to the SYSPRINT DD for the
copy operation.

If SYSPRINT=KEEP is specified, your product region allocates a SYSOUT file
with CLASS=A, and after the copy has completed the SYSOUT data set is
deallocated with DISP=KEEP to cause it to be kept. The output from the
copy operation is browsed through, for example, SDSF.

If SYSPRINT=DELETE is specified, your product region allocates a SYSOUT file
with CLASS=A, and after the copy has completed, the SYSOUT file is
deallocated with DISP=DELETE to cause it to be deleted. The output from
the copy operation cannot be browsed.

If SYSPRINT=DSN is specified, your product region allocates a temporary
data set, which is deleted when your product region terminates. The output
from the copy operation is browsed through ISPF or by the use of the
DISPLAY=YES operand on this call. The data set is not deallocated from your
product region on completion of the copy operation. The data set name,
ddname and volume for the data set are returned in variables to the caller.
Removing the data set is the responsibility of the caller-the caller should
deallocate the data set to delete it.

$DSCALL OPT=COPYPDS

Chapter 7: Dataset Services Interface 1161

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSPRINTDSN

SYSPRINT data set name

&$DSPRINTDD

SYSPRINT ddname

&$DSPRINTVOL

SYSPRINT data set volume

Example: OPT=COPY

EXEC $DSCALL OPT=COPY FROMDSN=SYS1.DEV.SAMPLE +

 TODSN=SYS1.WORK.TEST01

$DSCALL OPT=COPYPDS

Copies a PDS member from a source data set to a target data set.

EXEC $DSCALL OPT=COPYPDS

 FROMDSN=source_dsn TODSN=target_dsn

 MEMBER=member_name

 REPLACE={ YES | NO }

 STAT={ SHR | MOD | OLD }

 SYSPRINT={ KEEP | DELETE | DSN }

 DISPLAY={ YES | NO }

This call is used to copy a PDS member from a source data set to a target data
set.

Operands:

OPT=COPYPDS

Indicates that a copy of a PDS member is requested.

FROMDSN=source_dsn

Specifies the data set which contains the member to be copied.

$DSCALL OPT=COPYPDS

1162 Network Control Language Reference Guide

TODSN=target_dsn

Specifies the data set to be copied to.

MEMBER=member_name

Specifies the names of the members to be copied. If MEMBER=* is specified,
all members in the PDS are copied.

$DSCALL OPT=COPYPDS

Chapter 7: Dataset Services Interface 1163

REPLACE={ YES | NO }

Specifies whether to replace an existing data set of the same name and is
only applicable where the values of the FROMDSN and TODSN operands are
both PDS data sets.

If REPLACE=YES is specified, the member name specified in the FROMDSN
operand is copied and given the member name specified in the TODSN
operand even if that member name already exists.

If REPLACE=NO is specified, the member specified in the FROMDSN operand
is not copied if the member name specified in the TODSN operand already
exists.

STAT={ SHR | MOD | OLD }

Specifies whether the data set specified in the TODSN operand is allocated
exclusively for the copy operation (STAT=OLD), or is shared with other users
(STAT=SHR). It is recommended that STAT=OLD be used as data set integrity
cannot be guaranteed if another user attempts to access the data set while
the copy operation is in progress.

The data set specified in the FROMDSN operand is always allocated with
STAT=SHR.

You can use STAT=MOD to modify a sequential data set by adding new
records after the last record in the data set.

SYSPRINT={ DELETE | KEEP | DSN }

Specifies the type of data set to be allocated to the SYSPRINT DD for the
copy operation.

■ If SYSPRINT=KEEP is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed the SYSOUT data
set is deallocated with DISP=KEEP to cause it to be kept. The output
from the copy operation is browsed through, for example, SDSF.

■ If SYSPRINT=DELETE is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed, the SYSOUT file is
deallocated with DISP=DELETE to cause it to be deleted. The output
from the copy operation cannot be browsed.

■ If SYSPRINT=DSN is specified, your product region allocates a temporary
data set, which is deleted when your product region terminates. The
output from the copy operation is browsed through ISPF or by the use
of the DISPLAY=YES operand on this call. The data set is not deallocated
from your product region on completion of the copy operation. The
data set name, ddname and volume for the data set are returned in
variables to the caller. Removing the data set is the responsibility of the
caller-the caller should deallocate the data set to delete it.

$DSCALL OPT=COPYSEQ

1164 Network Control Language Reference Guide

DISPLAY= YES | NO

Specifies whether to display the output on completion of the function. This
operand is only valid if SYSPRINT=DSN is specified. If DISPLAY=YES is
specified, a full-screen display of the SYSPRINT data set is presented after
the copy operation has completed.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Examples: OPT=COPYPDS

EXEC $DSCALL OPT=COPYPDS FROMDSN=dsn1_name

 TODSN= dsn2_name MEMBER=member_name STAT=SHR

 SYSPRINT=DSN DISPLAY=YES

This example copies member_name from dsn1_name to dsn2_name and
displays the sysprint output to the screen.

EXEC $DSCALL OPT=COPYPDS FROMDSN=dsn1_name

 TODSN=dsn2_name MEMBER=member_name STAT=SHR

 SYSPRINT=DELETE

This example copies member_name from dsn1_name to dsn2_name and deletes
the sysprint output.

$DSCALL OPT=COPYSEQ

Copies a sequential data set from a source data set to a target data set.

EXEC $DSCALL OPT=COPYSEQ

 FROMDSN=source_dsn TODSN=target_dsn

 REPLACE={ YES | NO }

 STAT={ SHR | MOD | OLD }

 SYSPRINT={ KEEP | DELETE | DSN }

 DISPLAY={ YES | NO }

This call is used to copy a sequential data set from a source data set to a target
data set.

$DSCALL OPT=COPYSEQ

Chapter 7: Dataset Services Interface 1165

Operands:

OPT=COPYSEQ

Indicates that a copy of a sequential data set is requested.

FROMDSN=source_dsn

Specifies the data set which contains the member to be copied.

TODSN=target_dsn

Specifies the data set to be copied to.

REPLACE={ YES | NO }

Specifies whether to replace an existing data set of the same name and is
only applicable where the values of the FROMDSN and TODSN operands are
both PDS data sets.

If REPLACE=YES is specified, the member name specified in the FROMDSN
operand is copied and given the member name specified in the TODSN
operand even if that member name already exists.

If REPLACE=NO is specified, the member specified in the FROMDSN operand
is not copied if the member name specified in the TODSN operand already
exists.

STAT={ SHR | MOD | OLD }

Specifies whether the data set specified in the TODSN operand is allocated
exclusively for the copy operation (STAT=OLD), or is shared with other users
(STAT=SHR). It is recommended that STAT=OLD be used as data set integrity
cannot be guaranteed if another user attempts to access the data set while
the copy operation is in progress.

The data set specified in the FROMDSN operand is always allocated with
STAT=SHR.

You can use STAT=MOD to modify a sequential data set by adding new
records after the last record in the data set.

$DSCALL OPT=COPYSEQ

1166 Network Control Language Reference Guide

SYSPRINT= DELETE | KEEP | DSN

Specifies the type of data set to be allocated to the SYSPRINT DD for the
copy operation.

■ If SYSPRINT=KEEP is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed the SYSOUT data
set is deallocated with DISP=KEEP to cause it to be kept. The output
from the copy operation is browsed through, for example, SDSF.

■ If SYSPRINT=DELETE is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed, the SYSOUT file is
deallocated with DISP=DELETE to cause it to be deleted. The output
from the copy operation cannot be browsed.

■ If SYSPRINT=DSN is specified, your product region allocates a temporary
data set, which is deleted when your product region terminates. The
output from the copy operation is browsed through ISPF or by the use
of the DISPLAY=YES operand on this call. The data set is not deallocated
from your product region on completion of the copy operation. The
data set name, ddname and volume for the data set are returned in
variables to the caller. Removing the data set is the responsibility of the
caller-the caller should deallocate the data set to delete it.

DISPLAY= YES | NO

Specifies whether to display the output on completion of the function. This
operand is only valid if SYSPRINT=DSN is specified. If DISPLAY=YES is
specified, a full-screen display of the SYSPRINT data set is presented after
the copy operation has completed.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

$DSCALL OPT=CREATE

Chapter 7: Dataset Services Interface 1167

Examples: OPT=COPYSEQ

EXEC $DSCALL OPT=COPYSEQ FROMDSN=dsn1_name

 TODSN= dsn2_name STAT=SHR

 SYSPRINT=DSN DISPLAY=YES

This example copies dsn1_name to dsn2_name and displays the sysprint output
to the screen.

EXEC $DSCALL OPT=COPYPDS FROMDSN=dsn1_name

 TODSN=dsn2_name MEMBER=member_name STAT=SHR

 SYSPRINT=DELETE

This example copies dsn1_name to dsn2_name and deletes the sysprint output.

$DSCALL OPT=CREATE

Creates a new data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=CREATE

 DSN=dataset_name

 FORMAT=format

 ORG=dataset_organization

 RLSE={ NO | YES }

 SPACE= { TRK | CYL } , pri, sec [,dir]

 [BLKSIZE=blocksize]

 [DATACLS=class]

 [FREE= { UNAL | CLOSE }]

 [LRECL= logical_record_length]

 [MGMTCLS=class]

 [MOUNT= { NO | YES }]

 [STORCLS=class]

 [VOL=volser [UNIT=unit]]

This call is used to create a new data set on DASD. This call is similar to the
$DSCALL OPT=ALLOC call except the data set must not be a temporary or
SYSOUT data set. The data set is cataloged and does not remain allocated to
your product region on completion of the operation.

Operands:

OPT=CREATE

Specifies that a data set is to be created.

DSN=dataset_name

Specifies the data set name to create.

$DSCALL OPT=CREATE

1168 Network Control Language Reference Guide

FORMAT=format

Specifies the format of the created data set. Valid values are: F, FB, FS, FBS,
FA, FBA, FSA, FBSA, FM, FBM, FSM, FBSM, V, VB, VS, VBS, VBSA, VM VBM,
VSM, VBSM, U, UA, UM.

ORG=dataset_organization

Specifies the data set organization for a new data set. Valid values are: PS,
PO, PSU, and POU.

RLSE={ NO | YES }

Specifies whether to have a secondary space release option.

SPACE={ TRK | CYL } , pri, sec [,dir]

Specifies the space allocation in tracks or cylinders. The SPACE type and
primary allocation quantity are required. The directory allocation quantity is
required if the data set is a PDS.

BLKSIZE=blocksize

Specifies the block size for a new data set. The value must be an integer in
the range 1 to 32,760.

DATACLS=class

Specifies the SMS data class option.

FREE={ UNAL | CLOSE }

Specifies whether the data set is to be deallocated by explicit request only
(FREE=UNAL) or is to be deallocated when the file is closed (FREE=CLOSE).

LRECL=logical_record_length

Specifies the logical record length for a new data set. The value must be an
integer in the range 1 to 32,760.

MGMTCLS=class

Specifies the SMS management class option.

MOUNT={ NO | YES }

Specifies whether a volume mount is allowed. If MOUNT=NO is specified,
and an allocation request requires a volume which is offline, the allocation
request fails. If MOUNT=YES is specified and an allocation request requires a
volume which is offline, a MOUNT request for the volume is issued.

STORCLS=class

Specifies the SMS storage class option.

$DSCALL OPT=CREATE

Chapter 7: Dataset Services Interface 1169

VOL=volser [UNIT=unit]

Specifies the volume serial number and unit name for a new allocation. If
the VOL operand is omitted, the operating system determines if the
allocation is allowed, and may choose to allocate the data set or any volume
which the requesting user is authorized for.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSDSN

Full data set name with member name omitted, and true name if an alias
was entered

&$DSORG

Data set organization; values are PS, PO, PSU, POU, CX, CQ, MQ, GS, X, TQ,
and TR

&$DSVOL

First volume

&$DSRECF

Record format; values are F,FB, FS, FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM,
FBSM, V, VB, VS, VBS, VBSA, VM, VBM, VSM, VBSM, U, UA, UM

&$DSRECL

Logical record length

&$DSRECA

Actual usable record length. If the record format is variable length, then the
value is record length minus 4. In all other cases, the value is the same as
record length.

&$DSBLKS

Block size

&$DSSTORCLS

SMS storage class if SMS is active for this data set

&$DSMGMTCLS

SMS management class if SMS is active for this data set

$DSCALL OPT=CREATE

1170 Network Control Language Reference Guide

&$DSDATACLS

SMS data class if SMS is active for this data set

&$DSDYNEC

Dynamic allocation error code

&$DSDYNIC

Dynamic allocation information code

Example: OPT=CREATE

EXEC $DSCALL OPT=CREATE DSN=DEV.SAMPLE.PDS.WORK02 +

 SPACE='TRK,10,5,1' ORG=PO FORMAT=FB +

 LRECL=80, BLKSIZE=4000, STAT=NEW

$DSCALL OPT=DECONCAT

Chapter 7: Dataset Services Interface 1171

$DSCALL OPT=DECONCAT

Deconcatenates a DD that is allocated to your product region.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=DECONCAT

 DD=DD_name

This call is used to deconcatenate a DD into its original DD allocations. The DD
can represent a single data set allocation, or be a concatenation of two or more
allocated data sets. Deconcatenation results in each data set in the
concatenation returning to its original allocation state, where the ddname each
data set was assigned when allocated is available. DDs which are permanently
concatenated remain concatenated.

Operands:

OPT=DECONCAT

Specifies that a DD is to be deconcatenated.

DD=DD_name

Specifies the DD to be deconcatenated.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

Example: OPT=DECONCAT

EXEC $DSCALL OPT=DECONCAT DD=DD1

This example deconcatenates DD1. If the DD consists of data sets which were
originally allocated under the ddnames of DD1 and DD2 (as in the example for
$DSCALL OPT=CONCAT) the deconcatenation of DD1 results in DD1 and DD2
being returned to their original state.

$DSCALL OPT=DELETE

1172 Network Control Language Reference Guide

$DSCALL OPT=DELETE

Deletes a cataloged data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=DELETE

 DSN=dataset_name

 CONFIRM = { YES | NO }

This call is used to delete a cataloged data set. The data set is allocated to your
product region, then deleted and uncataloged. This call cannot be used to
delete a PDS member. To delete a specific member, use the $DSCALL
OPT=DELMEM call.

Operands:

OPT=DELETE

Specifies that the data set be deleted.

DSN=dataset_name

Specifies the name of the data set to be deleted. No member name is
specified.

CONFIRM={ YES|NO }

Specifies whether to display a confirmation query before deleting the data
set. If CONFIRM=YES is specified (or left to default) a full-screen panel is
displayed to request confirmation of the DELETE action. The DELETE action
is confirmed or canceled.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=DELETE

EXEC $DSCALL OPT=DELETE DSN=SYS.WORK.DEV01 CONFIRM=NO

$DSCALL OPT=DELMEM

Chapter 7: Dataset Services Interface 1173

$DSCALL OPT=DELMEM

Deletes a member of a PDS.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=DELMEM

 DSN=dataset_name

 MEMBER=member_name

 CONFIRM={ YES | NO }

This call is used to delete a member of a PDS. This call fails if the specified
member is in use by another user.

Operands:

OPT=DELMEM

Specifies that a member be deleted.

DSN=dataset_name

Specifies the name of the data set containing the member. No member
name is specified.

MEMBER=member_name

Specifies the member to be deleted. A member name must be specified.

CONFIRM={ YES | NO }

Specifies whether to display a confirmation query before deleting the
member. If CONFIRM=YES is specified (or left to default) a full-screen panel
is displayed to request confirmation of the DELMEM action. The DELMEM
action is confirmed or canceled.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=DELMEM

EXEC $DSCALL OPT=DELMEM DSN=CUSTOMER.DATA MEMBER=TEST01

$DSCALL OPT=DEQ

1174 Network Control Language Reference Guide

$DSCALL OPT=DEQ

Releases an ENQ on a data set or member of a PDS.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=DEQ

 { DSN= dataset_name | DD=DD_name }

 [MEMBER=member_name]

This call releases an ENQ on a data set or a member of a PDS which was
obtained using a $DSCALL OPT=ENQ call. The operands specified on this call
should specify the same values as the OPT=ENQ call specified when the ENQ
was obtained. After the DEQ request has completed, the data set or PDS
member is edited by another user.

Operands:

OPT=DEQ

Specifies that an ENQ is to be released.

DSN=dataset_name

Specifies the data set name.

DD=DD_name

Specifies the ddname under which the data set is allocated to your product
region. If the ddname represents a concatenated DD, the name of the first
data set in the concatenation is used.

MEMBER=member_name

Specifies the member name where the release of the ENQ is for a specific
member of a PDS.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=DEQ

EXEC $DSCALL OPT=DEQ DD=SYSDD

$DSCALL OPT=DSNLIST

Chapter 7: Dataset Services Interface 1175

$DSCALL OPT=DSNLIST

Provides in variables the number and name of data sets concatenated to a
ddname.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=DSNLIST

 DD=dd_name

Used to provide a list of all the data sets concatenated to a ddname.

Operands:

OPT=DSNLIST

Indicates that a list of data sets concatenated to a ddname is requested.

DD=DD_name

Specifies the ddname under which the data sets are allocated to your
product region.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSCONCAT#

Number of data sets returned

&$DSDSN1-n

Name of the data set found in the concatenation

Example: OPT=DSNLIST

EXEC $DSCALL OPT=DSNLIST DD=COMMANDS

$DSCALL OPT=DSNSPACE

1176 Network Control Language Reference Guide

$DSCALL OPT=DSNSPACE

Computes the number of allocated tracks in a data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=DSNSPACE

 DSN=dataset_name

Used to find how much space is allocated to a data set.

Operands:

OPT=DSNSPACE

Indicates that the number of allocated tracks on the specified data set are
to be found.

DSN=dataset_name

The name of the data set for which the number of allocated tracks will be
found.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSDYNEC

DYNALLOC error code.

&$DSALCTRKS

The number of allocated tracks.

&$DSUNIT

Unit of the volume.

&$DSORG

The organization of the data set.

Example: OPT=DSNSPACE

EXEC $DSCALL OPT=DSNSPACE DSN=SYS1.DEV.SAMPLE

$DSCALL OPT=EDIT

Chapter 7: Dataset Services Interface 1177

$DSCALL OPT=EDIT

Displays a sequential data set or member of a PDS for editing.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=EDIT

 DD=DD_name | DSD=dataset_name

 [MEMBER=member_name]

 DATA={ }

 [LIMIT=number]

 [TRUNCATE=number]

Use this option to display and edit the records in a member of a data set.

Operands:

OPT=EDIT

Specifies that an EDIT is to be performed.

DD=DD_name or DSD=dataset_name

Specifies the ddname or data set name of the data set to be opened for
editing.

MEMBER=member_name

Specifies the member name. If the DD operand is used to identify a
concatenated data set, the member is obtained from the first data set that
it exists in.

DATA={ }

Specifies the records to be edited.

LIMIT=number

Specifies the maximum number of records to be edited in the file. This
operand is only applicable if DATA=* is specified.

TRUNCATE=number

Specifies the length to which the records displayed from the file are
truncated. The value of the TRUNCATE operand must be in the range 1 to
32,760.

$DSCALL OPT=ENQ

1178 Network Control Language Reference Guide

$DSCALL OPT=ENQ

Performs an ENQ on a data set or member.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=ENQ

 { DSN=dataset_name | DD=DD_name }

 [MEMBER=member_name]

This call is used to serialize access to a data set or member of a PDS in the same
way ISPF does. It is used to prevent another user editing the data set or member
while it is being used by your product region.

Operands:

OPT=ENQ

Specifies that an ENQ be issued.

DSN=dataset_name

Specifies the data set name to issue the ENQ for. If the data set is a PDS, a
member name may be specified using the MEMBER operand.

DD=DD_name

Specifies the ddname of the data set to issue the ENQ for. If the ddname
represents a concatenated DD, the ENQ is issued for the first data set in the
concatenation. If the data set is a PDS, a member name may specified using
the MEMBER operand.

MEMBER=member_name

Specifies a member name for the ENQ but is only valid if the ENQ is for a
PDS.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=ENQ

EXEC $DSCALL DD=DDSYS1

Note: Issue an ENQ before opening a data set when you intend to update the
data set. The ENQ option does not protect the data set from simultaneous
physical writing, however an internal ENQ is issued on the OPEN to protect the
physical data set. If the ENQ function is not explicitly released, it is released
when the owning NCL process terminates.

$DSCALL OPT=FCLOSE

Chapter 7: Dataset Services Interface 1179

$DSCALL OPT=FCLOSE

Combines the deallocating and closing data set functions into a single call.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=FCLOSE

 { DD=DD_name | ID=path_name }

 DISP={ KEEP | DELETE }

This call is used as a more simple interface than the combination of OPT=CLOSE
and OPT=UNALL. It allows a single call to close and deallocate a data set.

Operands:

OPT=FCLOSE

Specifies that a data set is to be closed and deallocated.

DD=DD_name

Specifies the ddname to be closed and deallocated.

ID=path_name

Specifies the path name that allows multiple paths to the same data set. If
no path ID is specified, the ddname is used as the path ID.

You must specify a ddname. If the ddname specified is other than ID, you
also need to specify the ID parameter; otherwise you do not.

Note: Any combination of OPEN, FOPEN, CLOSE, FCLOSE, READ, and WRITE
requests must be done in a single procedure.

DISP={ KEEP | DELETE }

Specifies the override of the Normal Disposition that was specified when the
data set was allocated to your product region.

Note: If the data set name was generated by the system, then it is deleted,
regardless of the disposition specified.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

$DSCALL OPT=FCLOSE

1180 Network Control Language Reference Guide

Return Variables:

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

Example: OPT=FCLOSE

EXEC $DSCALL OPT=FCLOSE DD=&Q$DD

Notes:

For an OUTPUT data set, the final block is written. This may cause an ABEND
message if the data set exceeds its size limit.

A temporary data set, whose name was generated at allocation, is deleted when
it is deallocated-regardless of the disposition value that was specified.

If a concatenated data set is freed, the first data set in the concatenation is
deallocated and the other ddnames in the concatenation become visible. The
net effect is the same as a deconcatenation followed by a deallocation of the
first ddname in the concatenation.

$DSCALL OPT=FINDMEM

Chapter 7: Dataset Services Interface 1181

$DSCALL OPT=FINDMEM

Provides a selection list of all data sets in the DD_name concatenation and an
entry to indicate if the member name is found in this data set or not.

EXEC $DSCALL OPT=FINDMEM

 DD=DD_name

 MEMBER=member_name

This call is used to show which data sets contain the specified member name
from a ddname.

Operands:

OPT=FINDMEM

Finds a member from a concatenated list of data sets.

DD=DD_name

Specifies the ddname. If this operand is omitted, the COMMANDS ddname
is used.

MEMBER=member_name

Specifies the member name.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=FINDMEM

EXEC $DSCALL OPT=FINDMEM DD=COMMANDS MEMBER=proc_name

This example produces results that indicate that proc_name was found in the
data sets SYSA.NM.PROD.SOURCE and SYSA.NM.BASE.SOURCE.

$DSCALL OPT=FOPEN

1182 Network Control Language Reference Guide

$DSCALL OPT=FOPEN

Combines the ALLOC option for new or existing data sets and the OPEN option
into one call.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=FOPEN

 DD=DD_name [ID=path_name]

 DSN=dataset_name

 FORMAT=dataset_format

 ORG=dataset_organization

 RLSE= { NO | YES }

 SPACE= { TRK | CYL } , pri ,sec [,dir]

 [BLKSIZE=blocksize]

 [DATACLS=class]

 [DISP= { KEEP | DELETE } [, { KEEP | DELETE }]]

 [DSNTYPE= { LIBRARY | PDSE }]

 [FREE= { UNAL | CLOSE }]

 [LRECL=logical_record_length]

 [MEMBER=member_name]

 [MGMTCLS=class]

 [MIGRATE= { YES | NO }]

 [MODE= { INPUT | OUTPUT }]

 [MOUNT= { NO | YES }]

 [STAT= { NEW | OLD | MOD | SHR }]

 [STORCLS=class]

 [VOL=volser [UNIT=unit]]

This call is used as a more simple interface than the combination of OPT=ALLOC
and OPT=OPEN. It allows a single call to be made to allocate and open a new or
existing cataloged data set.

Operands:

OPT=FOPEN

Specifies that a data set is to be allocated and opened.

DD=DD_name

Specifies the ddname. If this operand is omitted, a ddname is generated by
the operating system.

$DSCALL OPT=FOPEN

Chapter 7: Dataset Services Interface 1183

ID=path_name

Specifies the ID of a path to be opened for access to the data set. The use of
a path ID lets a procedure access more than one file, with the unique path
ID used to identify which file is being accessed. The path ID must be
specified on subsequent requests such as READ, WRITE, and CLOSE. If this
operand is omitted, the ddname specified in the DD operand is used as the
path ID.

DSN=dataset_name

Specifies the data set name to allocate and open. If the DSN operand is
omitted, a temporary data set is allocated. When a temporary data set is
allocated, no disposition is allowed and DELETE, DELETE is forced.

FORMAT=dataset_format

Specifies the data set format for the new data set. Valid values are: F, FB, FS,
FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM, FBSM, V, VB, VS, VBS, VBSA, VM
VBM, VSM, VBSM, U, UA, UM.

ORG=dataset_organization

Specifies the data set organization. Valid values are: PS, PO, PSU, POU, CX,
CQ, MQ, GS, TX, TQ, TR.

RLSE={ NO | YES }

Specifies whether to use the secondary space release option.

SPACE={ TRK | CYL } , pri,sec { ,dir }

Specifies the space allocation in tracks or cylinders. The SPACE type and
primary allocation quantity are required. The directory allocation quantity is
required if the data set is a PDS.

BLKSIZE=blocksize

Specifies the block size for the data set. The value must be an integer in the
range 0 to 32,760.

DATACLS=class

Specifies the SMS data class.

DISP={ KEEP | DELETE } [, { KEEP | DELETE }]

Specifies the Normal and Conditional Disposition of the data set. The
disposition relates to the normal or conditional termination of your product
region, not of the requesting NCL process. If KEEP is specified, the data set
remains cataloged. If DELETE is specified, the data set is uncataloged and
deleted.

$DSCALL OPT=FOPEN

1184 Network Control Language Reference Guide

DSNTYPE={ LIBRARY | PDSE }

Specifies whether you want to allocate and open a PDSE data set. The two
values mean the same thing: a PDSE data set.

MIGRATE={ YES | NO }

Specifies whether to allocate a data set if it has been migrated. If
MIGRATE=NO is specified, Dataset Services checks that the data set has
been migrated (for example, by DFHSM). If the data set has been migrated,
Dataset Services rejects the allocation request. If MIGRATE=YES is specified,
Dataset Services issues the allocation request without checking that the
data set has been migrated.

MODE={ INPUT | OUTPUT }

Specifies whether the data set is open for input or output.

MOUNT={ NO | YES }

Specifies whether a volume mount is allowed. If MOUNT=NO is specified,
and an allocation request requires a volume which is off-line, the allocation
request fails. If MOUNT=YES is specified and an allocation request requires a
volume which is off-line, a MOUNT request for the volume is issued.

FREE={ UNAL | CLOSE }

Specifies whether the data set is to be deallocated by explicit request only
(FREE=UNAL) or is to be deallocated when the file is closed (FREE=CLOSE).

LRECL=logical_record_length

Specifies the logical record length for the data set. The value must be an
integer in the range 1 to 32,760.

MEMBER=member_name

Specifies the member name. To open a PDS that was not allocated with a
member name, specify the member name in the call. If the allocation was to
a member name, the member name specified in the MEMBER operand
overrides it.

MGMTCLS=class

Specifies the SMS management class.

STAT={ NEW | OLD | MOD | SHR }

Specifies the status of the data set.

$DSCALL OPT=FOPEN

Chapter 7: Dataset Services Interface 1185

STORCLS=class

Specifies the SMS storage class.

VOL=volser [UNIT=unit]

Specifies the volume serial number and unit name for the new allocation. If
the VOL operand is omitted, the operating system determines if the
allocation is allowed, and may choose to allocate the data set or any volume
which the requesting user is authorized for.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSSTAT

Status of data set; values are OLD, MOD, or SHR

&$DSDSN

Full data set name with member name omitted, and true name if an alias
was entered &$DSDSNTYPE Type of data set; value is LIBRARY

&$DSMEM

Member name if a member of a PDS &$DSID Path ID

&$DSORG

Data set organization; values are PS, PO, PSU, and POU

&$DSVOL

First volume

&$DSUNIT

Unit name for the volume

&$DSRECF

Record format; values are F, FB, FS, FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM,
FBSM, V, VB, VS, VBS, VBSA, VM, VBM, VSM, VBSM, U, UA, UM

&$DSRECL

Record length

$DSCALL OPT=FOPEN

1186 Network Control Language Reference Guide

&$DSRECA

Actual usable record length. If the record format is variable length, then the
value is record length minus 4. In all other cases, the value is the same as
record length.

&$DSBLKS

Block size

&$DSDDNAME

DDname from the allocation, as supplied or as generated by the operating
system

&$DSSTORCLS

SMS storage class if SMS is active for this data set

&$DSMGMTCLS

SMS management class if SMS is active for this data set

&$DSDATACLS

SMS data class if SMS is active for this data set

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

Example: OPT=FOPEN

EXEC $DSCALL OPT=FOPEN DSN=SYS.WORK.DEV01 MEMBER=TEST01 +

 STAT=OLD MODE=OUTPUT

Notes:

Only cataloged data sets are supported. Unit and volume parameters are not
supported by this function.

Most non-VSAM data sets are allocated. IS and DA data sets are not supported.
If MEMBER= was specified, the member is opened. If the allocation was for a
sequential data set, the data set is opened.

$DSCALL OPT=INFO

Chapter 7: Dataset Services Interface 1187

$DSCALL OPT=INFO

Retrieves data set information.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=INFO

 DSN=dataset_name [DD=DD_name]

 [MOUNT= { NO | YES }]

 [MIGRATE= { YES | NO }]

This call is used to obtain data set information for a data set. The information is
returned to the calling procedure in variables.

Operands:

OPT=INFO

Specifies the data set information that is to be returned.

DSN=dataset_name

The name of the data set for which information is to be retrieved.

DD=DD_name

Specifies the ddname of a data set allocated to your product region for
which information is to be retrieved.

MOUNT={ NO | YES }

Specifies whether a volume mount is allowed. If MOUNT=NO is specified,
and an allocation request requires a volume which is off-line, the allocation
request fails. If MOUNT=YES is specified and an allocation request requires a
volume which is off-line, a MOUNT request for the volume is issued. You
cannot use this operand if DD= is specified.

MIGRATE={ YES | NO }

Specifies whether to allocate a data set if it has been migrated. If
MIGRATE=NO is specified, Dataset Services checks that the data set has
been migrated (for example, by DFHSM). If the data set has been migrated,
Dataset Services rejects the allocation request. If MIGRATE=YES is specified,
Dataset Services issues the allocation request without checking that the
data set has been migrated.

Note: If you specify a ddname, the MIGRATE and MOUNT parameters are
ignored.

$DSCALL OPT=INFO

1188 Network Control Language Reference Guide

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSSTAT

Status of data set; values is OLD, MOD, SHR, or NEW

&$DSDSN

Full data set name with member name omitted, and true name if an alias
was entered

&$DSDSNTYPE

Type of file or data set; value is HFS or LIBRARY

&$DSMEM

Member name if a member of a PDS

&$DSORG

Data set organization; values are PS, PO, PSU, POU, CX, CQ, MQ, GS, TX, TQ,
TR, and VS

&$DSVOL

First volume &$DSUNIT Unit name for the volume

&$DSRECF

Record format; values are F, FB, FS, FBS, FA, FBA, FSA, FBSA, FM, FBM, FSM,
FBSM, V, VB, VS, VBS, VBSA, VM, VBM, VSM, VBSM, U, UA, UM

&$DSRECL

Record length

&$DSRECA

Actual usable record length. If the record format is variable length, then the
value is record length minus 4. In all other cases, the value is the same as
record length.

&$DSBLKS

Block size

&$DSDDNAME

DDname from the allocation, as supplied or as generated by the operating
System

$DSCALL OPT=INFO

Chapter 7: Dataset Services Interface 1189

&$DSNUMEXT

Number of extents

&$DSCDATE

Create date

&$DSEDATE

Expire date

&$DSLREF

Last referenced date

&$DSTPCYL

Tracks per cylinder

&$DSPRITRKS

Primary allocation in tracks

&$DSALCTRKS

Allocated tracks for data set

&$DSUSETRKS

Used tracks

&$DSSECQTY

Secondary space allocation

Examples: OPT=INFO

EXEC $DSCALL OPT=INFO DSN=SYS1.LINKLIB MOUNT=YES

Note: Only cataloged data sets are supported. Unit and volume parameters are
not supported by this function.

$DSCALL OPT= LISTC

1190 Network Control Language Reference Guide

$DSCALL OPT= LISTC

Obtains or displays a list of data sets that begin with a specified name prefix.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT= LISTC QUAL=qualifier

 [SYSPRINT= { KEEP | DSN | DELETE }]

 [DISPLAY= { YES | NO }]

 [PARM={ NAME | VOLUME | ALL }]

This call allows users of your product region to perform an IDCAMS LISTCAT
operation and receive the results. This is used to obtain a list of cataloged data
sets which have a specified name prefix.

Operands:

OPT=LISTC

Specifies that a list of data sets be obtained or displayed.

QUAL=qualifier

The fully qualified name prefix for the list of data sets to be displayed.

SYSPRINT={ KEEP | DSN | DELETE }

Specifies the type of data set to be allocated to the SYSPRINT DD for the
copy operation.

■ If SYSPRINT=KEEP is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed the SYSOUT data
set is deallocated with DISP=KEEP to cause it to be kept. The output
from the copy operation is browsed through, for example, SDSF.

■ If SYSPRINT=DSN is specified, your product region allocates a temporary
data set, which is deleted when your product region terminates. The
output from the copy operation is browsed through ISPF or by the use
of the DISPLAY=YES operand on this call. The data set is not deallocated
from your product region on completion of the copy operation. The
data set name, ddname, and volume for the data set are returned in
variables to the caller.

■ If SYSPRINT=DELETE is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed, the SYSOUT file is
deallocated with DISP=DELETE to cause it to be deleted. The output
from the copy operation cannot be browsed.

DISPLAY={ YES | NO }

Specifies whether to display the SYSPRINT output. The display parameter is
only valid if SYSPRINT=DSN.

$DSCALL OPT= LISTC

Chapter 7: Dataset Services Interface 1191

PARM={ NAME | VOLUME | ALL }

Specifies the level of detail of the returned catalog information. The value is
any valid parameter used in the IBM LISTCAT utility after the LEVEL
parameter.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSPRINTDSN

Name of SYSPRINT file

&$DSPRINTVOL

Volume where SYSPRINT file is located

&$DSPRINTDD

SYSPRINT ddname

$DSCALL OPT= LISTC

1192 Network Control Language Reference Guide

Examples: OPT=LISTC

When $DSCALL is called with the LISTC option and no PARM specified:

EXEC $DSCALL OPT=LISTC QUAL=SYS1 DISPLAY=YES SYSPRINT=DSN

it produces the following output:

 USER01---------- SYS95229.T172448.RA000.PROD1.R0000102 ----Columns 001 079
 Command ===> Scroll ===> PAGE

 ****************************** TOP OF DATA *******************************
 1IDCAMS SYSTEM SERVICES TIME: 17:24:
 0
 LISTCAT LEVEL(SYS1) NAME
 0NONVSAM ------- SYS1.AADFMAC1
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSCLI0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSKEL0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSMSG0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSPNL0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSTBL0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABMFMOD0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABNJMISC
 F1=Help F2=Split F3=Exit F4=Return F5=Find
 F7=Backward F8=Forward F9=Swap F10=Left F11=Right

$DSCALL OPT= LISTC

Chapter 7: Dataset Services Interface 1193

When $DSCALL is called with the LISTC option and PARM=ALL specified:

EXEC $DSCALL OPT=LISTC QUAL=PROD.V3R2M0 DISPLAY=YES PARM=ALL

+ SYSPRINT=DSN

it produces the following output:

 USER01---------- SYS95229.T172834.RA000.PROD1.R0000106 ----Columns 001 079
 Command ===> Scroll ===> PAGE

 ****************************** TOP OF DATA *******************************
 1IDCAMS SYSTEM SERVICES TIME: 17:28:
 0
 LISTCAT LEVEL(SYS1) ALL
 0NONVSAM ------- SYS1.AADFMAC1
 IN-CAT --- CATALOG.MCAT.VMVS006
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------1991.310
 RELEASE----------------2 EXPIRATION------0000.000
 VOLUMES
 VOLSER------------MVS005 DEVTYPE------X„3010200E‟ FSEQN----
 ASSOCIATIONS
 ALIAS----TARGSYS.SYS1.AADFMAC1
 0NONVSAM ------- SYS1.ABLSCLI0
 IN-CAT --- CATALOG.MCAT.VMVS006
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------1991.310
 RELEASE----------------2 EXPIRATION------0000.000
 VOLUMES
 F1=Help F2=Split F3=Exit F4=Return F5=Find
 F7=Backward F8=Forward F9=Swap F10=Left F11=Right

$DSCALL OPT= LISTC

1194 Network Control Language Reference Guide

When $DSCALL is called with the LISTC option and PARM=VOLUME specified:

EXEC $DSCALL OPT=LISTC QUAL=SYS1 DISPLAY=YES PARM=VOLUME +

 SYSPRINT=DSN

it produces the following output:

 USER01--------- SYS98265.T154724.RA000.PROD41.R0105116 -----Columns 001 079
 Command ===> Scroll ===> PAGE

 ***************************** TOP OF DATA ********************************
 1IDCAMS SYSTEM SERVICES TIME: 17:30:
 0
 0NONVSAM ------- SYS1.AACBCNTL
 IN-CAT --- CATALOG.VOS3SCT
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------1997.167
 RELEASE----------------2 EXPIRATION------0000.000
 VOLUMES
 VOLSER------------OS3SDL DEVTYPE------X„3010200F‟ FSEQN----
 0NONVSAM ------- SYS1.AADFMAC1
 IN-CAT --- CATALOG.VOS3SCT
 HISTORY
 DATASET-OWNER-----(NULL) CREATION--------1997.167
 RELEASE----------------2 EXPIRATION------0000.000
 VOLUMES
 VOLSER------------OS3SDL DEVTYPE------X„3010200F‟ FSEQN----
 0NONVSAM ------- SYS1.AADRLIB
 F1=Help F2=Split F3=Exit F4=Return F5=Find
 F7=Backward F8=Forward F9=Swap F10=Left F11=Right

$DSCALL OPT=MEMLIST

Chapter 7: Dataset Services Interface 1195

When $DSCALL is called with the LISTC option and PARM=VOLUME specified:

EXEC $DSCALL OPT=LISTC QUAL=SYS1 DISPLAY=YES PARM=VOLUME +

 SYSPRINT=DSN

it produces the following output:

 USER01---------- SYS95229.T172448.RA000.PROD1.R0000102 ----Columns 001 079
 Command ===> Scroll ===> PAGE

 ****************************** TOP OF DATA *******************************
 1IDCAMS SYSTEM SERVICES TIME: 17:24:
 0
 LISTCAT LEVEL(SYS1) NAME
 0NONVSAM ------- SYS1.AADFMAC1
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSCLI0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSKEL0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSMSG0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSPNL0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABLSTBL0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABMFMOD0
 IN-CAT --- CATALOG.MCAT.VMVS006
 0NONVSAM ------- SYS1.ABNJMISC
 F1=Help F2=Split F3=Exit F4=Return F5=Find
 F7=Backward F8=Forward F9=Swap F10=Left F11=Right

Note: This is the same as the output produced when $DSCALL is called with the
LISTC option and no PARM specified (see the first example).

$DSCALL OPT=MEMLIST

Obtains or displays a list of PDS members.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=MEMLIST DSN=dataset_name

 [DISPLAY={ YES | NO }]

 [MEMBER=pattern]

This call is used to obtain a list of members in a PDS and return information
about the members to the calling procedure in variables. It is also used to obtain
a full-screen selection list of members in a PDS.

$DSCALL OPT=MEMLIST

1196 Network Control Language Reference Guide

Operands:

OPT=MEMLIST

Specifies that information about the members be obtained.

DSN=dataset_name

Specifies the name of the PDS containing the members. No member name is
specified.

DISPLAY={YES | NO }

Specifies whether to display the selection list of PDS member names. When
DISPLAY=NO is specified, the member information is returned in variables
&$DSMEM#, &$DSMEMn, and &$DSSTATn.

MEMBER=pattern

Specifies the name of a member pattern which specifies a subset of the
members in the PDS. If not specified all members are searched. You can
specify a particular pattern name, or use a mask to indicate more than one
pattern name.

A pattern can contain the question mark (?) and asterisk (*) characters. The
? character is used to match any single character in more than one member
name. The * character is used to match any number of characters in more
than one member name. For example:

ABCD

matches only the pattern name ABCD

A?D

matches any three character pattern name that begins with A and ends
with D, such as, AID, AFD, AZD

A*D

matches member names of any length that begin with A and ends with
D, such as, AD, ABCD, ABD

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

$DSCALL OPT=MEMLIST

Chapter 7: Dataset Services Interface 1197

Return Variables:

&$DSMEM#

Number of members returned

&$DSMEMn

Member names in ascending order

&$DSSTATn

SPF statistics for the associated member name

&$DSLIBn

The concatenation level of the data set where the member resides

Examples:

EXEC $DSCALL OPT=MEMLIST DSN=SYS.WORK.DEV01 DISPLAY=YES

The selection list displays ISPF member information as shown in the following
figure. The BROWSE, EDIT, DELETE, PRINT, RENAME, and SUBMIT actions can be
applied to the members on the list.

This example produces the following output:

 PROD----------- Dataset Services : PDS Member SPF Statistics ------------------
 Command ===> Scroll ===> CSR

 B/=Browse E=Edit D=Delete P=Print R=Rename SUB=Submit
 Member VV.MM Created Changed Size Init Mod ID Lib
 $$$AW 01.05 11-MAY-2007 14-MAY-2007 20:41 418 378 0 SYSIP01 1
 $$$AW1 01.07 11-MAY-2007 15-MAY-2007 02:29 531 378 0 SYSIP01 1
 $$$AW3 01.03 15-MAY-2007 15-MAY-2007 21:48 570 570 0 SYSIP01 1
 $$$SPACE
 $$COPYRI 01.00 26-JAN-2008 26-JAN-2008 22:16 0 0 0 SYSIP02 7
 $$NMLIC 01.00 26-JAN-2008 26-JAN-2008 22:16 0 0 0 SYSIP02 7
 $$QASMSG 01.01 23-AUG-1995 23-AUG-1995 18:44 0 0 0 SYSIP14 8
 $$SL 01.00 11-FEB-2008 11-FEB-2008 19:27 0 0 0 SYSIP02 6
 $$SYSPRD 01.00 18-MAR-2008 18-MAR-2008 00:04 0 0 0 SYSIP02 3
 $$SYSPRO 01.00 11-FEB-2008 11-FEB-2008 19:27 0 0 0 SYSIP02 6
 $@COPY 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@DELETE 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@E 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@L 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@M 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@NMFTS 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@NOTIFY 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@R 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@REPRO 01.03 05-JUN-1994 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $@S 01.02 04-MAY-1992 17-JUL-2004 05:44 0 0 0 SYSIP02 8
 $ACBERFL 01.01 04-MAY-1992 04-MAY-1992 20:36 0 0 0 SYSIP24 8

$DSCALL OPT=MOVE

1198 Network Control Language Reference Guide

$DSCALL OPT=MOVE

Copies a sequential data set, then deletes the original data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=MOVE

 FROMDSN=dataset_name

 TODSN=dataset_name

This call is used to copy a sequential data set to another sequential data set
using the IEBGENER utility and delete the original data set after the copy has
completed.

Operands:

OPT=MOVE

Specifies that the data set be copied then deleted.

FROMDSN=dataset_name

Specifies the name of the data set to be moved.

TODSN=dataset_name

Specifies the name of the data set to copy the data set specified in
FROMDSN to.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=MOVE

EXEC $DSCALL OPT=MOVE FROMDSN=SYS1.WORK.GO +

 TODSN=PROD1.CHANGE.GO

Note: Both the FROMDSN and TODSN data sets must be sequential and have
the same record length and record format. Both data sets must exist prior to the
call. If the copy function fails the FROMDSN data set is not deleted. This does
not apply to PDSs.

$DSCALL OPT=MOVEPACK

Chapter 7: Dataset Services Interface 1199

$DSCALL OPT=MOVEPACK

Moves a data set to another disk pack.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=MOVEPACK

 DSN=dataset_name VOL=volume_name

 SYSPRINT={ KEEP | DELETE | DSN }

 DISPLAY={ YES | NO }

Use this call to move a data set to a specified disk pack. This option is only useful
for moving cataloged data sets.

The new data set is cataloged, with the same name, on the specified target disk
pack-the data set name cannot be changed. If the target volume is the same as
the source disk pack, no action is taken.

For a VSAM data set the IDCAMS utility is used to perform the move. The VSAM
data set is exported and then imported on the target volume. The IEHMOVE
utility is used for non-VSAM data sets. The data set is moved to the target
volume and deleted from the current volume by the IEHMOVE utility. The utility
catalogs the data set on the target volume.

Operands:

OPT=MOVEPACK

Indicates that a data set is to be moved between disk packs.

DSN=dataset_name

The name of the PDS or sequential data set to be moved.

VOL=volume_name

The name of the disk pack to which the data set will be moved.

$DSCALL OPT=MOVEPACK

1200 Network Control Language Reference Guide

SYSPRINT={ KEEP | DELETE | DSN }

Specifies the type of data set to be allocated to the SYSPRINT DD for the
copy operation.

■ If SYSPRINT=KEEP is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed the SYSOUT data
set is deallocated with DISP=KEEP to cause it to be kept. The output
from the copy operation is browsed through, for example, SDSF.

■ If SYSPRINT=DELETE is specified, your product region allocates a SYSOUT
file with CLASS=A, and after the copy has completed, the SYSOUT file is
deallocated with DISP=DELETE to cause it to be deleted. The output
from the copy operation cannot be browsed.

■ If SYSPRINT=DSN is specified, your product region allocates a temporary
data set, which is deleted when your product region terminates. The
output from the copy operation is browsed through ISPF or by the use
of the DISPLAY=YES operand on this call. The data set is not deallocated
from your product region on completion of the copy operation. The
data set name, ddname, and volume for the data set are returned in
variables to the caller.

DISPLAY={ YES | NO }

Specifies whether to display the output on completion of the function. This
operand is only valid if SYSPRINT=DSN is specified. If DISPLAY=YES is
specified, a full-screen display of the SYSPRINT data set is presented after
the copy operation has completed.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=MOVEPACK

EXEC $DSCALL OPT=MOVEPACK DSN=MYDATASET VOL=MVS009

$DSCALL OPT=OPEN

Chapter 7: Dataset Services Interface 1201

$DSCALL OPT=OPEN

Opens a sequential data set or member of a PDS for input or output.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=OPEN

 DD=DD_name

 [ID=path_name]

 [MEMBER=member_name]

 [MODE= { INPUT | OUTPUT }]

This call is used to open a data set or a member of a PDS in preparation for
reading (specify MODE=INPUT) or writing (specify MODE=OUTPUT).

Operands:

OPT=OPEN

Specifies that an OPEN action be performed on a data set or member of a
PDS.

DD=DD_name

Specifies the ddname of the data set to be opened. If the ddname
represents a concatenated DD, the first data set in the concatenation is
opened.

ID=path_name

Specifies the ID of a path to be opened for access to the data set. The use of
a path ID lets a procedure access more than one file, with the unique path
ID used to identify which file is being accessed. The path ID must be
specified on subsequent requests such as READ, WRITE, and CLOSE.

If this operand is omitted, the ddname is used as the path ID. If a path with
that name already exists, an error is indicated. The path ID is returned in the
shared variable &$DSID.

MEMBER=member_name

Specifies the member name. To open a PDS that was not allocated with a
member name, specify the member name in the call. If the allocation was to
a member name, the member name specified in the MEMBER operand
overrides it.

MODE={ INPUT | OUTPUT }

Specifies whether the data set is open for input or output.

$DSCALL OPT=OPEN

1202 Network Control Language Reference Guide

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSID

Path ID

Example: OPT=OPEN

EXEC $DSCALL OPT=OPEN DD=SYSDD MODE=OUTPUT +

 MEMBER=TEST01

Note: If the original allocation was to a PDS or a member of a PDS, the member
is opened. If the allocation was for a sequential data set, the data set is opened.

$DSCALL OPT=PRINT

Chapter 7: Dataset Services Interface 1203

$DSCALL OPT=PRINT

Prints one or more records from a data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=PRINT DD=DD_name

 [MEMBER=member_name]

 DATA={ }

 [LIMIT=number]

 [TRUNCATE=number]

Use this option to print the records in a member of a data set.

Operands:

OPT=PRINT

Specifies that a print action is to be performed.

DD=DD_name

Specifies the ddname of the data set to be opened for printing.

MEMBER=member_name

Specifies the member name. If the DD operand is used to identify a
concatenated data set, the member is obtained from the first data set that
it exists in.

DATA={ }

Specifies the records to be printed.

LIMIT=number

Specifies the maximum number of records to be printed in the file. This
operand is only applicable if DATA=* is specified.

TRUNCATE=number

Specifies the length to which the records printed from the file are truncated.
The value of the TRUNCATE operand must be in the range 1 to 32,760.

$DSCALL OPT=READ

1204 Network Control Language Reference Guide

$DSCALL OPT=READ

Reads one or more records from a data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=READ

 DATA= { * | variable_name [, variable_name,...] | prefix*}

 { DD=DD_name | ID=path_name }

 [LIMIT= number]

 [TRUNCATE= number]

This option is used to read records from a data set or a member of a PDS into
variables. The procedure must have an open path to the data set or PDS
member to be read (use $DSCALL OPT=OPEN to open a path).

Operands:

OPT=READ

Specifies that a read action be performed.

DATA={ * | variable_name [, variable_name...] | prefix*}

Specifies the records to be read.

■ If DATA=* is specified, the records are returned in a shared variable,
&$DSDATA*. All records are read until the LIMIT value is reached or the
end of file (EOF) is reached. The records are placed in variables called
&$DSDATA1, &$DSDATA2, and so on as required. If the LIMIT operand is
omitted, a value of 1 is assumed.

■ If DATA=variable_name is specified, a single record is read. Multiple
variables need to be specified
(variable_name1,variable_name2,...,variable_namen) when the record
is longer than 250 bytes and must be divided into 250-byte segments. In
this case, the relevant variables must be included in SHRVARS with the
$DSCALL procedure. The variable name cannot have prefix $DS; if it
does, it is reset to null.

Note: This version of the DATA operand reads only one record into the
data set. It must be used to read records containing more than 250
bytes.

■ If DATA=prefix* is specified, the records are returned in shared variables
&prefix1, &prefix2, and so on, as required. All records are read until the
LIMIT value is reached or the end of file (EOF) is reached. If the LIMIT
operand is omitted, a value of 1 is assumed.

$DSCALL OPT=READ

Chapter 7: Dataset Services Interface 1205

DD=DD_name

Specifies the ddname of the file to be read. This operand is used as the path
ID if the ID parameter is not set. The path ID specified must already have
been created with an OPT=OPEN or OPT=FOPEN call.

$DSCALL OPT=READ

1206 Network Control Language Reference Guide

ID=path_name

Specifies the path ID of the file to be read.

Note: Any combination of OPEN, FOPEN, CLOSE, FCLOSE, READ, and WRITE
requests must be done in a single procedure.

LIMIT=number

Specifies the maximum number of records to be read from the file. The
value of the LIMIT operand must be in the range 1 to 9,999. This operand is
applicable only if DATA=* or DATA=prefix* is specified.

TRUNCATE=number

Specifies the length to which records read from the file are truncated. The
value of the TRUNCATE operand must be in the appropriate range for the
value specified for the DATA operand:

■ If DATA=* or DATA=prefix* is specified, then the TRUNCATE value must
be in the range 1 to 250.

■ If DATA=variable_name1,variable_name2,...,variable_namen is
specified, then the TRUNCATE value must be in the range 1 to 32,760.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

$DSFDBK is set to 9 and $DSRC set to 4 if the number of records specified by the
LIMIT operand is not satisfied.

Return Variables:

&$DSDATAn

Contains the records for the DATA=* option, where n is a number to identify
each return. If the DATA=variable_name operand is used, the nominated
variables contain the data

&$DSDATA#

Contains the count of records read. For DATA=* it contains the number of
records read on this call.

&$DSEOF

End of file indicator. The value is null unless the end of file is encountered. If
end of file is encountered, this variable is set to the value EOF. If
DATA=variable_name is specified, no data is returned if the end of file is
encountered.

$DSCALL OPT=RENAME

Chapter 7: Dataset Services Interface 1207

Examples: OPT=READ

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=READ ID=SYSPATH DATA=* +

 LIMIT=9999

&CONTROL SHRVARS=($DS, ABC)

EXEC $DSCALL OPT=READ ID=SYSPATH DATA=ABC

&CONTROL SHRVARS=($DS, ABC)

EXEC $DSCALL OPT=READ ID=SYSPATH +

 DATA=ABC* LIMIT=9999

$DSCALL OPT=RENAME

Renames a cataloged data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=RENAME

 DSN=dataset_name

 NEWNAME=dataset_name

This call is used to rename a cataloged data set. Your product region issues an
ENQ for both the old and new data set names before attempting to perform the
request. If the new data set name already exists, or if the data set is in use, the
request fails.

Operands:

OPT=RENAME

Specifies that the data set be renamed.

DSN=dataset_name

Specifies the name of the data set to be renamed. No member name is
specified.

NEWNAME=dataset_name

Specifies the new name for the data set. No member name is specified.

$DSCALL OPT=RENMEM

1208 Network Control Language Reference Guide

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=RENAME

EXEC $DSCALL OPT=RENAME DSN=SYS1.WORK.DEV01 +

 NEWNAME=SYS1.WORK.TEST12

$DSCALL OPT=RENMEM

Renames a member of a PDS.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=RENMEM

 DSN=dataset_name

 MEMBER=member_name

 NEWNAME=member_name

This call is used to rename a member of a PDS. This call fails if the specified
member is in use by another user, or if a member with the new name already
exists.

Operands:

OPT=RENMEM

Specifies that a member be renamed.

DSN=dataset_name

Specifies the name of the PDS containing the member. No member name is
specified.

MEMBER=member_name

Specifies the member to be renamed. A member name must be provided.

NEWNAME=member_name

Specifies the new name for the member.

$DSCALL OPT=SHOWALLOC

Chapter 7: Dataset Services Interface 1209

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=RENMEM

EXEC $DSCALL OPT=RENMEM DSN=CUSTOMER.DATA MEMBER=DEV01 +

 NEWNAME=TEST01

$DSCALL OPT=SHOWALLOC

Provides a full-screen display of allocated data sets.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=SHOWALLOC

 [DD=DD_name]

This call is used to display a full-screen selection list of data sets that are
allocated to your product region. The selection list can contain all data sets
allocated to your product region or only show data sets that are allocated to a
specific DD.

Operands:

OPT=SHOWALLOC

Specifies display of allocated data sets.

DD=DD_name

Specifies that the display is to contain only data sets which are allocated to
the specified DD. If this operand is omitted, all data sets that are allocated
to your product region are displayed.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

$DSCALL OPT=SHOWALLOC

1210 Network Control Language Reference Guide

Examples:

To display information about a single ddname, SYSDD:

EXEC $DSCALL OPT=SHOWALLOC DD=SYSDD

To display information about all ddnames beginning with S:

EXEC $DSCALL OPT=SHOWALLOC DD=S*

To display information about all ddnames:

EXEC $DSCALL OPT=SHOWALLOC

Note: The data sets are displayed on a selection list that provides two actions,
UNALLOCATE (which requires confirmation) and INFO (that displays information
about a selected data set) as shown in the following figure, which shows an
example of $DSCALL output when OPT=SHOWALLOC is specified:

 USER01------------ Dataset Services : Allocated Files -------------------
 Command ===> Scroll ===> PAGE

 S/=Info U=Unallocate
 DDname Status User Dataset name
 AOMDB SHR DE1NBSYS AUDE0.DENM1.AOMDB
 AOMDB1 SHR DE1NBSYS AUDE0.DENM1.AOMDB
 CG#00119 SHR DE1NBSYS SYS3.BIGBLOCK
 SHR DE1NBSYS AUDE0.NMV2SMS.WORK.CG#00119.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.TEST.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.LODG.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.PROD.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.BASE.SOURCE
 SHR DE1NBSYS AUDE0.IHS.PROCS
 SHR DE1NBSYS AUDE0.LIB.NCL
 CG#00165 SHR DE1NBSYS SYS3.BIGBLOCK
 CG#00168 SHR DE1NBSYS SYS3.BIGBLOCK
 SHR DE1NBSYS AUDE0.NMV2SMS.WORK.CG#00168.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.TEST.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.LODG.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.PROD.SOURCE
 SHR DE1NBSYS AUDE0.NMV2SMS.BASE.SOURCE
 F1=Help F2=Split F3=Exit F5=Find F6=Refresh
 F7=Backward F8=Forward F9=Swap

$DSCALL OPT=SUBMIT

Chapter 7: Dataset Services Interface 1211

$DSCALL OPT=SUBMIT

Submits JCL.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=SUBMIT

 { DSN=dataset_name |

 VARS=prefix

 RANGE= (a , b) }

This call is used to submit JCL to the JES internal reader for execution. The JCL is
contained in a sequential data set or PDS member, or is passed to $DSCALL in
variables.

Operands:

OPT=SUBMIT

Specifies that JCL be submitted.

DSN=dataset_name

Specifies the name of the PDS or sequential data set containing the JCL. If
the data set name is a PDS, a member name must be specified.

VARS=prefix

The variable name prefix of the variables that contain the JCL.

Note: If VARS= is specified, the relevant variables must be shared to
$DSCALL, for example using &CONTROL SHRVARS. The variable names are
assumed to be prefixa, prefixb,..., prefixn.

RANGE= (a , b)

The numeric range (of the variable name suffix) for the variables containing
the JCL. This operand is valid, and is required, only when the VARS operand
is specified.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSJOB#

Contains JOBnnnnn where nnnnn is the job number assigned.

$DSCALL OPT=UNALL

1212 Network Control Language Reference Guide

Example: OPT=SUBMIT

To submit JCL contained in a data set:

EXEC $DSCALL OPT=SUBMIT DSN=CUSTOMER.DATA.JOBS(REORG)

To submit JCL using a range of variables:

&$TEST1=//FREDX JOB 'SAMPLE', CLASS=A, MSGLEVEL=(1,1), MSGCLASS=T,

&$TEST2=// NOTIFY=FRED

&$TEST3=//STEP EXEC PGM=IEFBR14

&$TEST4=//

EXEC $DSCALL OPT=SUBMIT VARS=$TEST RANGE=1,4

Notes:

This function allocates a SYSOUT data set with CLASS=A and PGM=INTRDR. The
JCL is obtained from the specified data set or variables and written to the
SYSOUT file. When the SYSOUT file is closed, the job number assigned to the
submitted job is returned and this value is placed in variable $DSJOB# for return
to the caller.

This function does not work if your product region is running under the master
scheduler instead of JES.

This function is designed to submit only a single job.

$DSCALL OPT=UNALL

Deallocates a data set from your product region.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL

OPT={ UNALL | FREE }

DD=DD_name [DISP={ KEEP | DELETE }]

Use this option to deallocate a data set.

$DSCALL OPT=UNALL

Chapter 7: Dataset Services Interface 1213

Operands:

OPT=UNALL | FREE

Specifies that a data set is to be deallocated.

DD=DD_name

Specifies the name of the DD to be deallocated.

DISP={ KEEP | DELETE }

Specifies an override of the Normal Disposition which was specified when
the data set was allocated to your product region.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSDYNEC

DYNALLOC error code

&$DSDYNIC

DYNALLOC information code

Example: OPT=UNALL

EXEC $DSCALL OPT=UNALL DD=DD1

Notes:

If a concatenated data set is freed, the first data set in the concatenation is
deallocated and the other ddnames in the concatenation return to their original
allocation state. The net effect is the same as a deconcatenation followed by a
deallocation of the first ddname in the concatenation.

A temporary data set whose name was generated at allocation is deleted when
deallocated, regardless of the disposition value specified.

$DSCALL OPT=UTILITY

1214 Network Control Language Reference Guide

$DSCALL OPT=UTILITY

Executes the IBM utilities: IEBGENER, IEBCOPY, IEHLIST, IEHMOVE, and IDCAMS.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=UTILITY

 UTILITY=program

 [DISPLAY= { YES | NO }]

 [IEBUPDTE= { YES | NO }]

 [SYSIN= DD_name]

 [SYSPRINT= { KEEP | DELETE | DSN }]

 [SYSUT1= DD_name]

 [SYSUT2= DD_name]

This call allows users of your product region to execute some IBM utility
programs. If any SYS* data sets are required for the specified utility, then the
data sets must be allocated by the user before issuing the $DSCALL call and the
ddnames must be passed as parameters to $DSCALL.

Operands:

OPT=UTILITY

Specifies that an operating system utility is to be executed. If you are
executing in an MSP or VOS environment, then the actual utility called may
be different from the IBM utility name. See the Notes section on the
following page.

UTILITY=program

Specifies the name of the utility to be executed.

DISPLAY={ YES | NO }

Specifies whether to display the output on completion of the function. This
operand is valid only if SYSPRINT=DSN is specified. If DISPLAY=YES is
specified, then a full-screen display of the SYSPRINT data set is presented
after the copy operation has completed.

IEBUPDTE={ YES | NO }

Specifies whether PDS updates is performed.

SYSIN=DD_name

Specifies a SYSIN ddname. This operand is required for all IBM utilities
except IEBGENER. If no SYSIN ddname is provided for IEBGENER, then the
default SYSIN file (/*) is used.

$DSCALL OPT=UTILITY

Chapter 7: Dataset Services Interface 1215

SYSPRINT={ DELETE | KEEP | DSN }

Specifies the type of data set to be allocated to the SYSPRINT DD for the
copy operation.

■ If SYSPRINT=KEEP is specified, then your product region allocates a
SYSOUT file with CLASS=A, and after the copy has completed the
SYSOUT data set is deallocated with DISP=KEEP to cause it to be kept.
The output from the copy operation is browsed through, for example,
SDSF.

■ If SYSPRINT=DELETE is specified, then your product region allocates a
SYSOUT file with CLASS=A, and after the copy has completed the
SYSOUT file is deallocated with DISP=DELETE to cause it to be deleted.
The output from the copy operation cannot be browsed.

■ If SYSPRINT=DSN is specified, then your product region allocates a
temporary data set, which is deleted when your product region
terminates. The output from the copy operation is browsed through
ISPF or by the use of the DISPLAY=YES operand on this call. The data set
is not deallocated from your product region on completion of the copy
operation. The data set name, ddname, and volume for the data set are
returned in variables to the caller.

SYSUT1=DD_name

Specifies the SYSUT1 ddname. This operand is required for IEHMOVE and
IEBGENER.

SYSUT2=DD_name

Specifies the SYSUT2 ddname. This operand is required for IEBGENER only.

Return Codes:

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSPRINTDSN

Name of SYSPRINT file

&$DSPRINTVOL

Volume where SYSPRINT file is located

&$DSPRINTDD

SYSPRINT ddname

$DSCALL OPT=UTILITY

1216 Network Control Language Reference Guide

Example: OPT=UTILITY

EXEC $DSCALL OPT=UTILITY UTILITY=IDCAMS DISPLAY=YES +

 SYSIN=SYSIN SYSUT1=DDSYS1 SYSUT2=DDSYS2

Notes:

It is the caller's responsibility to allocate the SYSUT1, SYSUT2, and SYSIN data
sets prior to the OPT=UTILITY call if they are required for the utility. This is also
necessary for other ddnames used on control statements in SYSIN. For example,
for IEBCOPY where SYSIN is COPY INDD=DD1 OUTDD=DD2. In this case, DD1 and
DD2 must be allocated prior to the OPT=UTILITY call.

The following table shows the IBM utilities that are called by the OPT=UTILITY
call and the names of corresponding utilities that are used in other operating
environments.

Utility Name IBM Fujitsu Hitachi

IEBCOPY IEBCOPY JSECOPY JSDCOPY

IEBGENER IEBGENER JSDGENER JSDSCOPY

IEHMOVE IEHMOVE JSGMOVE JFSMOVE

IDCAMS IDCAMS KQCAMS JSCVSUT

IEHLIST IEHLIST ? ?

$DSCALL OPT=VOLSPACE

Chapter 7: Dataset Services Interface 1217

$DSCALL OPT=VOLSPACE

Finds the number of free tracks on a volume (disk pack).

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=VOLSPACE

 VOL=volume_name

Use this function to find how much space is available on a volume.

Operands:

OPT=VOLSPACE

Specifies that free space on a volume be found.

VOL=volume_name

The name of the volume on which free space is to be found.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Return Variables:

&$DSFREETRKS

The number of free tracks on the volume

&$DSUNIT

Unit of volume disk pack

Example: OPT=VOLSPACE

EXEC $DSCALL OPT=VOLSPACE VOL=MOS001

$DSCALL OPT=WRITE

1218 Network Control Language Reference Guide

$DSCALL OPT=WRITE

Writes one or more records to an open data set.

&CONTROL SHRVARS=($DS)

EXEC $DSCALL OPT=WRITE

 DATA= { * | variable_name [, variable_name,...] | prefix*}

 { DD=DD_name | ID=path_name }

 [COUNT= number]

 [TRUNCATE= number]

This call is used to write data contained in variables to a data set or member of a
PDS. The procedure must have an open path to the data set or PDS member to
write to it (use $DSCALL OPT=OPEN to open a path).

Operands:

OPT=WRITE

Specifies that a write action be performed.

DATA={ * | variable_name [, variable_name,...]| | prefix* }

Specifies the records to be written to the data set.

■ If DATA=* is specified, All records are written until the COUNT value is
reached. The records to be written are contained in variables
&$DSDATA1, &$DSDATA2, and so on as required.

■ If DATA=variable_name is specified, only a single record is written. If
multiple variables are specified, the data contained in the variables is
concatenated to form a single record which is then written to the data
set. In this case the relevant variables must be included in SHRVARS
with the $DSCALL procedure. The variable name cannot have prefix $DS;
if it does, it will be reset to null.

■ If DATA=prefix* is specified, the records to be written are contained in
the shared variables &prefix1, &prefix2, and so on as required.

DD=DD_name

Specifies the ddname of the file to write to. This operand is used as the path
ID if the ID operand is not specified.

ID=path_name

Specifies the Path ID of the file to write to.

Any combination of OPEN, FOPEN, CLOSE, FCLOSE, READ, and WRITE
requests must be done in a single procedure.

$DSCALL OPT=WRITE

Chapter 7: Dataset Services Interface 1219

COUNT=number

Specifies the number of records to be written to the data set. This is a
required operand if DATA=* or DATA=prefix* is specified.

TRUNCATE=number

Specifies the length the written records will be truncated to. The maximum
value of the TRUNCATE operand is 250.

Return Codes:

Note: For more information about &SYSMSG, &$DSRC, and &$DSFDBK, see
Return Codes (see page 1124) and Feedback Codes (see page 1124).

Example: OPT=WRITE

&$DSDATA1 = REC1

&$DSDATA2 = REC2

&$DSDATA3 = REC3

&$DSDATA4 = REC4

EXEC $DSCALL OPT=WRITE ID=SYSPATH COUNT=4 DATA=*

Chapter 8: MVS System Symbols Interface 1221

Chapter 8: MVS System Symbols Interface

This section contains the following topics:

Accessing MVS Static System Symbols (see page 1222)
$CAPKBIF PLEXSUB (see page 1223)
$CAPKBIF PLEXSYM COUNT (see page 1225)
$CAPKBIF PLEXSYM symbol NEXT (see page 1225)
$CAPKBIF PLEXSYM symbol VALUE (see page 1226)

Accessing MVS Static System Symbols

1222 Network Control Language Reference Guide

Accessing MVS Static System Symbols

The standard MVS static system symbols include the following:

■ &SYSALVL

■ &SYSCLONE

■ &SYSNAME

■ &SYSPLEX

■ &SYSR1

Other symbols is defined through the SYMDEF argument in the
SYS1.PARMLIB(IEASYMxx) member.

You can use the following operating system command to display these symbols:

D SYMBOLS

These symbols are made available to any NCL application.

To access the static system symbols from a NCL procedure, use $CAPKBIF
procedure. The procedure supports the following call types:

■ $CAPKBIF PARMS=(PLEXSUB...)

■ $CAPKBIF PARMS=(PLEXSYM,,COUNT)

■ $CAPKBIF PARMS=(PLEXSYM,symbol,NEXT)

■ $CAPKBIF PARMS=(PLEXSYM,symbol,VALUE)

Return Variables:

If &RETCODE is set to 0, the &$CAVALUE variable contains the returned value.

If &RETCODE is not zero, an error has occurred and &SYSMSG will contain the
error description.

If &RETCODE is set to 8, an error has occurred. Details of the error are contained
in variables as follows:

■ &$CAERRORTEXT contains the error description.

■ &$CAERRORCODE contains the error code.

■ &$CAERRORCOND contains the error condition.

■ &$CAERRORSUBN contains the substituted variable name.

$CAPKBIF PLEXSUB

Chapter 8: MVS System Symbols Interface 1223

$CAPKBIF PLEXSUB

Substitutes system and user symbols into a string.

&CALL PROC=$CAPKBIF PARMS=(PLEXSUB,string,subchar,static,dynamic,

usymbol1,uvalue1, ...,usymbol50,uvalue50)

Operands:

string

Specifies the string with variables to be substituted.

subchar

Specifies the prefix that designates a variable (the variable designator). This
allows you to alter the variable designator to a value other than the default
value of the ampersand (&). By altering the variable designator, you prevent
NCL from substituting variables with its values when defining the string,
which would lead to incorrect results.

Note: You can use more than one character, for example,. '%^'.

static

Specifies whether static system symbols are used. Valid values are Y or N.

Default: Y

dynamic

Specifies whether dynamic system symbols are used. Valid values are Y or N.

Default: Y

usymbol1,uvalue1,...,usymbol50,uvalue50

Specifies optional pairs of up to 50 user-defined symbols and their values.
The symbol name is up to 16 characters long, with the first character being
an alphabetic or national character and the remaining alphanumeric or
national characters. The value must not increase the string length when
substituted, that is, it can be up to one character longer than the symbol
name.

$CAPKBIF PLEXSUB

1224 Network Control Language Reference Guide

Examples:

The following sample NCL code creates a unique data set name identified by
system and product region job name.

&TMPDSN = &CONCAT & SYSNAME.. & JOBNAME..# & UNIQUE

&UNIQSTR = &SUBSTR &ZUNIQUE 2 7

&CALL PROC=$CAPKBIF PARMS=(PLEXSUB,&TMPDSN,,,,+

JOBNAME,&ZJOBNAME,UNIQUE,&UNIQSTR)

&IF &RETCODE = 0 &THEN +

&TMPDSN = &$CAVALUE

Where:

&SYSNAME = SYS1

&ZJOBNAME = REGION01

&ZUNIQUE = 0000043B

The value returned in &#CAVALUE is as follows:

SYS1.REGION01.#000043B

The following code shows how using the exclamation mark as the substitution
character (subchar) can simplify the previous code sample to create the same
result.

&UNIQSTR = &SUBSTR &ZUNIQUE 2 7

&CALL PROC=$CAPKBIF PARMS=(PLEXSUB,+

!SYSNAME..!JOBNAME..#!UNIQUE,!,,,+

JOBNAME,&ZJOBNAME,UNIQUE,&UNIQSTR)

&IF &RETCODE = 0 &THEN +

&TMPDSN = &$CAVALUE

Where:

&SYSNAME = SYS1

&ZJOBNAME = REGION01

&ZUNIQUE = 0000043B

The value returned in &#CAVALUE is as follows:

SYS1.REGION01.#000043B

$CAPKBIF PLEXSYM COUNT

Chapter 8: MVS System Symbols Interface 1225

The following example shows the use of the PLEXSUB function in an initialization
file to set a unique name within the sysplex for the name of a PSM Spool File
data set by using the &SYSNAME system symbol and a user symbol for the
region's job name.

-*---*

-* $PSPSMSPOOL - PSM Spool File Specification *

-* *

-* THE FOLLOWING PARAMETERS ARE SET IN THE FOLLOWING ORDER: *

-* 1) INIT: PSSD1 - Spool File Dataset Name *

-* 2) INIT: PSSO1 - Spool File VSAM Options *

-* 3) INIT: PSSI1 - File Disposition 1 *

-*---*

.PSMSPOOL

 &CALL PROC=$CAPKBIF PARMS=(PLEXSUB,+

 AUDE0.!SYSNAME..!JOBNAME..PSPOOL,!,,,+

 JOBNAME,&ZJOBNAME)

 &$IAPPSSD1 = &$CAVALUE

Where:

&SYSNAME = SYS1

&ZJOBNAME = REGION01

The value returned in &#CAVALUE is as follows:

AUDE0.SYS1.REGION01.PSPOOL

$CAPKBIF PLEXSYM COUNT

Returns the number of static system symbols.

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM,,COUNT)

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM)

Both statements are equivalent.

$CAPKBIF PLEXSYM symbol NEXT

Returns the name of the next static system symbol after a specified symbol. If
you supply a null symbol, the call returns the name of the first symbol.

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM,symbol,NEXT)

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM,,NEXT)

$CAPKBIF PLEXSYM symbol VALUE

1226 Network Control Language Reference Guide

$CAPKBIF PLEXSYM symbol VALUE

Returns the value of the specified static system symbol.

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM,symbol,VALUE)

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM,symbol)

Both statements are equivalent.

Example:

The following sample NCL procedure displays all the static system symbols on a
given system.

&CALL PROC=$CAPKBIF PARMS=(PLEXSYM,,COUNT)

&Count = &$CAVALUE

&WRITE Number of PLEXSYM variables = &Count

&SYM = &I = 1

&DOWHILE &I LE &Count

 &CALL PROC=$CAPKBIF PARMS=(PLEXSYM,&SYM,NEXT)

 &SYM = &$CAVALUE

 &CALL PROC=$CAPKBIF PARMS=(PLEXSYM,&SYM,VALUE)

 &WRITE &I &SYM=&$CAVALUE

 &I = &I + 1

&DOEND

Chapter 9: Timer Services Interface 1227

Chapter 9: Timer Services Interface

This section contains the following topics:

About the Timer Services NCL Interface. (see page 1227)
$TICALL FUNC=ADD (see page 1228)
$TICALL FUNC=GET (see page 1233)
$TICALL FUNC=PUT (see page 1236)
$TICALL FUNC=DEL (see page 1239)
$TICALL FUNC=LIST (see page 1240)
$TICALL FUNC=START (see page 1241)
$TICALL FUNC=STOP (see page 1242)
$TICALL FUNC=STATUS (see page 1243)
$TICALL FUNC=NEXT (see page 1244)

About the Timer Services NCL Interface.

Timer Services has an NCL external interface, which enables you to easily set
timers to run specific commands from installation-written NCL procedures. To
do this, you must execute the NCL procedure $TICALL.

The functions that is accessed using $TICALL are:

■ Add a timer—$TICALL FUNC=ADD

■ Retrieve a timer definition—$TICALL FUNC=GET

■ Add or update a timer—$TICALL FUNC=PUT

■ Delete a timer definition—$TICALL FUNC=DEL

■ List a set of timer definitions—$TICALL FUNC=LIST

■ Start timer processing—$TICALL FUNC=START

■ Query timer processing status—$TICALL FUNC=STATUS

■ Stop timer processing—$TICALL FUNC=STOP

■ Execute timer and setup for next timer—$TICALL FUNC=NEXT

$TICALL FUNC=ADD

1228 Network Control Language Reference Guide

$TICALL FUNC=ADD

Adds a timer definition.

&CONTROL SHRVARS

-EXEC $TICALL FUNC=ADD

 [CLASS=classname]

 [SUBCLASS=subclassname]

 NAME=name

 [SDATE=startdate]

 [EDATE=enddate]

 [STIME=starttime]

 [ETIME=endtime]

 FREQ={ nnnn | HH.MM.SS }

 [FTYPE={ MONTHS | DAYS | TIME }]

 [LIMIT={ nnnn | 1 }]

 [DAYLIST=(MON,TUE,…..)]

 [CATCHUP={ YES | NO }]

 [DELEXP={ YES | NO }]

 [STATUS={ ACTIVE | INACTIVE }]

 [SAVE={ YES | NO }]

 [ROUTE={ * | userid | MON | LOG | SYS }]

 [KEEP={ MON | LOG | SYS }]

 COMMAND=command

 [DESC=description]

Adds a new timer definition. If a same named definition already exists, then this
call will fail.

Operands:

FUNC=ADD

Adds a timer definition.

CLASS=classname

Specifies a class name, maximum 8 characters. Timer definitions are
categorized by class, subclass and a name. The name is mandatory but the
class and subclass names are optional.

SUBCLASS=subclassname

Specifies a sub-class name, maximum 8 characters.

NAME=name

Specifies a name for this definition, maximum 12 characters. This is a
required operand.

$TICALL FUNC=ADD

Chapter 9: Timer Services Interface 1229

SDATE=startdate

Specifies the start date for this timer. Specify as a DATE8 format
(YYYYMMDD). The default is the current system date.

EDATE=enddate

Specifies the end date for this timer. Specify as a DATE8 format
(YYYYMMDD). There is no default.

STIME=starttime

Specifies the start time for this timer. Specify as HH.MM.SS. The default is
the current system time.

ETIME=endtime

Specifies the end time for this timer. Specify as HH.MM.SS. There is no
default.

FREQ={ nnnn | HH.MM.SS }

Specifies the timer interval between successive instances. Either a number
of intervals or an hour/minute/second value is specified. The interval is
determined by the FTYPE value. If a hour/minute/second value is specified,
then FTYPE=TIME must be specified. Both the FREQ and FTYPE operands are
only applicable if LIMIT is greater than one.

FTYPE={ MONTHS | DAYS | TIME }

Specifies the interval between successive instances. The actual interval is
determined by the FREQ and FTYPE values. The TIME value represents
seconds. The default is TIME. For example, FREQ=60 indicates every 60
seconds and FREQ=2 FTYPE=DAYS indicates every 2 days.

LIMIT = 0-9999

Specifies the number of instances that this timer will be activated. The
frequency and interval between successive timer executions is determined
by the FREQ and FTYPE operands. The default for LIMIT is 1 (one), indicating
that this is a one-off timer. A value of 0 (zero) indicates that there is no limit
and that there will be an infinite number of instances when the timer will be
scheduled.

DAYLIST = (MON,TUE,WED,THU,FRI,SAT,SUN)

Specifies a list of days for which this timer is applicable. The default is all
days are applicable.

$TICALL FUNC=ADD

1230 Network Control Language Reference Guide

CATCHUP = { YES | NO }

Specifies whether catchup is to be performed. This occurs if the next
scheduled time for this timer has already passed. Catchup processing occurs
at region initialization - any timers that were scheduled to occur whilst the
region was down are scheduled for immediate execution at region
initialization. The default is no catchup is performed.

DELEXP = { YES | NO }

Specifies whether this timer definition is to be deleted after expiry—that is,
after the specified end date (EDATE) has passed. If EDATE was not specified,
then the definition does not expire. The default is not to delete the timer
definition at expiry.

STATUS = { ACTIVE | INACTIVE }

Specifies the actual status to be assigned to this timer definition. The status
is changed to ACTIVE at a later time via a 'PUT' function call.

SAVE = { YES | NO }

Specifies whether the timer definition should be saved to the VFS file.
SAVE=YES allows for timer definitions to be retained across system restarts.

ROUTE = { * | userid | MON | LOG | SYS }

Specifies the user ID under which this command is to be performed. The
default ROUTE=* specifies the user ID executing the $TICALL.

KEEP = { MON | LOG | SYS }

Specifies the user ID under which this command is to be performed if the
user ID specified by ROUTE has signed off. The default is LOG.

COMMAND = command

Specifies the command to be executed when the timer is scheduled to run.
The command is up to 256 characters. If the command contains blanks, then
it must be enclosed in quotes.

DESC = description

Specifies a description for this timer definition. The description is up to 256
characters. If the description contains blanks, then it must be enclosed in
quotes.

$TICALL FUNC=ADD

Chapter 9: Timer Services Interface 1231

Return Codes:

&RETCODE = 0

$TICALL completed successfully. Data is returned in the following variables:

$TICATCHUP

CATCHUP

$TICLASS

CLASS

$TICDATE

Create date

$TICOMMAND

COMMAND

$TIDELEXP

DELEXP

$TIEDATE

EDATE

$TIETIME

ETIME

$TIFREQ

FREQ

$TIFTYPE

FTYPE

$TIKEEP

KEEP

$TILIMIT

LIMIT

$TICALL FUNC=ADD

1232 Network Control Language Reference Guide

$TINAME

NAME

$TIROUTE

ROUTE

$TISDATE

SDATE

$TISTATUS

STATUS

$TISTIME

STIME

$TISUBCLASS

SUBCLASS

$TIUSER

Create user ID

$TIAUTH

User authority of $TIUSER

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=ADD

&DOCMD = &STR 'SHOW USER'

&TOMORROW = &DATECONV DATE8 &DATE8 DATE8 +1

&DESC = &STR 'Show user at 2:00pm and 2:01pm tomorrow'

&CALL PROC=$TICALL SHARE=($TI>) PARMS=(FUNC=ADD CLASS=USER +

 NAME=CMD1 FREQ=60 LIMIT=2 SDATE=&TOMORROW STIME=14.00.00 +

 DESC=&DESC COMMAND=&DOCMD)

Note: If the text entered in the Description and Command fields contains
imbedded blanks, they must be enclosed in quotes.

$TICALL FUNC=GET

Chapter 9: Timer Services Interface 1233

$TICALL FUNC=GET

Retrieves an existing timer definition.

&CONTROL SHRVARS=($TI)

-EXEC $TICALL FUNC=GET

 [CLASS=classname]

 [SUBCLASS=subclassname]

 NAME=name

 [OPT={ file get option | KEQ }]

Retrieves an existing timer definition.

Operands:

FUNC=GET

Retrieves an existing timer definition.

CLASS=classname

Specifies a class name, maximum 8 characters. Timer definitions are
categorized by class, subclass and a name. The name is mandatory but the
class and subclass names are optional.

SUBCLASS=subclassname

Specifies a sub-class name, maximum 8 characters.

NAME=name

Specifies a name for this definition, maximum 12 characters. This is a
required operand.

OPT = { file get option | KEQ }

Specifies the FILE GET OPTION. This option is passed to the VARTABLE GET
and FILE GET verb calls. Valid values include:

■ KEQ (Key Equal)

■ KGT (Key Greater Than)

■ KGE (Key Greater Than or Equal)

■ KLT (Key Less Than)

■ KLE (Key Less Than or Equal)

Note: Refer to &FILE GET and &VARTABLE GET documentation for more
information on these values. The default is KEQ.

$TICALL FUNC=GET

1234 Network Control Language Reference Guide

Return Codes:

&RETCODE = 0

$TICALL completed successfully. Data is returned in the following variables:

$TICATCHUP

CATCHUP

$TICLASS

CLASS

$TICDATE

Create date

$TICOMMAND

COMMAND

$TIDELEXP

DELEXP

$TIEDATE

EDATE

$TIETIME

ETIME

$TIFREQ

FREQ

$TIFTYPE

FTYPE

$TIKEEP

KEEP

$TILIMIT

LIMIT

$TINAME

NAME

$TIROUTE

ROUTE

$TICALL FUNC=GET

Chapter 9: Timer Services Interface 1235

$TISDATE

SDATE

$TISTATUS

STATUS

$TISTIME

STIME

$TISUBCLASS

SUBCLASS

$TIUSER

Create/modify user ID

$TIAUTH

User authority of $TIUSER

$TIMDATE

Modified date

$TIMTIME

Modified time

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Examples FUNC=GET

&CALL PROC=$TICALL SHARE=($TI>) PARMS=(FUNC=GET CLASS=USER +

 NAME=CMD1)

* Timer &$TICLASS/&$TISUBCLASS/&$TINAME data returned

$TICALL FUNC=PUT

1236 Network Control Language Reference Guide

$TICALL FUNC=PUT

Updates an existing timer definition.

&CONTROL SHRVARS=($TI)

-EXEC $TICALL FUNC=PUT

 [CLASS=classname]

 [SUBCLASS=subclassname]

 NAME=name

 [SDATE=startdate]

 [EDATE=enddate]

 [STIME=starttime]

 [ETIME=endtime]

 [FREQ={ nnnn | HH.MM.SS }]

 [FTYPE={ MONTHS | DAYS | TIME }]

 [LIMIT= nnnn]

 [DAYLIST=(MON,TUE,…..)]

 [CATCHUP={ YES | NO }]

 [DELEXP={ YES | NO }]

 [STATUS={ ACTIVE | INACTIVE }]

 [SAVE={ YES | NO }]

 [ROUTE={ * | userid | MON | LOG | SYS }]

 [KEEP={ MON | LOG | SYS }]

 [COMMAND=command]

 [DESC=description]

Updates an existing timer definition. If a same named definition does not exist,
then the $TICALL FUNC=PUT will fail.

Operands:

FUNC=PUT

Updates an existing timer definition.

The description of all the other operands is the same as $TICALL FUNC=ADD (see
page 1228), except that there are no defaults for the PUT function. If an
operand is not specified, then that particular field will not be updated in the
timer definition.

Return Codes:

&RETCODE = 0

$TICALL completed successfully. Data is returned in the following variables:

$TICATCHUP

CATCHUP

$TICALL FUNC=PUT

Chapter 9: Timer Services Interface 1237

$TICLASS

CLASS

$TICDATE

Create date

$TICOMMAND

COMMAND

$TIDELEXP

DELEXP

$TIEDATE

EDATE

$TIETIME

ETIME

$TIFREQ

FREQ

$TIFTYPE

FTYPE

$TIKEEP

KEEP

$TILIMIT

LIMIT

$TINAME

NAME

$TIROUTE

ROUTE

$TICALL FUNC=PUT

1238 Network Control Language Reference Guide

$TISDATE

SDATE

$TISTATUS

STATUS

$TISTIME

STIME

$TISUBCLASS

SUBCLASS

$TIUSER

Modify user ID

$TIMDATE

Modified date

$TIMTIME

Modified time

$TIAUTH

User authority of $TIUSER

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=PUT

&TOMORROW = &DATECONV DATE8 &DATE8 DATE8 +1

 &DESC = &STR 'Updating the start date and description'

&CALL PROC=$TICALL SHARE=($TI>) PARMS=(FUNC=PUT CLASS=USER +

 NAME=CMD1 SDATE=&TOMORROW DESC=&DESC)

Note: If the text entered in the Description and Command fields contains
imbedded blanks, they must be enclosed in quotes.

$TICALL FUNC=DEL

Chapter 9: Timer Services Interface 1239

$TICALL FUNC=DEL

Deletes an existing timer definition.

&CONTROL NOSHRVARS

-EXEC $TICALL FUNC=DEL

 [CLASS=classname]

 [SUBCLASS=subclassname]

 NAME=name

Deletes an existing timer definition.

Operands:

FUNC=DEL

Deletes an existing timer definition.

CLASS=classname

Specifies a class name, maximum 8 characters. Timer definitions are
categorized by class, subclass and a name. The name is mandatory but the
class and subclass names are optional.

SUBCLASS=subclassname

Specifies a sub-class name, maximum 8 characters.

NAME=name

Specifies a name for this definition, maximum 12 characters. This is a
required operand.

Return Codes:

&RETCODE = 0

$TICALL completed successfully.

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=DEL

&CALL PROC=$TICALL PARMS=(FUNC=DEL CLASS=USER NAME=CMD1)

$TICALL FUNC=LIST

1240 Network Control Language Reference Guide

$TICALL FUNC=LIST

Lists a set of existing timer definition.

&CONTROL NOSHRVARS

-EXEC $TICALL FUNC=LIST

 [CLASS=classname]

 [SUBCLASS=subclassname]

 [NAME=name]

Lists a set of existing timer definitions.

Operands:

FUNC=LIST

Lists a set of existing timer definition.

CLASS=classname

Specifies a class name, maximum 8 characters. Timer definitions are
categorized by class, subclass and a name.

SUBCLASS=subclassname

Specifies a sub-class name, maximum 8 characters.

NAME=name

Specifies a name for this definition, maximum 12 characters.

Return Codes:

&RETCODE = 0

$TICALL completed successfully.

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=LIST

&CALL PROC=$TICALL PARMS=(FUNC=LIST)

$TICALL FUNC=START

Chapter 9: Timer Services Interface 1241

$TICALL FUNC=START

Starts timer processing.

&CONTROL NOSHRVARS

-EXEC $TICALL FUNC=START

Starts timer processing. This is issued automatically at region startup.

Operands:

FUNC=START

Starts timer processing.

Return Codes:

&RETCODE = 0

$TICALL completed successfully.

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=START

&CALL PROC=$TICALL PARMS=(FUNC=START)

$TICALL FUNC=STOP

1242 Network Control Language Reference Guide

$TICALL FUNC=STOP

Stops timer processing.

&CONTROL NOSHRVARS

-EXEC $TICALL FUNC=STOP

Stops timer processing.

Operands:

FUNC=STOP

Stops timer processing.

Return Codes:

&RETCODE = 0

$TICALL completed successfully.

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=STOP

&CALL PROC=$TICALL PARMS=(FUNC=STOP)

$TICALL FUNC=STATUS

Chapter 9: Timer Services Interface 1243

$TICALL FUNC=STATUS

Status request of Timer processing.

&CONTROL SHRVARS=($TISTATUS)

-EXEC $TICALL FUNC=STATUS

Returns the status of timer processing.

Operands:

FUNC=STATUS

Request the status of timer processing.

Return Codes:

&RETCODE = 0

$TICALL completed successfully.

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=STATUS

&CALL PROC=$TICALL SHARE=($TISTATUS) PARMS=(FUNC=STATUS)

&WRITE DATA=Timer Status is &$TISTATUS

$TICALL FUNC=NEXT

1244 Network Control Language Reference Guide

$TICALL FUNC=NEXT

Execute timer and setup for next timer.

&CONTROL NOSHRVARS

-EXEC $TICALL FUNC=NEXT

Execute timer and setup for next timer. Any commands that are due at this time
will be executed. The time of the next timer due will be calculated and a timer
set to execute the 'NEXT' function at that time (or 1 second past midnight
tomorrow morning).

The NEXT function call is issued internally automatically. Generally, there is no
need for this call to be issued explicitly.

Operands:

FUNC=NEXT

Setup for next timer.

Return Codes:

&RETCODE = 0

$TICALL completed successfully.

&RETCODE > 0

An error occurred. &SYSMSG is set with an error message.

Example: FUNC=NEXT

&CALL PROC=$TICALL PARMS=(FUNC=NEXT)

Chapter 10: Persistent Global Variables Interface 1245

Chapter 10: Persistent Global Variables
Interface

This chapter describes how to use the Persistent Global Variables interface.

Note: For information about how to preserve data between region restarts, see
the Administration Guide.

This section contains the following topics:

$CAGLBL OPT=LOAD (see page 1245)
$CAGLBL OPT=SAVE (see page 1247)
$CAGLBL OPT=PURGE (see page 1248)
$CAGLBL OPT=LIST (see page 1249)
$CAGLBL OPT=SHGLBL (see page 1249)

$CAGLBL OPT=LOAD

Create a persistent global variable.

&CALL PROC=$CAGLBL PARMS=(OPT=LOAD

 [,NAME=gname | (gname,….)]

 [,DEBUG=N | Y])

Note: Optional parameters that are not required are ignored.

$CAGLBL OPT=LOAD

1246 Network Control Language Reference Guide

Operands:

OPT=LOAD

Loads persistent global variables. If NAME= is omitted or not specified, all
persistent global

variables in the external repository are loaded with their corresponding
values.

Note: A message is issued to the log listing all GLBLs loaded and the values
assigned to

them.

If NAME= is specified, specified persistent global variables are loaded, and a
message is

issued to the log listing all global variables loaded and the values assigned to
them.

Note: If no persistent variables are found, a message is issued to the log.

NAME=gname

(Optional) Specifies the persistent global variable to be loaded. Do not
include the global

variable prefix (&&000).

Note: No wild cards are supported.

DEBUG=N|Y

When set to Y, initiates internal debugging of the $CAGLBL procedure.
Should only be

used with assistance from Technical Support.

Return Codes:

RETCODE

0 - Successful execution

8 - Unsuccessful execution

Examples:

&CALL PROC=$CAGLBL PARMS=(OPT=LOAD)

&CALL PROC=$CAGLBL PARMS=(OPT=LOAD,NAME=MYVAR)

$CAGLBL OPT=SAVE

Chapter 10: Persistent Global Variables Interface 1247

$CAGLBL OPT=SAVE

Save a persistent global variable.

&CALL PROC=$CAGLBL PARMS=(OPT=SAVE,

 NAME=gname,DATA=data |

 NAME=gname | (gname,...) |

 NAME=gname | (gname,...), VARS=vname | (vname,.)

 [,ENV=MACRO]

 [,DEBUG=N | Y])

Operands:

OPT=SAVE

Specifies the SAVE function and creates a persistent global variable (PGV).
Values of all global variables whose gnames are provided as arguments of
NAME are saved in the external repository. Global variables without the
current value (null) are not saved and existing external storage records
related to them are purged.

– When single gname and data is provided, the data is assigned to the
global variable gname and is saved.

– When a list of gnames is accompanied by the list of vnames, values from
each vname are assigned to global variable gname and are saved.

A message is issued to the log for each variable saved with the value
provided.

Note: The maximum number of persistent global variables that can be saved
is limited to 999.

DATA=data

Specifies the data to be assigned to the global variable and saved.

VARS=vname

Specifies a name of the variable whose value will be assigned to the
corresponding global variable gname.

ENV=Macro

Specifies that all the messages should be sent to an internal process log
instead of OCS or Activity logs.

DEBUG=N|Y

When set to Y, initiates internal debugging of the $CAGLBL procedure.
Should only be used with assistance from CA Technical Support.

$CAGLBL OPT=PURGE

1248 Network Control Language Reference Guide

Return Codes:

RETCODE

0 - Successful execution

8 - Unsuccessful execution

Examples:

&NAME = &STR ($VARA , $VAR1 , VAR6, VARL)

&CALL PROC=$CAGLBL PARMS=(OPT=SAVE,DEBUG=N,NAME=&NAME)

&&000LONG = ABCDEFGHIJKLMNOPQRSTUVWXYZ

&CALL PROC=$CAGLBL PARMS=(OPT=SAVE,DEBUG=Y,NAME=LONG)

$CAGLBL OPT=PURGE

Purge a persistent global variable.

&CALL PROC=$CAGLBL PARMS=(OPT=PURGE [,DEBUG={N | Y}])

Operands:

OPT=PURGE

Specifies the PURGE function. The values of all the global variables with
corresponding records in the external repository (PGVs) are nullified and
their respective records in the external repository are deleted.

Note: An audit message will be issued.

DEBUG={N | Y}

When set to Y, initiates internal debugging of the $CAGLBL procedure.
Should only be used with assistance from Technical Support.

Return Codes:

RETCODE

0—Successful execution

8—Unsuccessful execution

Examples:

&CALL PROC=$CAGLBL PARMS=(OPT=PURGE)

$CAGLBL OPT=LIST

Chapter 10: Persistent Global Variables Interface 1249

$CAGLBL OPT=LIST

List persistent global variables.

&CALL PROC=$CAGLBL PARMS=(OPT=LIST [,DEBUG=N | Y])

Operands:

OPT=LIST

Specifies the LIST function. Names and values of all the global variables
current and present in the external storage are listed to the OCS terminal
and Activity log.

DEBUG=N|Y

When set to Y, initiates internal debugging of the $CAGLBL procedure.
Should only be used with assistance from Technical Support.

Return Codes:

RETCODE

0 - Successful execution

8 - Unsuccessful execution

Examples:

&CALL PROC=$CAGLBL PARMS=(OPT=LIST)

$CAGLBL OPT=SHGLBL

Creates SH NCLGLBL output for a persistent global variable.

&CALL PROC=$CAGLBL PARMS=(OPT=SHGLBL

 [,NAME={ pattern | * }]

 [,DEBUG={ N | Y }])

$CAGLBL OPT=SHGLBL

1250 Network Control Language Reference Guide

Operands:

OPT=SHGLBL

Specifies the SHGLBL function. The output from the SH NCLGLBL command
is processed and the following actions are taken prior to repeating it to the
output, depending on the specification of the NAME parameter:

If NAME= is not specified

Lists the names of global variables (as with SH NCLGLBL). The names will
be sorted, names of global variables having persistence will be marked
with '#' before them.

If NAME=*

Lists the names, value lengths and values of all global variables in sorted
order (as with SH NCLGLBL=). Names of global variables with persistence
are prefixed with # , and an additional line is added that lists the length
and value of the persistent variable. If the first 230 characters of global
variable value differ from the persistent value, the global variable value
appears in blue.

If NAME=pattern

Lists the names, value lengths and values of global variables with the
name starting with pattern in sorted order (as with SH
NCLGLBL=pattern). Names of global variables with persistence are
prefixed with #, and an additional line is added that lists the length and
value of persistent variable. If the first 230 characters of global variable
value differ from the persistent value, the global variable appears in
blue.

Note: You can use the EQUATE command to simplify your process, for
example:

equate showglbl+ start $caglbl

opt=shglbl +

You can define the EQUATE in the $NM EQUATES parameter group
(enter /PARMS at the prompt to list parameter groups).

NAME=pattern

Specifies a full name or starting characters of the global variables names.

DEBUG={ N | Y }

When set to Y, initiates internal debugging of the $CAGLBL procedure and
should only be used with assistance from Technical Support.

$CAGLBL OPT=SHGLBL

Chapter 10: Persistent Global Variables Interface 1251

Return Codes

RETCODE

0—Successful execution

8—Unsuccessful execution

Examples:

&CALL PROC=$CAGLBL PARMS=(OPT=SHGLBL)

Appendix A: Event Distribution Services 1253

Appendix A: Event Distribution Services

Event Distribution Services (EDS) is a feature that lets you control event
notification to your system.

This section contains the following topics:

Sample Code (see page 1253)
System Event Names (see page 1256)
Extended Data (see page 1268)

Sample Code

The following example shows the use of &INTREAD for receiving EDS
notification. It also contains an example of an &EVENT verb.

VTAM node failure events will be generated if PPO is active and the standard
DEFMSG commands have been executed, either in the READY procedure or
some time prior to execution of this procedure, that is:

DEFMSG MSGID=(129,259,526,822) DELIVER=ALL +

 EVENTNAME=NODE.FAILED

Sample Code

1254 Network Control Language Reference Guide

If the node is critical, the event is reissued, and can then be picked up by a
network recovery server which may be executing somewhere else in your
product region.

&CONTROL

 &EVNAME = &STR $SNA.NODE.FAILED -* Node failure event name

 &EVTYPE = &STR CONFIGURATION

-*

-* Issue PROFILE command for $SNA.NODE.FAILED event receipt

-*

 &INTCMD -PROFILE EDS ENABLE=&0 +

 NAME=&EVNAME +

 TYPE=&EVTYPE

 &WAITSECS = 600 -* 10 mins

.MONEVENT

 &INTREAD TYPE=RESP +

 MDO=PPOMDO +

 WAIT=&WAITSECS

 &RC = &ZFDBK -* Copy feedback info.

 &IF &FDBK = 4 &THEN +

 -* Nothing arrived

 &DO

 &WRITE LOG=YES TERM=NO &0 &EVNAME MONITOR ACTIVE, +

 * No node failures detected in past 10 mins.

 &GOTO .MONEVENT -* Go to wait again

 &DOEND

Sample Code

Appendix A: Event Distribution Services 1255

&IF &RC > 4 &THEN +

 &DO

 &WRITE MON=YES LOG=Y COLOR=RED DATA=MDO FAILURE +

 OCCURRED ON &0 MONITOR INTREAD. +

 FDBK=&ZFDBK,&ZMDORC,&ZMDOFDBK

 &DOEND

 &ASSIGN VARS=EVENTEXT FROM MDO=&STEM.TEXT

 &PARSE ARGS DATA=&EVENTEXT

&IF .&1 EQ .STOP &THEN +

 -* Stop if STOP written

 &GOTO .ENDUP -* to response queue

 &IF .&1 NE .N00102 &THEN +

 -* GOBACK if this is not an

 &GOTO .MONEVENT -* EDS notification

-* Extract event details from &MSG MDO

 &ASSIGN VARS=PRIRES FROM MDO=&STEM.RESOURCE.PRIMARY

 &ASSIGN VARS=SECRES FROM MDO=&STEM.RESOURCE.SECONDARY

 &ASSIGN VARS=NAME FROM MDO=&STEM.EVENT.NAME

 &ASSIGN VARS=REF FROM MDO=&STEM.EVENT.REFERENCE

 &ASSIGN VARS=ROUTCD FROM MDO=&STEM.EVENT.ROUTCDE

 &ASSIGN VARS=CLASS FROM MDO=&STEM.EVENT.TYPE

 &ASSIGN VARS=IST# FROM MDO=PPOMDO.PPOCNTL.VTAMNUM

 &ASSIGN VARS=ISTTEXT FROM MDO=PPOMDO.TEXT

-*

-* Log the failure. Pass the PPO MDO in case LOGPROC

-* wants to do something with it.

-*

 &WRITE TERM=NO LOG=YES MDO=PPOMDO +

 DATA=&0 IST&IST# FAILURE DETECTED FOR +

 NODE &PRIRES,&SECRES PPOREF=&REF -* &WRITE TERM=NO LOG=YES +

 -* Log the VTAM msg text

 DATA = &ISTTEXT -* -* For the purposes of this example, re-issue the event

 -* and go back to wait for further failure notification.

 -* Additional filtering or recovery code could be placed

 -* here, depending on installation requirements.

-*

 &EVENT NAME=SNA.RECOVERY.REQUIRED +

 RESOURCE=(&PRIRES,&SECRES) +

 TYPE=APPLICATION +

 MDO=PPOMDO

 &GOTO .MONEVENT

-* Await next event

-*

.ENDUP

 &END

System Event Names

1256 Network Control Language Reference Guide

System Event Names

Important! Do not generate system events (using &EVENT) because doing so
could potentially cause instability to your region.

This section lists the attributes of internally-generated events. The attributes is
specified on the PROFILE EDS command to define those events that are of
interest to a process.

The event name is the primary EDS identifier and has been chosen to describe
what the event is. All internally-generated event names begin with a $$ prefix.

For information about the event attributes, see the associated operand
descriptions for the &EVENT verb in the chapter "Verbs and Built-in Functions".

If the attribute operand is shown in upper case, the operand is the literal value
for the attribute. If the operand appears in italics or lower case, the operand
represents a variable attribute value.

$$AOM.ABENDED

TYPE=SERVICEABILITY

REF=SYS or USER abend-code

$$AOM.MESSAGES.LOST

TYPE=SERVICEABILITY

REF=N83K01 or N83201 DATA=ref msg-text

$$AOM.PAUSED

TYPE=SERVICEABILITY

REF=N85747

$$AOM.RUNNING

TYPE=SERVICEABILITY

 REF=N85749

$$AOM.SHUTDOWN.COMPLETE

TYPE=SERVICEABILITY

REF=N83302

$$AOM.STARTED

TYPE=SERVICEABILITY

REF=N85722

System Event Names

Appendix A: Event Distribution Services 1257

$$FTS.RECEIVE.START

TYPE=PROCEDURAL

RESOURCE=(request-name,origin)

REF=msg-id

$$FTS.RECEIVE.END.OK

TYPE=PROCEDURAL

RESOURCE=(request-name,origin)

REF=ACK (if ACK required)

DATA=request-type to-dsn

$$FTS.RECEIVE.END.WARN

TYPE=PROCEDURAL

RESOURCE=(request-name,origin)

REF=ACK (if ACK required)

DATA=request-type to-dsn, warning-msg

$$FTS.RECEIVE.STATS

TYPE=UTILIZATION

RESOURCE=(request-name,origin)

DATA=N44802 msg-text

$$FTS.RECEIVE.FAIL

TYPE=SERVICEABILITY

RESOURCE=(request-name,origin)

DATA=N44804 msg-text

$$FTS.TRANSMIT.START

TYPE=PROCEDURAL

RESOURCE=(request-name,destination)

REF=msg-id

System Event Names

1258 Network Control Language Reference Guide

$$FTS.TRANSMIT.END.OK

TYPE=PROCEDURAL

RESOURCE=(request-name,destination)

REF=ACK (if ACK required)

DATA=request-type from-dsn

$$FTS.TRANSMIT.END.WARN

TYPE=PROCEDURAL

RESOURCE=(request-name,destination)

REF=ACK (if ACK required)

DATA=request-type from-dsn, warning-msg

$$FTS.TRANSMIT.STATS

TYPE=UTILIZATION

RESOURCE=(request-name,destination)

DATA=N44302 msg-text

$$FTS.TRANSMIT.FAIL

TYPE=SERVICEABILITY

RESOURCE=(request-name,destination)

DATA=N44304 msg-text

$$NTS.SESSION.START

TYPE=CONFIGURATION

RESOURCE=(session-pair)

OBJECT=SESSION

$$NTS.SESSION.END

TYPE=CONFIGURATION

RESOURCE=(session-pair)

OBJECT=SESSION

$$NTS.SESSION.FAIL

TYPE=SERVICEABILITY

RESOURCE=(session-pair)

OBJECT=SESSION

System Event Names

Appendix A: Event Distribution Services 1259

$$NTS.RTM.OBJ.EXCEEDED

TYPE=SERVICEABILITY

RESOURCE=(session-pair)

OBJECT=SESSION

DATA=RTM data

$$SNAMS.APPL.REGISTER

TYPE=CONFIGURATION

RESOURCE=(global-routing-name,netid.nauname)

OBJECT=SNA

$$SNAMS.APPL.DEREGISTER

TYPE=CONFIGURATION

RESOURCE=(global-routing-name,netid.nauname)

OBJECT=SNA

$$SNAMS.EP.ACTIVE

TYPE=CONFIGURATION

RESOURCE=(category-name,netid.nauname)

OBJECT=SNA

$$SNAMS.EP.INACTIVE

TYPE=CONFIGURATION

RESOURCE=(category-name,netid.nauname)

OBJECT=SNA

$$SNAMS.FP.ACTIVE.ASSIGNED

TYPE=CONFIGURATION

RESOURCE=(category-name,netid.nauname.appl) O

BJECT=SNA

$$SNAMS.FP.ACTIVE.LOCAL

TYPE=CONFIGURATION,

RESOURCE=(category-name,netid.nauname.appl)

OBJECT=SNA

System Event Names

1260 Network Control Language Reference Guide

$$SNAMS.FP.INACTIVE.ASSIGNED

TYPE=CONFIGURATION

RESOURCE=(category-name,netid.nauname.appl)

OBJECT=SNA

$$SNAMS.FP.INACTIVE.LOCAL

TYPE=CONFIGURATION

RESOURCE=(category-name,netid.nauname.appl)

OBJECT=SNA

$$SYS.FILE.OPEN

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

$$SYS.FILE.CLOSE

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

$$SYS.FILE.ASSIGN

TYPE=SERVICEABILITY

RESOURCE=(file-id,ddname)

OBJECT=FILEID

$$SYS.FILE.RESET

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

$$SYS.FILE.STOP

TYPE=SERVICEABILITY

RESOURCE=(file-id,ddname)

OBJECT=FILEID

System Event Names

Appendix A: Event Distribution Services 1261

$$SYS.FILE.ALLOC

TYPE=CONFIGURATION

RESOURCE=ddname REF=1st 7 bytes of DATA OBJECT=DDNAME

DATA=data-set-name

$$SYS.FILE.UNALLOC

TYPE=CONFIGURATION

RESOURCE=ddname REF=1st 7 bytes of

DATA OBJECT=DDNAME DATA=data-set-name

$$SYS.FILE.EOV

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

$$SYS.FILE.CA.SPLIT

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

$$SYS.FILE.FULL

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

$$SYS.FILE.SHORTAGE

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

DATA=N28802 msg-text

$$SYS.FILE.ERROR

TYPE=SERVICEABILITY

RESOURCE=ddname

OBJECT=DDNAME

DATA=N28803 or N28804 msg-text

System Event Names

1262 Network Control Language Reference Guide

$$SYS.INMCAM.ACTIVE

TYPE=SERVICEABILITY

RESOURCE=(group-name,lu-name)

OBJECT=INMCAM

REF=msg-id

$$SYS.INMCAM.INACTIVE

TYPE=SERVICEABILITY

RESOURCE=(group-name,lu-name)

OBJECT=INMCAM

REF=msg-id

$$SYS.LINK.ACTIVE

TYPE=SERVICEABILITY

RESOURCE=(link-name,lu-name)

REF=N35002 or N47A03

OBJECT=INMC or APPC

$$SYS.LINK.INACTIVE

TYPE=SERVICEABILITY

RESOURCE=(link-name,lu-name)

REF=N35001 or N47A02

OBJECT=INMC or APPC

$$SYS.LOG.SWAP

TYPE=SERVICEABILITY

RESOURCE=(new-dd,old-dd)

REF=N16109

$$SYS.MAI.DISCONNECT

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=06

System Event Names

Appendix A: Event Distribution Services 1263

$$SYS.MAI.LOGOFF

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=05

$$SYS.MAI.LOGON

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=01

$$SYS.MAI.RECONNECT

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=02

$$SYS.MAI.SESSION.START

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=09

$$SYS.MAI.SESSION.STOP

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=0A

$$SYS.MAI.SKIP.TO.MENU

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=04

$$SYS.MAI.SKIP.TO.SESS

TYPE=CONFIGURATION

RESOURCE=(lu-name,acb-name)

REF=03

System Event Names

1264 Network Control Language Reference Guide

$$SYS.NCL.ENDED

TYPE=SERVICEABILITY

RESOURCE=(proc-name,ncl-id)

REF=msg-id (&ZMEVUSER is set)

$$SYS.NCL.ERROR

TYPE=SERVICEABILITY

RESOURCE=(proc-name,ncl-id)

REF=msg-id (&ZMEVUSER is set)

$$SYS.NETSPY.ACTIVE

TYPE=SERVICEABILITY

RESOURCE=(conn-name,lu-name)

OBJECT=NETSPY

REF=NT7001

$$SYS.NETSPY.INACTIVE

TYPE=SERVICEABILITY

RESOURCE=(conn-name,lu-name)

OBJECT=NETSPY

REF=NT7002

$$SYS.NMINIT.COMPLETE

TYPE=SERVICEABILITY

RESOURCE=(system-id)

REF=N00515

$$SYS.NMREADY.COMPLETE

TYPE=SERVICEABILITY

RESOURCE=(system-id)

REF=N00516

$$SYS.SHUTDOWN.ACKNOWLEDGED

TYPE=SERVICEABILITY

RESOURCE=nm-dom-id

REF=N11601 (&ZMEVUSER is set to ID of command requester)

System Event Names

Appendix A: Event Distribution Services 1265

$$SYS.SHUTDOWN.CANCELLED

TYPE=SERVICEABILITY

RESOURCE=nm-dom-id

REF=N11603 (&ZMEVUSER is set to ID of command requester)

$$SYS.SHUTDOWN.COMMENCED

TYPE=SERVICEABILITY

RESOURCE=nm-dom-id

REF=N11701

$$SYS.TCPIP.ACTIVE

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

$$SYS.TCPIP.FAILED

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

$$SYS.TCPIP.INACTIVE

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

$$SYS.TCPIP.QUIESCING

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

$$SYS.TCPIP.RETRY

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

$$SYS.TCPIP.STARTING

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

$$SYS.TCPIP.STOPPING

TYPE=SERVICEABILITY

REF=type (IBM, TCPAXS, VM, XNFTCP, or TISP)

System Event Names

1266 Network Control Language Reference Guide

$$SYS.USER.LOGON

TYPE=CONFIGURATION

RESOURCE=(user-id,lu-name)

REF=N20E05

DATA=N20E05 msg-text

$$SYS.USER.LOGOFF

TYPE=CONFIGURATION

RESOURCE=(user-id,lu-name)

REF=N20E07

DATA=N20E07 msg-text

$$SYS.USER.FAIL

TYPE=SERVICEABILITY

RESOURCE=(user-id,lu-name) REF=reason

DATA=N20E08 msg-text

$$SYS.USER.CONTEXT.SWITCH

TYPE=CONFIGURATION

RESOURCE=(lu-name,application)

OBJECT=MAISESS or SOLVE DATA=MAI session-id,acb-name

Notes:

■ User ID is available in &ZMEVUSER.

■ For a jump to an MAI application, the OBJECT name will be MAISESS;
otherwise, it will be SOLVE.

$$SYS.USER.DISCONNECT

TYPE=CONFIGURATION

RESOURCE=(user-id,lu-name)

REF=disconnect-id

$$SYS.USER.RECONNEC

TTYPE=CONFIGURATION

RESOURCE=(user-id,lu-name)

REF=disconnect-id

System Event Names

Appendix A: Event Distribution Services 1267

$$SYS.USER.TIMEOUT

TYPE=SERVICEABILITY

OBJECT=MAISESS

RESOURCE=(lu-name,mai-appl)

REF=N54T01

$$SYS.VTAM.ACB.OPEN

TYPE=SERVICEABILITY

RESOURCE=acb-name

OBJECT=PPO, CNM, or PRI

$$SYS.VTAM.ACB.CLOSE

TYPE=SERVICEABILITY

RESOURCE=acb-name

OBJECT=PPO, CNM, or PRI

$$SYS.VTAM.PPO.ENABLED

TYPE=SERVICEABILITY

RESOURCE=ppo-acb-name

$$SYS.VTAM.PPO.DISABLED

TYPE=SERVICEABILITY

RESOURCE=ppo-acb-name

$$SYS.VTAM.RCVCMD.FAIL

TYPE=SERVICEABILITY

OBJECT=PPO or SPO

REF=R0 return-code

DATA=N09B02 msg-text

$$SYS.VTAM.SPO.ENABLED

TYPE=SERVICEABILITY

RESOURCE=primary-acb-name

Extended Data

1268 Network Control Language Reference Guide

$$SYS.VTAM.SPO.DISABLED

TYPE=SERVICEABILITY

RESOURCE=primary-acb-name

$$SYS.VTAM.SPO.REDIRECTED

TYPE=SERVICEABILITY

RESOURCE=(domain-id)

Extended Data

For some events, when sysparm FTSFTM is YES, the data is extended by adding
USER-ID: userid FROMDSN: from-DSN TODSN: to-DSN, where:

userid

Shows the user ID who issued the transmission request

from-DSN

Shows the name of the data set being transmitted

to-DSN

Shows the name of the data set receiving the transmitted data.

This applies to the following events:

■ $$FTS.RECEIVE.START

■ $$FTS.RECEIVE.STATS

■ $$FTS.RECEIVE.FAIL

■ $$FTS.TRANSMIT.START

■ $$FTS.TRANSMIT.STATS

■ $$FTS.TRANSMIT.FAIL

The extended data has extraneous spaces removed.

Appendix B: Supported Language Codes for National Language Support 1269

Appendix B: Supported Language Codes for
National Language Support

The following language codes are supported:

Language Language Code Code Page

Belgian BE 500

French Canadian CF 037

Danish DK 277

Austrian/German GR 273

Spanish SP 284

French FR 297

Italian IT 280

Japanese (Fujitsu) NF -

Japanese (Hitachi) NH -

Japanese (IBM) NI 290

Dutch NL 037

Norwegian NO 277

Portuguese PO 037

Swiss/German SG 500

Swiss/French SF 500

Swedish SV 278

UK English UK 285

US English US 037

Appendix C: Supported Character Sets 1271

Appendix C: Supported Character Sets

This appendix describes the meaning of the TRANSLATE operand on the
&DECODE and &ENCODE verbs.

This section contains the following topics:

Code Page Selection (see page 1271)

Code Page Selection

When TRANSLATE=DEC is specified, the DEC character code page (see
page 1272) is used for translation.

When TRANSLATE=ASCII is specified, the ASCII character code page (see
page 1274) is used for translation.

When TRANSLATE=ISO is specified, the ISO character code page (see page 1275)
is used for translation.

Code Page Selection

1272 Network Control Language Reference Guide

DEC Character Code Page

On an &DECODE operation, if the TRANSLATE=DEC operand is specified, all
character strings are assumed to be from the DEC character set shown in the
following table and are translated to their equivalents in the EBCDIC character
set. An &ENCODE operation, however, assumes the character strings to be from
the EBCDIC character set, and translates them from their equivalents in the DEC
character set shown in the following table.

0 1 2 3 4 5 6 7 A B C D E F

-0 NUL DLE SP 0 @ P ' p nnbsp À *1 à *2

-1 SOH DCI ! 1 A Q a q ¡ ” Á Ñ á ñ

-2 STX DC2 ” 2 B R b r ¢ 2 Â Ò â ò

-3 ETX DC3 # 3 C S c s £ 3 Ã Ó ã ó

-4 EOT DC4 $ 4 D T d t ¤ ' Ä Ô ä ô

-5 ENQ NAK % 5 E U e u ¥ *3 Å Õ å õ

-6 AC SYN & 6 F V f v *4 ¶ Æ Ö æ ö

-7 BEL ETB ' 7 G W g w § . Ç x ç

-8 BS CA (8 H X h x ¨z *5 È Ø è ø

-9 HT EM) 9 I Y i y E *6 É Ù é ù

-A LF SUB * : J Z j z ª º Ê Ú ê ú

-B VT ESC + ; K [k { « » Ë Û ë û

-C FF FS , < L \ l | : *7 Ì Ü ì ü

-D CR GS - = M] m } shy *8 Í *9 í *10

-E SO RS . > N n ~ ® *11 Î *12 î *13

-F SI US / ? O _ o DEL ¯ ¿ Ï b ï ÿ

Code Page Selection

Appendix C: Supported Character Sets 1273

Items marked with an asterisk (*) in the table are as follows:

*1 Capital letter D with stroke *8 Vulgar fraction one half

*2 Small Icelandic letter eth *9 Capital letter Y with acute accent

*3 Small Greek letter mu (micron sign) *10 Small letter y with acute accent

*4 Broken bar *11 Vulgar fraction three quarters

*5 Cedilla *12 Capital Icelandic letter thorn

*6 Superscript one *13 Small Icelandic letter thorn

*7 Vulgar fraction one quarter

Columns 0 to 1 (code points 00 to 1F) contain a set of 32 control characters. On
an &DECODE operation, those characters without an equivalent in the EBCDIC
character set are translated to NULLS (X'00'). Similarly, on an &ENCODE
operation, EBCDIC control characters without an equivalent in this code page
are translated to the DEC NULL character (X'00').

Columns 2 to 7 (code points 20 to 7F) and columns A to F (code points A0 to AF)
contain graphic characters. On an &DECODE operation, those characters
without an equivalent in the EBCDIC character set are translated to SPACEs
(X'40'). On an &ENCODE operation, EBCDIC graphic characters without an
equivalent in this code page are translated to the DEC SPACE character (X'20').

Columns 8 to 9 (code points 80 to 9F) are control character code points not
defined for this character code page. If they appear on an &DECODE operation,
they are translated to the EBCDIC NULL character (X'00').

Code Page Selection

1274 Network Control Language Reference Guide

ASCII Character Code Page

On an &DECODE operation, if the TRANSLATE=ASCII operand is specified, all
character strings are assumed to be from the ASCII character set as shown in the
following table and are translated to their equivalents in the EBCDIC character
set. An &ENCODE operation, however, assumes the character strings to be from
the EBCDIC character set and translates them to their equivalents in the ASCII
character set shown in the following table.

0 1 2 3 4 5 6 7

-0 NUL DLE SP 0 @ P ' p

-1 SOH DC1 ! 1 A Q a q

-2 STX DC2 ” 2 B R b r

-3 ETX DC3 # 3 C S c s

-4 EOT DC4 $ 4 D T d t

-5 ENQ NAK % 5 E U e u

-6 AC SYN & 6 F V f v

-7 BEL ETB ' 7 G W g w

-8 BS CAN (8 H X h x

-9 HT EM) 9 I Y i y

-A LF SUB * : J Z j z

-B VT ESC + ; K [k {

-C FF FS , < L \ l |

-D CR GS - = M] m }

-E SO RS . > N n ~

-F SI US / ? O o DEL

Columns 0 to 1 (code points 00 to 1F) contain a set of 32 control characters. On
an &DECODE operation, those characters without an equivalent in the EBCDIC
character set are translated to NULLS (X'00'). On an &ENCODE operation,
EBCDIC control characters without an equivalent in this code page are
translated to the ASCII NULL character (X'00').

Code Page Selection

Appendix C: Supported Character Sets 1275

Columns 2 to 7 (code points 20 to 7F) contain a set of 94 graphic characters,
plus the SPACE and DELETE characters. On an &ENCODE operation, EBCDIC
graphic characters without an equivalent in this code page are translated to the
ASCII SPACE character (X'20').

Columns 8 to 9 (code points 80 to 9F) and columns A to F (code points A0 to AF)
are respectively, control character and graphic character code points not
defined for this code page. If they appear on an &DECODE operation, they are
translated to the EBCDIC NULL (X'00') and SPACE (X'40') characters respectively.

ISO Character Code Page

On an &DECODE operation, if the TRANSLATE=ISO operand is specified, all
character strings are assumed to be from the ISO character set shown below
and are translated to their equivalents in the EBCIDIC character set. An
&ENCODE operation, however, assumes the character strings to be from the
EBCDIC character set and translates them to their equivalents in the ISO
character set shown in the following table.

 0 1 2 3 4 5 6 7

-0 NUL DLE SP 0 @ P ' p

-1 SOH DC1 ! 1 A Q a q

-2 STX DC2 ” 2 B R b r

-3 ETX DC3 # 3 C S c s

-4 EOT DC4 * 4 D T d t

-5 ENQ NAK % 5 E U e u

-6 ACK SYN & 6 F V f v

-7 BEL ETB ' 7 G W g w

-8 BS CAN (8 H X h x

-9 HT EM) 9 I Y i y

-A LF SUB * : J Z j z

-B VT ESC + ; K [k {

-C FF FS , < L \ l |

-D CR GS - = M] m }

-E SO RS . > N n ¯

Code Page Selection

1276 Network Control Language Reference Guide

-F SI US / ? O _ o DEL

Columns 0 to 1 (code points 00 to 1F) contain a set of 32 control characters. On
an &DECODE operation, those characters without an equivalent in the EBCDIC
character set are translated to NULLS (X'00'). On an &ENCODE operation,
EBCDIC control characters without an equivalent in this code page are
translated to the ISO NULL character (X'00').

Columns 2 to 7 (code points 20 to 7F) contain a set of 94 graphic characters,
plus the SPACE and DELETE characters. On an &ENCODE operation, EBCDIC
graphic characters without an equivalent in this code page are translated to the
ISO SPACE character (X'20').

Columns 8 to 9 (code points 80 to 9F) and columns A to F (code points A0 to AF)
are respectively, control character and graphic character code points not
defined for this code page. If they appear on an &DECODE operation, they are
translated to the EBCDICNULL (X'00') and SPACE (X'40') characters respectively.

Appendix D: Processing Double Byte Character Set Data 1277

Appendix D: Processing Double Byte
Character Set Data

This section contains the following topics:

About Double Byte Characters (see page 1277)
DBCS Support in NCL (see page 1278)
NCL Function Changes with &CONTROL DBCS Options (see page 1279)

About Double Byte Characters

Many Asian languages are written using symbols rather than letters. Because of
the large number of symbols used, these languages require two bytes to
represent each symbol (rather than one byte as used in languages such as
English). These language representations are known as double byte character
sets, or DBCS.

DBCS data is normally delineated by special characters known as shift
characters. A string of data can contain a mixture of single byte (SBCS) and
double byte data. A shift out character is used to mark the start of DBCS data
and a shift in character marks the return to SBCS data.

Manipulating a DBCS string requires special care to preserve its integrity. The
NCL language provides extensive support for DBCS data manipulation. This
support is available in product regions executing with the SYSPARMS DBCS
operand set to YES, IBM, or FUJITSU.

DBCS Support in NCL

1278 Network Control Language Reference Guide

DBCS Support in NCL

Support for DBCS data manipulation in NCL is activated by the following
&CONTROL options:

■ &CONTROL DBCS

■ &CONTROL DBCSN

■ &CONTROL DBCSP

All three of these options alter the way in which NCL operates, to ensure that
DBCS data is recognized and preserved. When any of these options are in effect,
the string manipulation functions of NCL check for the presence of DBCS data. If
a string is padded or truncated, the shift characters are automatically
preserved-without the shift characters it is impossible to identify the DBCS

Note: On Hitachi systems, the character X'40' is considered to be a neutral
character which can appear in both SBCS or DBCS data. When NCL calculates
character boundaries in DBCS data, single X'40' characters are considered valid
if the NCL procedure is executing on behalf of a user logged-on from a Hitachi
560/20 terminal, or if the procedure is executing in a background region (for
example, BSYS region) and the operating system on which the region is
executing is VOS3.

Terminals capable of displaying DBCS data exhibit differing display
characteristics. Terminals such as the IBM 5550 family display shift characters as
blank fields on the screen. On Fujitsu and Hitachi terminals the shift characters
take no screen position.

NCL provides for these differing characteristics according to a control setting of
the &CONTROL verb:

■ &CONTROL DBCS treats shift characters as significant, including them in
calculations of length and offset

■ &CONTROL DBCSN considers shift characters are not significant; they are
ignored in length and offset calculations

■ &CONTROL DBCSP chooses between these options depending on the
processing environment

■ &CONTROL NODBCS treats all data as SBCS (valid mixed DBCS/SBCS data
strings could be corrupted)

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1279

NCL Function Changes with &CONTROL DBCS Options

The remainder of this chapter describes the NCL functions that are affected by
the &CONTROL DBCS, &CONTROL DBCSN, and &CONTROL DBCSP options. Those
NCL functions are:

■ &ASISTR

■ &CONCAT

■ &FNDSTR

■ &LENGTH

■ &OVERLAY

■ &REMSTR

■ &SELSTR

■ &SETLENG

■ &STR

■ &SUBSTR

In the examples supplied for each function, the following symbols are used:

■ A less than sign (<) is used to represent a shift out character

■ A greater than sign (>) is used to represent a shift in character

■ DBCS characters are represented as a period (.) followed by a single byte
character (for example, <.A> represents a double byte A)

■ An underscore (_) is used to represent a X'40' in a DBCS string or a single
byte blank

NCL Function Changes with &CONTROL DBCS Options

1280 Network Control Language Reference Guide

&ASISTR

The &ASISTR built-in function is used to assign data to a variable. If an
&CONTROL DBCS, DBCSN or DBCSP option is in effect, and the data ends with a
DBCS string which does not contain a shift in character to identify the end of the
DBCS string, the &ASISTR function adds a shift in character to the end of the
data before assignment takes place. This is useful for avoiding syntax errors
which occur due to processing incomplete DBCS strings.

Example: &ASISTR

&A contains the value <.A.B.C

&CONTROL DBCS&A = &ASISTR &A

results in

&A = <.A.B.C>

&CONCAT

The &CONCAT built-in function is used to concatenate several pieces of data to
form a single string. With an &CONTROL DBCS, DBCSN or DBCSP option in effect,
the concatenation of DBCS data removes any consecutive shift in or shift out
characters in the resultant data string.

Example: &CONCAT

&CONTROL DBCS

&A = &CONCAT <.A> <.B> ABC D<.C> E

results in

&A = <.A.B>ABCD<.C>E

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1281

&FNDSTR

The &FNDSTR built-in function is used to locate a given data string (called the
search argument) in another data string. This function requires special
processing for DBCS data, to avoid a single byte character being located in a
double byte string. For example, if searching for a single byte A (X'C1'), the
second byte of a Kanji symbol represented by X'45C1' contains the X'C1' code,
but it should not be considered a match.

The search argument is single byte data only, or double byte data only, or a
mixture of single byte data and double byte data.

The search argument is stripped of consecutive shift out/shift in sequences
before the scan is performed. For example, if the search argument is AA<>BB,
the actual string searched for would be AABB. If the resulting string is null, a
value of 0 will be assigned to the target variable.

If the search argument begins with a double byte character, the shift out is
removed from the search argument before the scan is performed. If the search
argument ends with a double byte character, the shift in character is removed
from the search argument before the scan is performed. This allows a DBCS
string to be located within another DBCS string.

If the search argument begins with a single byte character, a match only occurs
in the case where the first character at the location at which the data was
found, is a single byte character. If the search argument begins with a double
byte character, a match only occurs where the first character at the location at
which the data was found is a double byte character.

When using &CONTROL DBCS, DBCSN, or DBCSP, if the search argument is
found in a section of data which is not the first section of data, a value of 999 is
returned. This is the same as the processing with &CONTROL NODBCS.

Examples: &FNDSTR

&CONTROL DBCS

&A = &FNDSTR <> AAA<>BBB

results in

&A = 0

After the shift out and shift in, characters are removed from the search
argument. No data remains so the value returned is 0.

NCL Function Changes with &CONTROL DBCS Options

1282 Network Control Language Reference Guide

&CONTROL DBCS

&A = &FNDSTR A<>B AAABBB

results in

&A = 3

After the shift out and shift in, characters are removed from the search
argument. The search argument becomes AB.

&CONTROL DBCS

&A = &FNDSTR <.B> AAA<.A.B.C>

results in

&A = 7

After the shift out and shift in, characters are removed from the search
argument The search argument becomes a double byte character .B, which
exists at offset 7.

&CONTROL DBCSN

&A = &FNDSTR <.B> AAA<.A.B.C>

results in

&A = 6

After the shift out and shift in, characters are removed from the search
argument. The search argument becomes double byte character .B, which exists
at offset 6. The shift out character after AAA is not included in the calculation of
the offset.

&CONTROL DBCS

&A = &FNDSTR A <.A.B.C>

results in

&A = 0

Although the value for single byte A and the value for the second byte of the
double byte .A are the same, no match occurs because the search argument is a
single byte character and .A is a double byte character.

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1283

&CONTROL DBCS&

A = &FNDSTR <.C>D <.A.B.C>DEF

results in

&A = 6

&A = &FNDSTR A<.B> AAA<.B.C.D>

results in

&A = 3

The search argument is a mixture of double byte data and single byte data.

&CONTROL DBCS

&A = &FNDSTR <.A> AAAA BBBB CC<.A>DD EEEE

results in

&A = 999 (string found but not in first piece of data)

&LENGTH

The &LENGTH built-in function is used to determine the length of a piece of
data. If an &CONTROL DBCSN option is in effect (or a DBCSP option which is
functioning as DBCSN), the length returned will be adjusted to exclude any shift
characters from the length.

Examples: &LENGTH

&CONTROL DBCS

&A = &LENGTH AA<.A.B>BB

results in

&A = 10

Note: The shift characters are included in the length.

&CONTROL DBCSN

&A = &LENGTH AA<.A.B>BB

results in

&A = 8

Note: The shift characters are not included in the length.

NCL Function Changes with &CONTROL DBCS Options

1284 Network Control Language Reference Guide

&OVERLAY

The &OVERLAY built-in function is used to replace data, at a specified offset and
for a specified length, with some other data. In the case where the data is single
byte data only, this is a simple function. When DBCS strings are included, it is
difficult to ensure that the integrity of DBCS strings in the data is preserved. The
&OVERLAY process must consider the contents of the data at the start and end
of the area which is being overlaid, to determine if any shift characters need to
be added or removed to maintain valid DBCS strings.

With &CONTROL DBCS, DBCSN, or DBCSP in effect, the offset and length is
subject to variation due to the contents of the data. For example, if the original
string contains shift characters, and &CONTROL DBCSN is in effect, the shift
characters are not included in the calculation of the offset or length of the data
which is to be overlaid.

If additional shift out or shift in characters must be added to the resultant string
to preserve the integrity of the DBCS data, and shift characters are included in
the length of the string, the string could be truncated to ensure that the length
of the overlaid area is not greater than the length specified. If any truncation
occurs, it occurs at the right hand side of the data to be overlaid, regardless of
the alignment option specified.

If the data at the start of the overlaid area is the second byte of a DBCS
character, the offset is adjusted by one, to exclude the character from the
overlaid area. To ensure that data following the overlaid area is at the same
logical offset relative to the start of the data, after the operation, as it was
before the operation, the length of the overlaid area will be reduced by one. If
the data at the end of the overlaid area is the first byte of a DBCS character, the
length of the overlaid area is reduced by one to ensure that the DBCS character
remains complete.

If the data at the start of the overlaid area is SBCS data, and the data to be
placed in the string starts with DBCS data, a shift out character will be added to
the start of the data when it is inserted. If shift characters are counted in the
length of the string, the length of the overlaid area will be reduced by one to
compensate for the shift out character. If the data at the start of the overlaid
area is DBCS, and the data to be placed in the string starts with SBCS data, a
shift in character will be added to the start of the data when it is inserted. If
shift characters are counted in the length of the string, the length of the
overlaid area will be reduced by one to compensate for the shift character.

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1285

If the data at the end of the overlaid area is SBCS data, and the data to be
placed in the string ends with DBCS data, a shift in character will be added to
the end of the data when it is inserted. If shift characters are counted in the
length of the string, the length of the overlaid area will be reduced by one to
compensate for the shift out character. If the data at the end of the overlaid
area is DBCS data, and the data to be placed in the string ends with SBCS data, a
shift out character will be added to the front of the data when it is inserted. If
shift characters are counted in the length of the string, the length of the
overlaid area will be reduced by one to compensate for the shift character.

If the data to be inserted starts with a shift out character, it is removed to allow
the data to start with a DBCS character, but the shift out character is not
included in the length of the data being inserted, even if &CONTROL DBCS is in
effect. Similarly, if the data ends with a shift in character, the shift in character is
removed, but is not included in the length of the data. In this case, the shift out
and shift in characters are present only to identify the data as DBCS data. This
makes it possible to overlay DBCS data onto DBCS data, while &CONTROL DBCS
is in use, without adjusting the overlay length for the shift out and shift in
characters.

Alignment (left, right, and center) is supported under all circumstances.
However, the pad characters can only be single byte characters.

Examples: &OVERLAY

&CONTROL DBCS

&A = &OVERLAY AAAA <.A> 2 1

results in

&A = AAAA

Note: The data has been truncated because the length of the area (1) is not
sufficient for any DBCS data.

&CONTROL DBCS

&A = &OVERLAY AAAA <.A> 2 2

results in

&A = A<>A

An attempt has been made to insert a double byte character in the middle of a
single byte string. However, the length of the area (2) is not large enough to
contain a DBCS character as well as shift characters, so only the required shift
out and shift in have been inserted.

NCL Function Changes with &CONTROL DBCS Options

1286 Network Control Language Reference Guide

&CONTROL DBCSN

&A = &OVERLAY AAAA <.A> 2 2

results in

&A = A<.A>A

Note: The shift out and shift in characters are not included in the length of the
overlaid area.

&CONTROL DBCS

&A = &OVERLAY <.A.B.C.D.E> A 6 1

results in

&A = <.A.B.C.D.E>

There is not sufficient room in the overlay area for the data, due to the
requirement to insert shift out and shift in characters, so the resulting string is
unchanged.

&CONTROL DBCS

&A = &OVERLAY <.A.B.C.D.E> A 6 2

results in

&A = <.A.B><.D.E>

An attempt has been made to insert a single byte character in the middle of a
double byte string. However the length of the area (2) is only enough for the
insertion of shift in and shift out characters, so the data has been truncated.

&CONTROL DBCSN

&A = &OVERLAY <.A.B.C.D.E> A 5 2 ALIGNL-

results in

&A = <.A.B>A-<.D.E>

The single byte A has replaced the double byte character .C and one pad
character has been required to maintain the total length of the string. The shift
in and shift out characters are not included in the offset or length of the overlaid
area.

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1287

&CONTROL DBCS

&A = &OVERLAY <.A.B.C.D.E> A 6 4 ALIGNR-

results in

&A = <.A.B>-A<.E>

Four bytes of DBCS data have been overlaid. Some shift in and shift out
characters have been required, reducing the length of the data to 2, and the
data has been inserted in a right aligned manner with padding to the left.

&CONTROL DBCS

&A = &OVERLAY <.A.B.C.D.E> <.Z.Z> 4 4

results in

&A = <.A.Z.Z.D.E>

The shift out and shift in characters in the data being inserted have not been
included in the data length.

&REMSTR

The &REMSTR built-in function is used to split a section of data into two parts
and assign the second part of the data to a target variable. The location at which
the data is split is determined by the specification of a single character, which
acts as a delimiter for the split operation. The only functional difference with an
&CONTROL DBCS, DBCSN or DBCSP option in effect, is that the designated split
character is a single byte character or a double byte character. With the
&CONTROL NODBCS option in effect, only a single byte character is specified.

If the designated split character is a single byte character, the split can only
occur where the character exists in a single byte section of the data. If the
designated split character is a double byte character, the shift out and shift in
characters are removed from the character, and the split can only occur where
the split character is found in a double byte section of the data.

If the split occurs in a double byte section of data, a shift out character is added
to the start of the resultant data, if required, to preserve the integrity of the
DBCS string.

NCL Function Changes with &CONTROL DBCS Options

1288 Network Control Language Reference Guide

Examples: &REMSTR

&CONTROL NODBCS &A = &REMSTR (C) ABCDEF

results in

&A = DEF

&CONTROL DBCS&A = &REMSTR (C) ABCDEF

results in

&A = DEF

The &CONTROL NODBCS operation is identical to the &CONTROL DBCS
operation.

&CONTROL NODBCS&A = &REMSTR (<.D>) ABC<.C.D.E>

This operation results in a syntax error, because a double byte character can
only be specified if an &CONTROL DBCS, DBCSN or DBCSP option is in effect.

&CONTROL DBCS&A = &REMSTR (<.C>) ABC<.C.D.E>

results in

&A = <.D.E>

Note: A shift out has been added before the double byte character .D to
maintain integrity of the DBCS string.

&SELSTR

The &SELSTR built-in function is used to split a section of data into two parts
and assign the first part of the data to a target variable. The location at which
the data is split is determined by the specification of a single character, which
acts as a delimiter for the split operation. The only functional difference with an
&CONTROL DBCS, DBCSN or DBCSP option in effect, is that the designated split
character is a single byte character or a double byte character. With the
&CONTROL NODBCS option in effect, only a single byte character is specified.

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1289

If the designated split character is a single byte character, the split can only
occur where the character exists in a single byte section of the data. If the
designated split character is a double byte character, the shift out and shift in
characters are removed from the character, and the split can only occur where
the split character is found in a double byte section of the data.

If the split occurs in a double byte section of data, a shift in is added to the end
of the resultant data, if required, to preserve the integrity of the DBCS string.

Examples: &SELSTR

&CONTROL NODBCS

&A = &SELSTR (C) ABCDEF

results in

&A = AB

&CONTROL DBCS

&A = &SELSTR (C) ABCDEF

results in

&A = AB

The &CONTROL NODBCS operation is identical to the &CONTROL DBCS
operation.

&CONTROL NODBCS

&A = &SELSTR (<.D>) ABC<.C.D.E>

This operation results in a syntax error, because a double byte character can
only be specified if an &CONTROL DBCS, DBCSN or DBCSP option is in effect.

&CONTROL DBCS

&A = &SELSTR (<.D>) ABC<.C.D.E>

results in

&A = ABC<.C>

Note: A shift in has been added after the double byte character .C to maintain
integrity of the DBCS string.

NCL Function Changes with &CONTROL DBCS Options

1290 Network Control Language Reference Guide

&SETLENG

The &SETLENG built-in function is used to assign data of a specific length to a
target variable. If the original data is longer than the specified length, it is
truncated. If the original data is shorter than the specified length, the data is
padded with blanks before assignment takes place. If &SETLENG truncates DBCS
data, the shift in character could be removed, causing an incomplete DBCS
string to be produced. This could lead to syntax errors in later processing or
undisplayable data being presented on the screen. With an &CONTROL DBCS,
DBCSN, or DBCSP option in effect, a shift in is added to the end of the data if
required.

When shift characters do not occupy a screen position, formatting tabular
displays, such as selection lists, becomes difficult. This is because the columns of
data are misaligned, due to the difference in the displayable length of the data
and the length of the data contained in an NCL variable. With &CONTROL
DBCSN or DBCSP in effect, &SETLENG overcomes this problem. It adjusts the
length of data assigned to the target variable to ensure that if the shift
characters are present and they do not occupy a position on the screen. The
displayable length of the data will always be exactly the same as the length
specified on the &SETLENG statement.

Examples: &SETLENG

&CONTROL NODBCS

&A = &STR <.A.B.C.D>

&A = &SETLENG 6

results in

&A = <.A.B.

No special consideration is given to the DBCS string.

&A = &STR <.A.B.C.D>

&CONTROL DBCS

&A = &SETLENG 6

results in

&A = <.A.B>

Note: A shift in has been added to the end of the data. The length of the
resultant data is 6.

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1291

&A = &STR <.A.B.C.D>

&CONTROL DBCSN

&A = &SETLENG 6

results in

&A = <.A.B.C>

Note: A shift in has been added to the end of the data. The length of the
resultant data is 6. The shift characters are not counted in the final data length.

&A = &STR <.A.B>

&CONTROL DBCS

&A = &SETLENG 8

results in

&A = <.A.B>__

The length of the resultant data is 8. Two blanks have been added to the end of
the data to ensure the resultant length is correct.

&A = &STR <.A.B.C.D>

&CONTROL DBCSN

&A = &SETLENG 8

results in

&A = <.A.B>____

The length of the resultant data is 8. The shift characters are not counted in the
final data length. Four blanks have been added to the end of the resultant data
to ensure that the resultant length is correct.

&A = &STR <.A.B>

&CONTROL DBCSP

&A = &SETLENG 8

results in

&A = <.A.B>__

if the terminal is an IBM DBCS terminal, or results in

&A = <.A.B>_____

if the terminal is a Fujitsu or Hitachi DBCS terminal.

NCL Function Changes with &CONTROL DBCS Options

1292 Network Control Language Reference Guide

The displayable length of the resultant data is 8 in both cases. Blanks have been
added to the end of the resultant data in both cases to ensure that the resultant
length is correct.

&COL1 = &STR data

&COL2 = &STR data

&COL3 = &STR data

&CONTROL DBCSP

&COL1 = &SETLENG 20

&COL2 = &SETLENG 40

&COL3 = &SETLENG 10

&CONTROL NODBCS

&LINE1 = &CONCAT &COL1 &COL2 &COL3

This example is creating a variable called &LINE1, which is part of a tabular
display in which the first column starts at column 1, the second starts at column
21, and the third starts at column 61. Regardless of the contents of the data,
and regardless of the terminal on which the data will be displayed, the columns
will always be at the correct offset. This is because &SETLENG always ensures
that the displayable length of the data is exactly as requested.

&STR

The &STR built-in function is used to assign data to a variable. If an &CONTROL
DBCS, DBCSN, or DBCSP option is in effect, and the data ends with a DBCS string
that does not contain a shift in character to identify the end of the DBCS string,
the &STR function adds a shift in character to the end of the data before
assignment takes place. This is useful for avoiding syntax errors that occur due
to processing incomplete DBCS strings.

Example: &STR

&A contains the value <.A.B.C

&CONTROL DBCS

&A = &STR &A

results in

&A = <.A.B.C>

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1293

&SUBSTR

The &SUBSTR built-in function is used to extract data from within a string. If the
data is single byte data only, this is a simple function. When DBCS strings are
included, the standard &SUBSTR function can cause problems if the data within
the part of the string which is defined by the offset and length operands
contains DBCS data. The data that is extracted can contain shift characters that
do not occur in shift out/shift in pairs. This can lead to problems, such as syntax
errors, in later processing.

With &CONTROL DBCS, DBCSN, or DBCSP in effect, the offset and length is
subject to variation due to the contents of the data. For example, if the original
string contains shift characters, and &CONTROL DBCSN is in effect, the shift
characters are not included in the calculation of the offset or length of the data
that is to be extracted. If additional shift characters need to be added to the
resultant string to preserve the integrity of the DBCS data, and they are included
in the length of the string, the string could be truncated to ensure that the
length of the extracted data is not greater than the length requested.

If the data at the specified offset is the second byte of a DBCS character, the
character is replaced by a shift out character if shift characters are included in
the string length, or by a single byte blank and a shift out character if shift
characters are not included in the string length. This ensures that the following
DBCS character extracted remains at the same logical offset in the resultant
string.

If the data at the end of the extracted string is the first byte of a DBCS character,
the character is replaced by a shift in character if shift characters are included in
the string length, or by a shift in character and a single byte blank if shift
characters are not included in the string length.

If the extracted data begins with a DBCS character, a shift out character is added
to the front of the resultant string, to preserve the integrity of the DBCS string. If
the extracted data ends with a DBCS character, a shift in character is added to
the end of the resultant string, to preserve the integrity of the DBCS string.

If the original data string is shorter that the sum of the offset and length
operands, no blank padding is added to the end of the resultant data string.
However, a shift in is added if necessary.

If the data to be extracted is part of a DBCS string and the length specified is not
large enough to allow a whole DBCS character to be extracted, the target
variable is set to null.

NCL Function Changes with &CONTROL DBCS Options

1294 Network Control Language Reference Guide

Examples: &SUBSTR

&CONTROL DBCS

&A = &SUBSTR AA<.A.B.C.D> 1 5

results in

&A = AA<>_

Note: The data was truncated to ensure that the final data length did not
exceed the requested length. The shift characters are included in the length of
the string. The resultant data has one trailing blank.

&CONTROL DBCSN

&A = &SUBSTR AA<.A.B.C.D> 1 5

results in

&A = AA<.A>_

Note: The data would have ended on the first byte of a DBCS character (.B)
which would be invalid, so the data has been truncated to remove the first byte
of this character. The shift characters are not counted in the length of the string.
The resultant data has one trailing blank.

&CONTROL DBCS

&A = &SUBSTR AA<.A.B.C.D> 4 5

results in

&A = _<.B>

Note: The shift characters are counted in the offset and length of the string. A
single blank has been added to the start of the data because the offset specified
was the first byte of a DBCS character. Because of the requirement to add a shift
in character, the data has been truncated.

&CONTROL DBCSN

&A = &SUBSTR AA<.A.B.C.D> 5 2

results in

&A = <.B>

NCL Function Changes with &CONTROL DBCS Options

Appendix D: Processing Double Byte Character Set Data 1295

&A = &SUBSTR AA<.A.B.C.D> 5 4

results in

&A = <.B.C>

Note: The shift characters are not counted in the offset and length of the string.
No data truncation is required, because the shift characters are not included in
the length of the string.

&CONTROL DBCS

&A = &SUBSTR AA<.A.B.C.D> 6 1

results in &A being null.

&A = &SUBSTR AA<.A.B.C.D> 6 2

results in &A being null.

In both cases, the data being extracted is from a DBCS string, and the length
specified is not large enough for a DBCS character, so the target variable is set
to null.

Appendix E: &SOCKET Verbs 1297

Appendix E: &SOCKET Verbs

This appendix describes the &SOCKET verb set that allows NCL processes to use
TCP/IP socket interface.

This section contains the following topics:

About the Socket Interfaces (see page 1297)
Sample Code for TCP and UDP &SOCKET Verbs (see page 1301)
Socket Interface Feedback and Error Codes (see page 1304)
Interpreting Vendor-specific Error Codes (&ZSOCVERR) (see page 1311)
TCP/IP Vendor Interface Restrictions and Limitations (see page 1313)

About the Socket Interfaces

A socket is an end point for interprocess communication over a network running
TCP/IP. The socket interfaces support a number of underlying transport
mechanisms. Sockets can simultaneously transmit and receive data from
another process, using methods that depend on the type of socket being used.
Sockets is of the following types, each representing a different type of
communications service:

■ TCP sockets

■ UDP sockets

Note: &SOCKET verbs only support IPv4 address types.

TCP Sockets

TCP (Transmission Control Protocol) sockets provide reliable, connection-based
communications. In the case of a sockets interface, the two processes must
establish a logical connection with each other. The data is a stream of bytes that
is sent without errors or duplication, and is received in the same order in which
it was sent.

The following sections describe the various types of TCP socket applications and
the &SOCKET verbs you would use for each type.

About the Socket Interfaces

1298 Network Control Language Reference Guide

TCP Server Verb Set

&SOCKET ACCEPT

Accepts connection from clients

&SOCKET CLOSE

Closes the client connection

&SOCKET RECEIVE

Receives data from clients

&SOCKET REGISTER

Registers a server

&SOCKET SEND

Sends data to clients

&SOCKET TRANSFER_REQUEST

Transfers a socket ID from one NCL process to another

&SOCKET TRANSFER_ACCEPT

Accepts a socket ID from a donor NCL process

Note: For details of these verbs, see Verbs and Built-in Functions (see page 33).

TCP Client Verb Set

&SOCKET CLOSE

Closes the server connection

&SOCKET CONNECT

Connects to the server

&SOCKET RECEIVE

Receives data from the server

&SOCKET SEND

Sends data to the server

Note: For details of these verbs, see Verbs and Built-in Functions (see page 33).

About the Socket Interfaces

Appendix E: &SOCKET Verbs 1299

UDP Sockets

UDP (User Datagram Protocol) sockets communicate by way of discrete
messages called datagrams, which are sent as packets. UDP sockets are
connectionless. Communication processes do not have a logical connection with
each other and therefore the delivery of their data is unreliable. The datagrams
is lost or duplicated, or they might not arrive in the same order in which they
were sent.

The following sections describe the UDP socket application and the &SOCKET
verbs you would use.

UDP Sockets Verb Set

&SOCKET CLOSE

Closes the communication socket

&SOCKET OPEN

Opens the communication socket and port

&SOCKET RECEIVE_FROM

Receives datagrams

&SOCKET SEND_TO

Sends datagrams

Note: For details of these verbs, see Verbs and Built-in Functions (see page 33).

Host Verb Set

&SOCKET PING

Pings the host

&SOCKET TRACEROUTE

Traces the route to the host

The PING and TRACEROUTE verbs directly access the lower layer protocols such
as Internet Protocol (IP) and Internet Control Message Protocol (ICMP).

The PING and TRACEROUTE verbs may not be supported by all interfaces.

Note: For details of these verbs, see Verbs and Built-in Functions (see page 33).

About the Socket Interfaces

1300 Network Control Language Reference Guide

Name Services Verb Set

&SOCKET GETHOSTBYNAME

Obtains IP address for a specified host name

&SOCKET GETHOSTBYADDR

Obtains host name information for a specified IP address

The GETHOSTBYNAME and GETHOSTBYADDR verbs request Domain Name
Services (DNS) functions that translate an IP address into a host name and vice
versa.

Note: For details of these verbs, see Verbs and Built-in Functions (see page 33).

Socket Built-in Functions

The socket interfaces support built-in functions that you can use to obtain
information about socket processes.

■ To determine if a function is supported, use the &ZTCPSUPP function.

■ To obtain information about the local host, use the &ZTCPINFO function.

■ To obtain information about a specific socket, use the &ZSOCINFO function.

■ To obtain information about error codes, use the following functions:

■ &ZTCPERNM for the logical name of a TCP/IP error code

■ &ZTCPERDS for a short message about a TCP/IP error code.

Note: For details of these verbs, see Verbs and Built-in Functions (see page 33).

System Variables

The following system variables are available within the TCP/IP &SOCKET verb
set.

&ZTCP

Indicates the status of the socket interface

&ZTCPHSTA

Contains the value of the local host's IP address

&ZTCPHSTF

Contains the value of the local host's full name

Sample Code for TCP and UDP &SOCKET Verbs

Appendix E: &SOCKET Verbs 1301

&ZTCPHSTN

Contains the value of the local host's short name

&ZSOCID

Contains the socket ID of the last referenced socket

&ZSOCHNM

Contains the host name of the host referenced by some requests, such as
&SOCKET GETHOSTBYADDR

&ZSOCFHNM

Contains the full host name of the host referenced by some requests, such
as &SOCKET GETHOSTBYADDR

&ZSOCHADR

Contains the IP address of the host referenced by some requests, such as
&SOCKET GETHOSTBYNAME

&ZSOCCID

Contains the socket ID used by the interface; for example, for IBM TCP/IP
the internal socket number (a small number). Is used to identify an NCL
socket or display produced by TCP/IP; for example, the NETSTAT command.

&ZSOCERRN

Contains the last ERRNO value returned from an &SOCKET request

&ZSOCPRT

Contains the port number of the last referenced socket

&ZSOCTYPE

Indicates the socket type of the last referenced socket

&ZSOCVERR

Returns vendor error information-format is specific to the TCP/IP interface
in use

Note: For details of these verbs, see System Variables (see page 789).

Sample Code for TCP and UDP &SOCKET Verbs

Sample code for TCP and UDP &SOCKET verbs is available online. It is located in
the CC2DEXEC file under the names given for the following examples.

Sample Code for TCP and UDP &SOCKET Verbs

1302 Network Control Language Reference Guide

Examples of Using TCP &SOCKET Verbs

Following are examples of using TCP &SOCKET verbs.

$NMSATC1-TCP Socket Server

This sample server procedure accepts connections and transfers them to new
NCL processes that are started by the server to service the connections.

To invoke the server, you must specify a port number.

$NMSATC1 PORT=port_number

This procedure starts the procedure $NMSATC2 as a new process to service
each new connection.

This sample also demonstrates the use of an asynchronous &SOCKET verb.

This sample works in conjunction with the following sample procedures:

■ $NMSATC2 - Command Processor

■ $NMSATC3 - Command Client

$NMSATC2 - Command Processor

This sample procedure is started by $NMSATC1 (the server) and has a
connection transferred to it. This procedure accepts the connection, receives a
command, and issues the command. It then reads the responses from the
command and sends them back to the requester. The requests and responses
are received and sent in ASCII to demonstrate how to do ASCII/EBCDIC
translation.

Any errors that this procedure encounters are written to the log.

This sample works in conjunction with the following sample procedures:

■ $NMSATC1 - TCP Socket Server

■ $NMSATC3 - Command Client

You can also use Telnet instead of $NMSATC3 as the client program.

Sample Code for TCP and UDP &SOCKET Verbs

Appendix E: &SOCKET Verbs 1303

$NMSATC3 - Command Client

This sample client procedure sends a command and receives responses using
the &SOCKET verb. It works in conjunction with the following sample server
application procedures:

■ $NMSATC1

■ $NMSATC2

This procedure demonstrates ASCII/EBCDIC conversion, because all data sent
and received is in ASCII.

$NMSATC3 ipAddr=

hostName=

port=

command="command to be executed"

Note: The command must be in quotes.

You can use a Telnet client instead of this program to send commands to the
server (procedures $NMSATC1 and $NMSATC2).

$NMSATC4 - SMTP Client

This sample SMTP client procedure sends mail to a user. The contents of the
mail are hard-coded in this procedure, but the procedure can easily be modified
so that the text to be sent is passed to it.

$NMSATC4 SENDER=USERID@COMPANY.COM

RECIPIENT=USERID@COMPANY.COM

SMTPSVR=SMTP_SERVER_NAME_OR_ADDR

You should read RFC821 for an understanding of the SMTP protocol. This RFC is
available at the following web address: http://www.ietf.org

http://www.ietf.org/
http://www.ietf.org/

Socket Interface Feedback and Error Codes

1304 Network Control Language Reference Guide

Socket Interface Feedback and Error Codes

The error codes that relate to problems encountered when attempting to use
the &SOCKET verbs are:

■ Feedback codes (&ZFDBK)

■ Socket error codes (&ZSOCERRN)

■ Vendor-specific codes (&ZSOCVERR)

Note: There are also return codes used by the socket interfaces. These are
documented with the verbs.

More information:

TCP/IP Feedback Codes (&ZFDBK) (see page 1304)
TCP/IP Socket Errors (&ZSOCERRN) (see page 1308)
Interpreting Vendor-specific Error Codes (&ZSOCVERR) (see page 1311)

TCP/IP Feedback Codes (&ZFDBK)

It is possible that an unlisted return code is an obsolete return code from a
previous release of your TCP/IP product.

1

storage failure

Determine why the address space is experiencing storage problems

2

socket failed

See SOCERRN (see page 1308) code

3

sendto failed

See SOCERRN (see page 1308) code

4

recvfrom failed

See SOCERRN (see page 1308) code

Socket Interface Feedback and Error Codes

Appendix E: &SOCKET Verbs 1305

7

bind failed

See SOCERRN (see page 1308) code

9

listen failed

See SOCERRN (see page 1308) code

10

accept failed

See SOCERRN code

12

getclientid failed

Contact Technical Support.

13

send failed

See SOCERRN (see page 1308) code

14

receive failed

See SOCERRN (see page 1308) code

15

socket_ID invalid

Check the ID= parameter on the &SOCKET verb

16

connect failed

See SOCERRN (see page 1308) code

17

invalid data

Contact Technical Support

18

attach failed

Contact Technical Support

Socket Interface Feedback and Error Codes

1306 Network Control Language Reference Guide

21

gethostbyname failed

See SOCERRN (see page 1308) code

22

subtask terminated or abended

Check whether a TCPIP STOP has been done; otherwise contact Technical
Support

23

setsockopt failed

See SOCERRN (see page 1308) code

24

invalid IP address specified

Specify valid IP address

25

MDO error: see &ZMDORC and &ZMDOFDBK

Note: For more information, see the Network Control Language
Programming Guide.

26

Request has been flushed

Investigate why the NCL procedure was flushed and restart if required

27

getsockname failed

Contact Technical Support

29

hopnumber too low

Increase the number of hops specified on the Trace TCP/IP Route panel

30

givesocket failed

Contact Technical Support

Socket Interface Feedback and Error Codes

Appendix E: &SOCKET Verbs 1307

31

takesocket failed

Contact Technical Support

34

gethostbyaddress failed

See SOCERRN (see page 1308) code

35

Invalid NCL ID

Specify valid NCL ID

36

Ping request not accepted

See SOCERRN (see page 1308) code

37

Traceroute request not accepted

See SOCERRN (see page 1308) code

38

Buffer overflow occurred

Supply smaller amount of data

39

MDO too large

Decrease number of pings or hops

96

TCP/IP QUIESCE command entered

No action

97

socket being closed

No action-socket closed or process flushed

Socket Interface Feedback and Error Codes

1308 Network Control Language Reference Guide

98

invalid request

Contact Technical Support

99

socket interface not initialized

Issue the TCPIP START command from OCS

TCP/IP Socket Errors (&ZSOCERRN)

It is possible that an unlisted return code is an obsolete return code from a
previous release of your TCP/IP product.

3—ENOMEM

Out of memory

Determine why the address space is experiencing storage problems

7—EUNSUPP

Unsupported I/O operation

Contact CA Technical Support.

23—EACCES

User or program lacks adequate permission to access this socket.
Permission denied

Ensure that the user ID of the address space is in the OBEY list of IBM TCP/IP
in the TCPIP.PROFILE.TCPIP file.

28—EDESTADDRREQ

Socket operation requires a destination address

Contact CA Technical Support.

29—EMSGSIZEA

UDP socket could not accommodate a message as large as this one

Contact CA Technical Support.

34—EOPNOTSUPP

The call does not support this type of socket

Contact CA Technical Support.

Socket Interface Feedback and Error Codes

Appendix E: &SOCKET Verbs 1309

37—EADDRINUSE

The given address is already in use

Find the process which has the port registered

39—ENETDOWN

Cannot talk to the networking software on this local machine, or the host's
network is down.

Check your network and/or TCP/IP stack

40—ENETUNREACH

This host cannot find a route to the specified destination network

Check your network and/or TCP/IP stack

41—ENETRESET

The remote host is not communicating over the network at this time

Check the status of the remote host

42—ECONNABORTED

The local communications software aborted the connection

Check the status of the TCP/IP address space

43—ECONNRESET

The peer process has reset the connection

Check the peer and determine the reason for its termination

44—ENOBUFS

The operating system did not have enough memory to perform the
requested operation

Check your network and/or TCP/IP stack

47—ESHUTDOWN

The connection has been shutdown

Contact CA Technical Support

48—ETIMEDOUT

The destination host did not respond to a connection request

49—ECONNREFUSED

The destination host refused the socket connection

Check the status of the remote host

Socket Interface Feedback and Error Codes

1310 Network Control Language Reference Guide

50—EHOSTDOWN

Socket operation failed because the destination host was down

Ensure that the destination host is active and retry

51—EHOSTUNREACH

Socket operation failed because the destination host is unreachable

Ensure that the destination host is active and retry

52—EPIPE

The peer process closed its socket while the local task was still writing data
to the connection

Check the status of the remote host

63—EIO

I/O error occurred

Check the TCP/IP region for messages

64—ECONNCLOSED

Connection closed by peer

Determine why peer closed connection

65—ESOCKCLS

Socket closed

No action-socket closed by process

66—ENOPIDS

No process IDs available for ping or traceroute

Retry operation

67—ENOPORTS

No ports available for traceroute

Retry operation

68—ESHPORTCLS

Shared port closed

No action-shared port closed by process; will be opened later in processing

Interpreting Vendor-specific Error Codes (&ZSOCVERR)

Appendix E: &SOCKET Verbs 1311

69—EUNKSERVER

Unknown server

Check the server name and then retry.

70—EINVPORTNUM

Invalid port number

Check the port number and then retry.

71—ESERVERNAMEINUSE

The given server is already in use

Find the process which is using the port.

72—EDNRNOTFND

Host name or address not found for SOLVE DNR

Check the host name and then retry.

73—EDNRNORSP

SOLVE DNR timed out

Retry operation

74—EDNRBADNAME

Invalid domain name for SOLVE DNR

Check the domain name and then retry.

75—EDNRERROR

SOLVE DNR error (for example, send/receive error or storage error)

Check descriptive text returned with error code

999—EOTHER

Vendor-specific error

See ZSOCVERR (see page 1311) and vendor TCP/IP error codes

Interpreting Vendor-specific Error Codes (&ZSOCVERR)

Vendor-specific errors have an error number of 999 and an additional VERRIN
(vendor-specific error) code. The interpretation of this error code is different
depending on the vendor of the TCP/IP software. These error codes appear in
messages and in the NCL system variable &ZSOCVERR.

Interpreting Vendor-specific Error Codes (&ZSOCVERR)

1312 Network Control Language Reference Guide

Interpreting CA TCPaccess Systems Error Codes

For CA TCPaccess Communications Server, the &ZSOCVERR (VERRIN) system
variable is in one of the following formats:

■ Format A: 04/aa-bb-cccc

■ Format B: nn-xxxx

Decoding Format A

The A-format 04/aa-bb-cccc is decoded as follows:

04

A TPL function received a return code of 4

aa

Recovery action code (the value of TPLACTCD in hexadecimal notation)

bb

Specific error code (the value of TPLERRCD in hexadecimal notation)

cccc

Diagnostic code (that is, the value of TPLDGNCD in hexadecimal notation)

For more information, see the CA TCPaccess Communications Server Unprefixed
Messages and Codes guide and perform the following steps:

1. Locate the chapter “API Return Codes”.

2. Among the RTNCD aabb page titles, locate the first two sets of digits
(aa-bb).

3. For each of these titles, locate the table that contains the various diagnostic
code values (cccc).

TCP/IP Vendor Interface Restrictions and Limitations

Appendix E: &SOCKET Verbs 1313

Decoding Format B

The B-format nn-xxxx is decoded as follows:

nn

General return code (the R15 value from a TPL function request)

xxxx

Diagnostic code (the low half of R0 from the TPL function request,
hexadecimal expanded)

Note: For more information, see the CA TCPaccess Communications Server
Unprefixed Messages and Codes guide and perform the following steps:

1. Locate the chapter “API Return Codes”.

2. Locate TPL-Based General Return Codes.

3. For each return code value (nn), locate the table that contains the
diagnostic code values (xxxx).

Interpreting IBM Systems Error Codes

The &ZSOCVERR (VERRIN) system variable contains the IBM TCP/IP socket
ERRNO value. This is translated into the &ZSOCERRN value.

The IBM TCP/IP socket ERRNO value is displayed as a decimal number.

Note: For z/OS V1.2 or later, see IBM Communications Server IP and SNA Codes
(SC31-8791) for the meaning of the value.

TCP/IP Vendor Interface Restrictions and Limitations

This section describes the restrictions and limitations of each TCP/IP vendor
interface. It covers the following vendor interfaces:

■ CA TCPaccess Communications Server

■ IBM Communications Server

Vendor interface restrictions and limitations are particularly relevant to NCL
&SOCKET programming.

TCP/IP Vendor Interface Restrictions and Limitations

1314 Network Control Language Reference Guide

CA TCPaccess Communications Server

The CA TCPaccess interface uses the assembler macro TLI interface to connect
to TCPaccess.

This interface has the following restrictions:

■ The maximum size of a UDP datagram that is sent or received is limited by
the CA TCPaccess configuration parameters. As distributed, this is 9000
bytes.

■ By default, the system uses global DNS, except for obtaining the local host
name, when the system requests local DNS.

IBM Communications Server

The system interfaces to IBM's Communications Server using the TCP/IP
macro-level interface, which uses the HPNS (High Performance Native Sockets)
facility.

This interface has the following restrictions:

■ To use the PING and TRACEROUTE functions, the region RACF user ID must
be in the TCP/IP OBEY list.

■ The user ID must have an OMVS segment with a UID of 0.

	CA SOLVE:Access Session Management Network Control Language Reference Guide
	Contents
	1: Introduction
	About NCL
	Format
	Verbs
	Built-in Functions
	System Variable Format
	Related Documentation

	2: Verbs and Built-in Functions
	Summary Table
	&AOMALERT
	&AOMCONT
	&AOMDEL
	&AOMGFLAG
	&AOMGVAR
	&AOMINIT
	&AOMMIGID
	&AOMMINLN
	&AOMMINLT
	&AOMREAD
	&AOMREPL
	&APPC
	&APPC Return Code Information
	&RETCODE and &ZFDBK

	&APPC ALLOCATE_DELAYED
	&APPC ALLOCATE_IMMEDIATE
	&APPC ALLOCATE_NOTIFY
	&APPC ALLOCATE_SESSION
	&APPC ATTACH_DELAYED
	&APPC ATTACH_IMMEDIATE
	&APPC ATTACH_NOTIFY
	&APPC ATTACH_SESSION
	&APPC CONFIRM
	&APPC CONFIRMED
	&APPC CONNECT_DELAYED
	&APPC CONNECT_IMMEDIATE
	&APPC CONNECT_NOTIFY
	&APPC CONNECT_SESSION
	&APPC DEALLOCATE
	&APPC DEREGISTER
	&APPC FLUSH
	&APPC PREPARE_TO_RECEIVE
	&APPC RECEIVE_AND_WAIT
	&APPC RECEIVE_IMMEDIATE
	&APPC RECEIVE_NOTIFY
	&APPC REGISTER
	&APPC REQUEST_TO_SEND
	&APPC RPC
	&APPC SEND_AND_CONFIRM
	&APPC SEND_AND_DEALLOCATE
	&APPC SEND_AND_FLUSH
	&APPC SEND_AND_PREPARE_TO_RECEIVE
	&APPC SEND_DATA
	&APPC SEND_ERROR
	&APPC SET_SERVER_MODE
	&APPC START
	&APPC TEST
	&APPC TRANSFER_ACCEPT
	&APPC TRANSFER_CONNECT
	&APPC TRANSFER_REJECT
	&APPC TRANSFER_REQUEST
	&APPSTAT
	&ASISTR
	&ASSIGN
	&ASSIGN Statement for MDO Assignments
	&ASSIGN Syntax for MDO Data Assignments

	&BOOLEXPR
	BOOLEAN Expression Syntax

	&CALL
	&CALL procedure
	&CALL program

	&CMDLINE
	&CNMALERT
	&CNMCLEAR
	&CNMCONT
	&CNMDEL
	&CNMPARSE
	&CNMREAD
	&CNMSEND
	&CNMVECTR
	&CONCAT
	&CONTROL
	&DATECONV
	&DEC
	&DECODE
	&DELAY
	&DO
	&DOEND
	&DOM
	&DOUNTIL
	&DOWHILE
	&ELSE
	&ENCODE
	&END
	&ENDAFTER
	&EVENT
	&EXIT
	&FILE
	&FILE ADD
	&FILE CLOSE
	&FILE DEL
	&FILE GET
	&FILE OPEN
	&FILE PUT
	&FILE SET
	&FLUSH
	&FNDSTR
	&GOSUB
	&GOTO
	&HEX
	&HEXEXP
	&HEXPACK
	&IF
	&INTCLEAR
	&INTCMD
	&INTCONT
	&INTREAD
	&INTREPL
	&INVSTR
	&LBLSTR
	&LENGTH
	&LOCK
	Altering the Lock Type During Processing

	&LOGCONT
	&LOGDEL
	&LOGON
	&LOGREAD
	&LOGREPL
	&LOOPCTL
	&MAICMD
	&MAICONT
	&MAICURSA
	&MAIDEL
	&MAIDSFMT
	&MAIFIND
	&MAIINKEY
	&MAIPUT
	&MAIREAD
	&MAIREPL
	&MAISADD
	&MAISCMD
	&MAISGET
	&MAISPUT
	&MASKCHK
	&MSGCONT
	&MSGDEL
	&MSGREAD
	&MSGREPL
	&NBLSTR
	Free-form Syntax

	&NDBADD
	&NDBCLOSE
	&NDBCTL
	&NDBDEF
	&NDBDEL
	&NDBFMT
	&NDBGET
	&NDBINFO
	&NDBOPEN
	&NDBPHON
	&NDBPHON Exit Call Details

	&NDBQUOTE
	&NDBSCAN
	Comments on Syntax
	Scan Processing
	Logic
	Correlated Subselects

	&NDBSEQ
	Sequential Retrieval

	&NDBUPD
	&NPFxCHK
	&NRDDEL
	&NUMEDIT
	&OVERLAY
	&PANEL
	&PANELEND
	&PARSE
	&PAUSE
	&PPI
	&PPI Verb
	Return Codes, System and User Variables
	Determining PPI or Receiver Status
	Defining the Process as a Registered PPI Receiver
	Sending a Generic Alert
	Sending Data to a Receiver
	Receiving Data
	Deactivating the Receiver ID
	Uses of PPI
	Examples

	&PPI ALERT
	&PPI DEACTIVATE
	&PPI DEFINE
	&PPI RECEIVE
	&PPI SEND
	&PPI STATUS
	&PPOALERT
	&PPOCONT
	&PPODEL
	&PPOREAD
	&PPOREPL
	&PROMPT
	&QEXIT
	&REMSTR
	&RETCODE
	&RETSUB
	&RETURN
	&RSCCHECK
	&SECCALL
	&SECCALL ADD
	&SECCALL CHANGE
	&SECCALL CHECK
	&SECCALL DELETE
	&SECCALL EXIT
	&SECCALL GET
	&SECCALL QUERY
	&SECCALL UPDATE
	&SELSTR
	&SETBLNK
	&SETLENG
	&SETVARS
	&SMFWRITE
	&SNAMS CANCEL
	&SNAMS DEREGISTER
	&SNAMS RECEIVE
	&SNAMS RECEIVE_NOTIFY
	&SNAMS REGISTER
	&SNAMS SEND
	&SOCKET ACCEPT
	&SOCKET CLOSE
	&SOCKET CONNECT
	&SOCKET GETHOSTBYADDR
	&SOCKET GETHOSTBYNAME
	&SOCKET OPEN
	&SOCKET PING
	&SOCKET RECEIVE
	&SOCKET RECEIVE_FROM
	&SOCKET REGISTER
	&SOCKET SEND
	&SOCKET SEND_TO
	&SOCKET TRACEROUTE
	&SOCKET TRANSFER_ACCEPT
	&SOCKET TRANSFER_REQUEST
	&STR
	&SUBSTR
	&TBLSTR
	&TRANS
	&TYPECHK
	&VARTABLE
	&VARTABLE ADD
	&VARTABLE ALLOC
	&VARTABLE DELETE
	&VARTABLE FREE
	&VARTABLE GET
	&VARTABLE PUT or UPDATE
	&VARTABLE QUERY
	&VARTABLE RESET
	&WRITE
	&WTO
	&WTOR
	&ZAMCHECK
	&ZFEATURE
	&ZNCLKWD
	&ZOSCHK
	&ZPSKIP
	&ZQUOTE/&ZQUOTE2
	&ZSHRINK
	&ZSOCINFO
	&ZSUBST
	&ZSYSPARM
	&ZTCPERDS
	&ZTCPERNM
	&ZTCPINFO
	&ZTCPSUPP
	&ZUNQUOTE

	3: System Variables
	About System Variables
	&ALLPARMS
	&AOMACCT1-4
	&AOMALARM
	&AOMASID
	&AOMATEXT
	&AOMAUTH
	&AOMAUTO
	&AOMAUTOT
	&AOMBC
	&AOMCHAR1
	&AOMCOLOR
	&AOMCONNM
	&AOMDESC
	&AOMDHEX
	&AOMDMASK
	&AOMDOM
	&AOMDOMID
	&AOMEVCLS
	&AOMHLITE
	&AOMID
	&AOMIJOBN
	&AOMINTEN
	&AOMJOBCL
	&AOMJOBID
	&AOMJOBNM
	&AOMJSTCB
	&AOMLDID
	&AOMLROUT
	&AOMLRSLT
	&AOMLRSL1-8
	&AOMLTCTL
	&AOMLTDAT
	&AOMLTEND
	&AOMLTLAB
	&AOMMAJOR
	&AOMMHEX
	&AOMMINOR
	&AOMMMASK
	&AOMMONIT
	&AOMMPFSP
	&AOMMSGCD
	&AOMMSGID
	&AOMMSGLV
	&AOMMVCON
	&AOMMVSDL
	&AOMNMCON
	&AOMNMDOM
	&AOMNMIN
	&AOMNRD
	&AOMODID
	&AOMRCLAS
	&AOMRCLS1-8
	&AOMREISS
	&AOMRHEX
	&AOMRKEY
	&AOMRKEY
	&AOMROUTC
	&AOMROUTE
	&AOMRROUT
	&AOMRWTOR
	&AOMSALRT
	&AOMSDATA
	&AOMSINGL
	&AOMSOLIC
	&AOMSOLTP
	&AOMSOS
	&AOMSUBT
	&AOMTEXT
	&AOMTIME
	&AOMTYPE
	&AOMUFLGS
	&AOMUFLG1-8
	&AOMVMMCL
	&AOMVMSRC
	&AOMVMUID
	&AOMVMUND
	&AOMWRID
	&AOMWRLEN
	&AOMWTO
	&AOMWTOR
	&BROLINEn
	&CURSCOL and &CURSROW
	&DATEn
	&DAY
	&FILEID
	&FILEKEY
	&FILERC
	&FILERCNT
	&FSM
	&INKEY
	&LOOPCTL
	&LUCOLS
	&LUEXTCO
	&LUEXTHI
	&LUNAME
	&LUROWS
	&MAI#SESS
	&MAIAE
	&MAIAPPL
	&MAICCOLS
	&MAICROWS
	&MAIDISC
	&MAIFRLU
	&MAIINKEY
	&MAILOCK
	&MAILU
	&MAIMNFMNT
	&MAINSESS
	&MAIOCMD
	&MAIREQ
	&MAISCANDL
	&MAISID
	&MAISKIPP
	&MAISKPK1
	&MAISKPK2
	&MAISMODE
	&MAITITLE
	&MAIUNLCK
	&MAIWNDOW
	&NDBERRI
	&NDBRC
	&NDBRID
	&NEWSAUTH
	&NEWSRSET
	&NMID
	&OCSID and &OCSIDO
	&PANELID
	&PARMCNT
	&RETCODE
	&ROUTECODE
	&SYSID
	&TIME
	&USERAUTH
	&USERID
	&USERPW
	&VSAMFDBK
	&ZACBNAME
	&ZAMTYPE
	&ZAPPCACC
	&ZAPPCCSI
	&ZAPPCELM
	&ZAPPCELP
	&ZAPPCID
	&ZAPPCIDA
	&ZAPPCLNK
	&ZAPPCMOD
	&ZAPPCPCC
	&ZAPPCQLN
	&ZAPPCQRN
	&ZAPPCRM
	&ZAPPCRTS
	&ZAPPCSCM
	&ZAPPCSM
	&ZAPPCSND
	&ZAPPCSTA
	&ZAPPCSYN
	&ZAPPCTRN
	&ZAPPCTYP
	&ZAPPCWR
	&ZAPPCWRI
	&ZAPPCVRB
	&ZAPBLANK1
	&ZBROID
	&ZBROTYPE
	&ZCOLS
	&ZCONSOLE
	&ZCURSFLD
	&ZDBCS
	&ZDOMID
	&ZDSNQLCL
	&ZDSNQSHR
	&ZFDBK
	&ZGDATEn
	&ZGDAY
	&ZGOPS
	&ZGTIMEn
	&ZGTIMEZn
	&ZINTYPE
	&ZIREQCNT
	&ZIRSPCNT
	&ZJOBNAME
	&ZJOBNUM
	&ZJRNLACT
	&ZJRNLALT
	&ZLCLIPA
	&ZLCLIPP
	&ZLOGMODE
	&ZLUNETID
	&ZLUTYPE
	&ZLU1CHN
	&ZMAIACT#or &ZMAIACTN
	&ZMALARM
	&ZMALLMSG
	&ZMAOMAU
	&ZMAOMBC
	&ZMAOMDTA
	&ZMAOMID
	&ZMAOMJI
	&ZMAOMJN
	&ZMAOMMID
	&ZMAOMMIN
	&ZMAOMMLC
	&ZMAOMMLD
	&ZMAOMMLE
	&ZMAOMMLL
	&ZMAOMMLT
	&ZMAOMMLV
	&ZMAOMMSG
	&ZMAOMRC
	&ZMAOMRCM
	&ZMAOMRCX
	&ZMAOMSOS
	&ZMAOMSYN
	&ZMAOMTM
	&ZMAOMTYP
	&ZMAOMUFM
	&ZMAOMUF1-8
	&ZMAOMUI
	&ZMAOMUN
	&ZMAPNAME
	&ZMCOLOR or &ZMCOLOUR
	&ZMDOCOMP
	&ZMDOFDBK
	&ZMDOID
	&ZMDOM
	&ZMDOMAP
	&ZMDOMID
	&ZMDONAME
	&ZMDORC
	&ZMDOTAG
	&ZMDOTYPE
	&ZMEVONID
	&ZMEVPROF
	&ZMEVRCDE
	&ZMEVTIME
	&ZMEVUSER
	&ZMHLIGHT or &ZMHLITE
	&ZMINTENS
	&ZMLNODE
	&ZMLOGCMD
	&ZMLSRCID
	&ZMLSRCTP
	&ZMLTIME
	&ZMLUSER
	$ZMMONMSG
	&ZMMSG
	&ZMMSGCD
	&ZMMDIDL
	&ZMMDIDO
	&ZMNRD
	&ZMNRDRET
	&ZMODFLD
	&ZMODSRCID
	&ZMOSRCTP
	&ZMPPODTA
	&ZMPPOMSG
	&ZMPPOSCNT
	&ZMPPOSEV
	&ZMPPOTM
	&ZMPPOVNO
	&ZMPREFXD
	&ZMPTEXT
	&ZMREQID
	&ZMREQSRC
	&ZMSLEVEL
	&ZMSOLIC
	&ZMSOURCE
	&ZMTEXT
	&ZMTYPE
	&ZNCLENV
	&ZNCLID
	&ZNCLNEST
	&ZNCLTYPE
	&ZNETID
	&ZNETNAME
	&ZNMDID
	&ZNMSUP
	&ZOCS
	&ZOPS
	&ZOPSVERS
	&ZOUSERID
	&ZPERRORC
	&ZPERRORH
	&ZPINPHIC
	&ZPINPLOC
	&ZPINPUTH
	&ZPINPUTP
	&ZPLABELC
	&ZPMTEXT1
	&ZPOUTHIC
	&ZPOUTLOC
	&ZPPKEYC
	&ZPPI
	&ZPPINAME
	&ZPRINAME
	&ZPRODNAM
	&ZPSERVIC
	&ZPSKIP
	&ZPSKPSTR
	&ZPSUBTLC
	&ZPTITLEC
	&ZPTITLEP
	&ZPWSTATE
	&ZREMIPA
	&ZREMIPP
	&ZROWS
	&ZSCOPE
	&ZSECEXIT
	&ZSERVER
	&ZSNAMID
	&ZSOCCID
	&ZSOCERRN
	&ZSOCFHNM
	&ZSOCHADR
	&ZSOCHNM
	&ZSOCID
	&ZSOCPRT
	&ZSOCTYPE
	&ZSOCVERR
	&ZSSCPNAM
	&ZSYSNAME
	&ZTCP
	&ZTCPHSTA
	&ZTCPHSTF
	&ZTCPHSTN
	&ZTIMEn
	&ZTSOUSER
	&ZUCENAME
	&ZUDATEn
	&ZUDAY
	&ZUNIQUE
	&ZUSERLC
	&ZUSERSLC
	&ZUSRMODE
	&ZUTIMEn
	&ZUTIMEZn
	&ZUTIMEZN
	&ZVARCNT
	&ZVTAMLVL
	&ZVTAMPU
	&ZVTAMSA
	&ZWINDOW
	&ZWINDOW#
	&ZWSTATE
	&0
	&00
	&000

	4: PSM Interface
	About the PSM NCL Interface
	$PSCALL Options

	$PSCALL OPT=BROWSE
	$PSCALL OPT=CANCEL
	$PSCALL OPT=CLOSE
	$PSCALL OPT=CONFIRM
	$PSCALL OPT=DELETE
	$PSCALL OPT=HEADER
	$PSCALL OPT=HOLD
	$PSCALL OPT=INFO
	$PSCALL OPT=MODIFY
	$PSCALL OPT=OPEN
	$PSCALL OPT=PUT
	$PSCALL OPT=QUEUE
	$PSCALL OPT=RELEASE
	Banner Exit
	Printer Exit Interface

	5: CA CCI Interface
	$CACCI OPT=INIT
	$CACCI OPT=INQUIRE
	$CACCI OPT=RECEIVE
	$CACCI OPT=SEND
	$CACCI OPT=TERM | TERMINATE
	$CACCI OPT=CANCEL
	Return Codes and Variables
	Feedback Codes

	$CACCI Example

	6: Broadcast Services Interface
	About Broadcast Services
	$BSCALL OPT=SEND
	$BSCALL OPT=MENU
	$BSCALL OPT=LISTALL
	$BSCALL OPT=REVIEW
	$BSCALL OPT=DISCARD
	Notification Exit Interface

	7: Dataset Services Interface
	About the Dataset Services Interface
	Exit Procedures
	Return Codes
	Feedback Codes

	$DSCALL OPT=ALIAS
	$DSCALL OPT=ALLOC
	$DSCALL OPT=ALLOC STAT=NEW
	$DSCALL OPT=ALLOC SYSOUT=class
	$DSCALL OPT=ALLOCINFO
	$DSCALL OPT=BROWSE
	$DSCALL OPT=CATLIST
	$DSCALL OPT=CLOSE
	$DSCALL OPT=COMPRESS
	$DSCALL OPT=CONCAT
	$DSCALL OPT=COPY
	$DSCALL OPT=COPYPDS
	$DSCALL OPT=COPYSEQ
	$DSCALL OPT=CREATE
	$DSCALL OPT=DECONCAT
	$DSCALL OPT=DELETE
	$DSCALL OPT=DELMEM
	$DSCALL OPT=DEQ
	$DSCALL OPT=DSNLIST
	$DSCALL OPT=DSNSPACE
	$DSCALL OPT=EDIT
	$DSCALL OPT=ENQ
	$DSCALL OPT=FCLOSE
	$DSCALL OPT=FINDMEM
	$DSCALL OPT=FOPEN
	$DSCALL OPT=INFO
	$DSCALL OPT= LISTC
	$DSCALL OPT=MEMLIST
	$DSCALL OPT=MOVE
	$DSCALL OPT=MOVEPACK
	$DSCALL OPT=OPEN
	$DSCALL OPT=PRINT
	$DSCALL OPT=READ
	$DSCALL OPT=RENAME
	$DSCALL OPT=RENMEM
	$DSCALL OPT=SHOWALLOC
	$DSCALL OPT=SUBMIT
	$DSCALL OPT=UNALL
	$DSCALL OPT=UTILITY
	$DSCALL OPT=VOLSPACE
	$DSCALL OPT=WRITE

	8: MVS System Symbols Interface
	Accessing MVS Static System Symbols
	$CAPKBIF PLEXSUB
	$CAPKBIF PLEXSYM COUNT
	$CAPKBIF PLEXSYM symbol NEXT
	$CAPKBIF PLEXSYM symbol VALUE

	9: Timer Services Interface
	About the Timer Services NCL Interface.
	$TICALL FUNC=ADD
	$TICALL FUNC=GET
	$TICALL FUNC=PUT
	$TICALL FUNC=DEL
	$TICALL FUNC=LIST
	$TICALL FUNC=START
	$TICALL FUNC=STOP
	$TICALL FUNC=STATUS
	$TICALL FUNC=NEXT

	10: Persistent Global Variables Interface
	$CAGLBL OPT=LOAD
	$CAGLBL OPT=SAVE
	$CAGLBL OPT=PURGE
	$CAGLBL OPT=LIST
	$CAGLBL OPT=SHGLBL

	A: Event Distribution Services
	Sample Code
	System Event Names
	Extended Data

	B: Supported Language Codes for National Language Support
	C: Supported Character Sets
	Code Page Selection
	DEC Character Code Page
	ASCII Character Code Page
	ISO Character Code Page

	D: Processing Double Byte Character Set Data
	About Double Byte Characters
	DBCS Support in NCL
	NCL Function Changes with &CONTROL DBCS Options
	&ASISTR
	&CONCAT
	&FNDSTR
	&LENGTH
	&OVERLAY
	&REMSTR
	&SELSTR
	&SETLENG
	&STR
	&SUBSTR

	E: &SOCKET Verbs
	About the Socket Interfaces
	TCP Sockets
	TCP Server Verb Set
	TCP Client Verb Set

	UDP Sockets
	UDP Sockets Verb Set

	Host Verb Set
	Name Services Verb Set
	Socket Built-in Functions
	System Variables

	Sample Code for TCP and UDP &SOCKET Verbs
	Examples of Using TCP &SOCKET Verbs
	$NMSATC1-TCP Socket Server
	$NMSATC2 - Command Processor
	$NMSATC3 - Command Client
	$NMSATC4 - SMTP Client

	Socket Interface Feedback and Error Codes
	TCP/IP Feedback Codes (&ZFDBK)
	TCP/IP Socket Errors (&ZSOCERRN)

	Interpreting Vendor-specific Error Codes (&ZSOCVERR)
	Interpreting CA TCPaccess Systems Error Codes
	Decoding Format A
	Decoding Format B

	Interpreting IBM Systems Error Codes

	TCP/IP Vendor Interface Restrictions and Limitations
	CA TCPaccess Communications Server
	IBM Communications Server

